JPS6096559A - Hydraulic composition deformable after curing - Google Patents

Hydraulic composition deformable after curing

Info

Publication number
JPS6096559A
JPS6096559A JP19994883A JP19994883A JPS6096559A JP S6096559 A JPS6096559 A JP S6096559A JP 19994883 A JP19994883 A JP 19994883A JP 19994883 A JP19994883 A JP 19994883A JP S6096559 A JPS6096559 A JP S6096559A
Authority
JP
Japan
Prior art keywords
parts
cement
weight
curing
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19994883A
Other languages
Japanese (ja)
Other versions
JPH0216265B2 (en
Inventor
鶴田 康彦
板倉 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Taisei Corp
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Taisei Corp
Priority to JP19994883A priority Critical patent/JPS6096559A/en
Publication of JPS6096559A publication Critical patent/JPS6096559A/en
Publication of JPH0216265B2 publication Critical patent/JPH0216265B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、硬化後も変形能を有する水硬化性水硬性物質
を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to provide a water-curable hydraulic material that has deformability even after curing.

従来ヒメントのシロき水硬性物質にポリマーを混入して
セメントコンクリートの改質を試みた研究が数多く行な
わ九てきた。
Numerous studies have been conducted in which attempts have been made to improve cement concrete by mixing polymers into Hymento's white hydraulic material.

例えばポルトランドセメントにラテックスを混入する方
法、セメントに固形ゴム細粒を混入する方法、或いは両
者を組み合わせることによシ、セメントモルタルに変形
能(ゴム弾性)を与えようとするものであるが、そのい
ずれも問題点がある。
For example, efforts are being made to impart deformability (rubber elasticity) to cement mortar by mixing latex into Portland cement, mixing fine solid rubber particles into cement, or a combination of the two. Both have their problems.

即ち、ゴム弾性を与えるためには、大量のゴム細粒、も
しくはラテックスを添加しなければならず、かかる場合
、セメントモルタルとしての物性は著しく低下してしま
うからである。
That is, in order to impart rubber elasticity, it is necessary to add a large amount of fine rubber particles or latex, and in such a case, the physical properties as a cement mortar will be significantly reduced.

例えば特開昭50−86826号公報では七メント層と
して天然及び/又は合成ゴム細粒50〜150重量部、
合成1酎脂系工マルジヨン2〜50重量部およびセメン
ト100重量部よりなるモ□〆 ルタルが開示されているが、かかるモルタルはゴルフボ
ールを落下させた際に確認される。クッション効果は満
足出来るかもしれないが、ゴムの含量が多大過ぎてモル
タルとしての物性(曲げ強度、圧縮強度など)は期待出
来ない。
For example, in JP-A-50-86826, 50 to 150 parts by weight of natural and/or synthetic rubber fine particles are used as the seventh layer,
A mortar consisting of 2 to 50 parts by weight of Synthetic 1 liquor based emulsion and 100 parts by weight of cement is disclosed, but such mortar is confirmed when a golf ball is dropped. Although the cushioning effect may be satisfactory, the rubber content is too large and the physical properties (flexural strength, compressive strength, etc.) of mortar cannot be expected.

同様に特開昭50−108345号公報においては、ゴ
ム会セメント比が95〜550%のセメント系シーリン
グ材が提案さ、れでいるが、ゴムラテックス含有率が非
常に高いため、それに応じて骨材を大量に加えねばなら
ず、シーリング材としての伸縮性、防水性の点では満足
出来るが、7−リング拐と1−での強度物性は著しく低
下してしまう。
Similarly, in JP-A-50-108345, a cement-based sealant with a rubber-to-cement ratio of 95 to 550% was proposed, but since the rubber latex content is very high, bone A large amount of material must be added, and although it is satisfactory in terms of elasticity and waterproofness as a sealing material, the strength and physical properties of 7-ring and 1-rings are significantly reduced.

一方特公昭40−28194号公報においては、モルタ
ル物性の改善に多大の効果があシ、現在広く実用化され
ているが、同公報開示のモルタルは、ゴム・セメント比
が5〜40%であシ、モルタルの変形能においては未だ
十分とは言えない。
On the other hand, Japanese Patent Publication No. 40-28194 has a great effect on improving the physical properties of mortar, and is now widely put into practical use. However, the deformability of mortar is still not sufficient.

これはモルタルの弾性率を下げ変形能を与えようとすれ
ば、前記特開昭50−108345号公報r1L2載の
モルタルのように大量のラテックスを用いなければなら
ず、そのようにすればモルタル物性が低下するという相
反する要因のためである。
This is because if you want to lower the elastic modulus of mortar and give it deformability, you have to use a large amount of latex like the mortar described in JP-A-50-108345 r1L2, and if you do that, the mortar physical properties This is due to contradictory factors that lead to a decline in

このように水硬性物質であるセメント系モルタルVこお
いて、モルタル本来の物性をある程度保持しつつ併せて
変形能を持たせることは二律背反となり極めて困難なこ
とである。
As described above, in cement-based mortar V, which is a hydraulic material, it is extremely difficult to maintain the original physical properties of the mortar to some extent while at the same time imparting deformability.

本発明者らは、かかる問題点を解決するため鋭意研究の
結果、ラテックスと可塑剤を併用することによシ、モル
タル物性を大きく損うことなしに変形能も有する低弾性
率(1,6〜5%)の水硬性組成物が得られることを見
いだし、この知見に基づいて本発明を完成するに至った
ものである。
As a result of intensive research in order to solve these problems, the present inventors found that by using latex and plasticizer together, a material with a low elastic modulus (1,6 5%) can be obtained, and based on this finding, the present invention was completed.

即ち本発明は、水硬性物質100重量部、合成ゴムラテ
ックス、天然ゴムラテックスおよび合成樹脂エマルジョ
ンよりなる群から選ばれた少くとも1種のポリマー10
〜50重量部(面形分換X)ならびに可塑剤10〜60
重量部を主成分としたことを特徴とする硬化後も変形能
を有する水硬性組成物である。
That is, the present invention provides 100 parts by weight of a hydraulic substance, 100 parts by weight of at least one polymer selected from the group consisting of synthetic rubber latex, natural rubber latex, and synthetic resin emulsion.
~50 parts by weight (surface shape fraction X) and 10 to 60 parts of plasticizer
This is a hydraulic composition that has deformability even after curing, and is characterized by containing part by weight as a main component.

本発明において水硬性物質とは、ポルトランドセメント
(普通ポルトランドセメント、早強ポルトランドセメン
ト、超早強ポルトランドセメント、中庸熱ポルトランド
セメント、耐硫酸塩ポルトランドセメント、白色ポルト
ランドセメント、オイルウェルセメント、メーソンリー
セメントなど)、アルミナセメント、急硬高強度セメン
ト、膨張セメント、酸性リン酸塩セメント、焼セツコウ
などの自硬性セメント、石灰スラグセメント、高炉セメ
ント、高硫酸塩スラグセメント、キーンスセメントなど
の潜在水硬性セメント、石灰ケイ酸系混合セメントなど
の混合セメン1(i−挙げることができる。
In the present invention, hydraulic substances include portland cement (ordinary portland cement, early strength portland cement, ultra early strength portland cement, moderate heat portland cement, sulfate resistant portland cement, white portland cement, oilwell cement, masonry cement, etc.) ), alumina cement, rapidly hardening high-strength cement, expansive cement, acid phosphate cement, self-hardening cement such as calcined slag cement, latent hydraulic cement such as lime slag cement, blast furnace cement, high sulfate slag cement, Keens cement, etc. , mixed cement 1 (i-) such as lime-silicate mixed cement.

また本発明適用のポリマーとは、前記の如く合成ゴムラ
テックス、天然ゴムラテックスおよび合成、尉脂エマル
ジョンよシなる群から選ばれた少くとも1種であり、合
成ゴムラテックスとしては、クロロプレンゴムラテック
ス(C几)、スチレン・ブタジェンゴムラテックス(S
BR1結合スチレン量0〜65%〕、アクリロニトリル
会ブタジェンゴムラテックス(NBR)、 ブタジェン
ゴムラテックス(B It )など、また合成樹脂エマ
ルジョンとしては、ポリアクリル酸エステルエマルジョ
ン(スチレン(!:(7) 共重合?: 含む)、ポリ
酢酸ビニルエマルジョン、ポリ塩化ビニリチンエマルジ
ョン、エチレン−酢酸ビニル共重合体エマルジョンなど
が挙げられる。
Further, the polymer to which the present invention is applied is at least one selected from the group consisting of synthetic rubber latex, natural rubber latex, and synthetic rubber emulsion, as described above.As the synthetic rubber latex, chloroprene rubber latex ( C), styrene-butadiene rubber latex (S
Synthetic resin emulsions include polyacrylate emulsion (styrene (!: (7) Examples include copolymerization (including copolymerization), polyvinyl acetate emulsion, polyvinyritine chloride emulsion, and ethylene-vinyl acetate copolymer emulsion.

かかるポリマーの使用量は、前記水硬性物質100重量
部に対し、固型分として約10〜50重量部、好ましく
は10〜30重量部である。ポリマー使用量が約10重
量部未満では、硬化後の組成物は変形能に乏しく、弾性
率も約1.6%に到達せず、一方約50重量部を超える
と硬化後の組成物は変形能は大であるが、弾性率は約5
%を越え、モルタル物性も低下し、何れも好ましくない
。なおこれらのラテックス、エマルジョンは、このまま
でセメントなどの水硬性物質と混合した場合混合安定性
に問題があるため、必要に応じポリオキシエチレンアル
キルフェニルエーテルの如キ安定剤、またノリコーンエ
マルジョンなどの消泡剤、さらにフェノール系の老化防
止剤などを添加して使用することが好ましい。
The amount of such polymer used is about 10 to 50 parts by weight, preferably 10 to 30 parts by weight as a solid content, based on 100 parts by weight of the hydraulic material. If the amount of polymer used is less than about 10 parts by weight, the cured composition will have poor deformability and the elastic modulus will not reach about 1.6%, while if it exceeds about 50 parts by weight, the cured composition will be deformed. Although the elasticity is large, the elastic modulus is about 5.
%, the physical properties of the mortar deteriorate, both of which are unfavorable. Note that these latexes and emulsions have problems with mixing stability when mixed with cement or other hydraulic substances, so if necessary, stabilizers such as polyoxyethylene alkylphenyl ether or Noricone emulsions may be used. It is preferable to add an antifoaming agent and a phenolic anti-aging agent.

さらに可塑剤としては、フクル酸ジプチル、フタル酸ジ
−n−オクチル、フタル酸ジ(2−エチルヘキシル)、
フタル酸ジノニル、フタル酸ジラウリル、フタル酸ブチ
ルラウリル、フタル酸ブチルベンジル、アジピン酸ジ(
2−エチルヘキシル)、セバシンRジ(2−エチルヘキ
シル)、リン酸トリクレジル、リン酸トリ(2−エチル
ヘキシル)、ポリエチレングリコールエステル、エポキ
シ脂肪酸エステルなどのプラスチック、合成ゴム用の一
般的な可塑剤のほかパインタール、トール油、塩素化パ
ラフィン。
Furthermore, as plasticizers, diptyl fuculate, di-n-octyl phthalate, di(2-ethylhexyl) phthalate,
Dinonyl phthalate, dilauryl phthalate, butyl lauryl phthalate, butyl benzyl phthalate, di(adipate)
In addition to general plasticizers for plastics and synthetic rubber, such as Sebacin R di(2-ethylhexyl), tricresyl phosphate, tri(2-ethylhexyl) phosphate, polyethylene glycol ester, and epoxy fatty acid ester, pine Tar, tall oil, chlorinated paraffin.

ナフテン系鉱物油などのゴム用軟化剤を挙げることがで
きる。かくてaJ塑剤の使用量は、前記水硬性物質に対
し約15〜60重量部である。
Rubber softeners such as naphthenic mineral oils can be mentioned. Thus, the amount of aJ plasticizer used is about 15 to 60 parts by weight based on the hydraulic material.

ijJ塑剤の使用量が約15重量部未満では、前記ポリ
マーと水硬性物質との間の親和性が不充分となり、かつ
得られる硬化後の組成物も変形能に乏しくまた弾性率も
約1.6%未満となる、一方約60重量部を越えると水
硬性物質の硬化速度が遅くなるほか、得られる硬化後組
成物のモルタル物性が低下し何れも好ましくない。
If the amount of the ijJ plasticizer used is less than about 15 parts by weight, the affinity between the polymer and the hydraulic substance will be insufficient, and the resulting cured composition will also have poor deformability and an elastic modulus of about 1. On the other hand, if it exceeds about 60 parts by weight, the curing speed of the hydraulic material becomes slow and the physical properties of the mortar of the resulting cured composition deteriorate, both of which are undesirable.

本発明は、水硬性物質、前記ポリマーおよび可塑剤を特
定量組合せることにより硬化後変形能を有しかつ所望の
モルタル物性を有する組成物を提供し得る。本発明の水
硬性組成物は、前記ラテックスもしくはエマルジョンま
たはこれらの組合せおよび可塑剤を特定量混合攪拌して
均一な乳化物としだ後(必要に応じ安定剤、消泡剤、老
化防止剤を加えて)、仁の乳化物にポリマー・セメント
比が10〜50%、かつ可塑剤・セメント比が15〜6
0%となるように水硬性物質(場合によっては塩化カル
シウムなどの硬化促進剤を併用)を混合、さらに必要に
応じて砂、砂利、石粉などを適量混合することによって
製造すれはよい。
The present invention can provide a composition that has deformability after curing and has desired mortar physical properties by combining a hydraulic substance, the above-mentioned polymer, and a plasticizer in specific amounts. The hydraulic composition of the present invention is prepared by mixing and stirring specified amounts of the latex or emulsion or a combination thereof and a plasticizer to form a uniform emulsion (stabilizers, antifoaming agents, and anti-aging agents are added as necessary). ), the polymer/cement ratio is 10 to 50%, and the plasticizer/cement ratio is 15 to 6.
It can be manufactured by mixing a hydraulic substance (in some cases with a hardening accelerator such as calcium chloride) so that the hardening agent is 0%, and further mixing an appropriate amount of sand, gravel, stone powder, etc. as necessary.

かぐして得られた水硬性組成物(セメントモルタル)は
、弾性率1.6〜5%の範囲にあシ、1〜2%の伸縮に
も耐えることが出来る上、所望のモルタル物性を有する
。このようなことは普通モルタルでは到底考えられぬこ
とである。
The hydraulic composition (cement mortar) obtained by smelting has an elastic modulus in the range of 1.6 to 5%, can withstand expansion and contraction of 1 to 2%, and has desired mortar physical properties. . This kind of thing is completely unthinkable with normal mortar.

本発明によって得られた水硬性組成物の用途としでは、
PC板などのジヨイント部に充填する目地材、壁体とパ
イプなどの+ii間に充填するコーキング祠、クッショ
ン性のある床材、機械基礎などの防掘材、緩衝材、幼稚
園などの運動場などの弾性舗装材、マンション、ホテル
などの床に用いるstr性の床下地材などに好適である
The uses of the hydraulic composition obtained by the present invention include:
Joint material to fill in the joints of PC boards, caulking to fill between walls and pipes, cushioning flooring materials, excavation prevention materials for machine foundations, cushioning materials, playgrounds for kindergartens, etc. Suitable for use as elastic paving materials and str floor base materials used for floors in condominiums, hotels, etc.

以下実施例を挙げて本発明をさらに詳細に説明する。EXAMPLES The present invention will be explained in more detail below with reference to Examples.

実施例1 スチレンブタジエンゴムラ′テックス(以下「S B 
itラテックス」と称す、結合スチレン量45%)20
部〔固形分として、重量基準、以下同じ)にijJ塑剤
としてゴム用ナフテン系プロセスオイル15部およびジ
ブチルフタレート15部ヲ添加し、安定剤としてポリオ
キシエチレンノニルフェノールエーテルを6部添加し、
充分攪拌し一均一な乳化物を得た。
Example 1 Styrene-butadiene rubber latex (hereinafter referred to as “S B
45% bound styrene) 20
15 parts of naphthenic process oil for rubber and 15 parts of dibutyl phthalate as ijJ plasticizers were added to the solid content, and 6 parts of polyoxyethylene nonylphenol ether was added as a stabilizer.
A homogeneous emulsion was obtained by thorough stirring.

普通ポルトランドセメント(以下セメントと称す)10
0部に上記乳化物100部を加え、充分混練した。
Ordinary Portland cement (hereinafter referred to as cement) 10
100 parts of the above emulsion was added to 0 parts and thoroughly kneaded.

かぐして得られたセメント組成物を養生28日後にゴム
硬度計を用いJIS /:、(,3C)Iに準じて表面
の硬さく以下同じ)を測定したところ94であシ、また
JiS A3757 r建築用シーリング材」の試験法
に漁じてシーリング材としての引張シ性能c以下同じ)
を測定したとこる最大強さ0 、9 ECplcr! 
、最大伸び105%であった。
After 28 days of curing, the surface hardness of the cement composition obtained by smelling was measured using a rubber hardness meter according to JIS /:, (,3C)I, and it was found to be 94. The tensile performance as a sealing material was determined based on the test method for ``Sealing materials for construction'' (same below)
The maximum strength measured is 0,9 ECplcr!
, the maximum elongation was 105%.

実施例2 SDRラテックス(結合スチレン量60%)10部に、
アクリル樹脂エマルジョン10部、可塑剤として塩素化
パラフィン30部、水25部、およヒ安定剤としてポリ
オキシエチレンノニルフェノールを10部添加し、充分
攪拌し均一な乳化物を得た。
Example 2 To 10 parts of SDR latex (60% amount of bound styrene),
10 parts of acrylic resin emulsion, 30 parts of chlorinated paraffin as a plasticizer, 25 parts of water, and 10 parts of polyoxyethylene nonylphenol as a stabilizer were added and thoroughly stirred to obtain a uniform emulsion.

セメント100部に上記乳化物100部を加え充分混合
攪拌した。
100 parts of the above emulsion was added to 100 parts of cement and thoroughly mixed and stirred.

かくして得られたセメント組成物をJISA5757r
建築用シーリング材」の試験法に準じシーリング材とし
ての引張シ性能を測定したところ最大強さ1 、 I 
KtAtll、最大伸び103%という値であり、捷た
ゴム硬度計による表面硬さは62であった。
The thus obtained cement composition was rated according to JISA5757r.
The tensile performance as a sealing material was measured according to the test method for "Architectural sealing materials", and the maximum strength was 1, I.
KtAtll, the maximum elongation was 103%, and the surface hardness measured by a crushed rubber hardness meter was 62.

実施例6 天然ゴムラテックス10部に、可塑剤としてナフテン系
鉱物油5部およびジオクチルフタレート15部、水55
部、ならびに安定剤としてオレイン酸カリ石けん1部お
よびポリオキシエチレンノニルフェノール−’ f k
 5 部全添加L、充分攪拌し均一な乳化物を得た。
Example 6 10 parts of natural rubber latex, 5 parts of naphthenic mineral oil and 15 parts of dioctyl phthalate as plasticizers, and 55 parts of water.
part, and 1 part of potassium oleate soap as a stabilizer and polyoxyethylene nonylphenol-' f k
All 5 parts were added and thoroughly stirred to obtain a homogeneous emulsion.

セメント100部に上記乳化物100部を加え充分混合
攪拌した。
100 parts of the above emulsion was added to 100 parts of cement and thoroughly mixed and stirred.

かくして得られたセメント組成物を養生28日後にゴム
硬度a1を用いて表面の硬さを測定したところ98であ
シ、前記引張シ特性は、最大強さ1.3 Kp/crA
、最大伸び105%であった。
After 28 days of curing of the cement composition thus obtained, the surface hardness was measured using rubber hardness A1 and it was 98, and the tensile properties were as follows: maximum strength of 1.3 Kp/crA
, the maximum elongation was 105%.

比較例1 実施例1に用いたSBRラテックス20部に安定剤とし
てポリオキシエチレンノニル7エ/−ルエーテル5部の
みを加え均一な乳化物を得たO セメント100部に上記乳化物を100部加え充分混合
攪拌した。
Comparative Example 1 To 20 parts of the SBR latex used in Example 1, only 5 parts of polyoxyethylene nonyl 7-ether was added as a stabilizer to obtain a uniform emulsion. To 100 parts of O cement, 100 parts of the above emulsion was added. Mix and stir thoroughly.

かくして得られたセメント組成物を養生28日後にゴム
硬度計を用いてその表面の硬さを測定したところ100
以上とスケールオーバーし、測定不能であった。
After 28 days of curing, the surface hardness of the thus obtained cement composition was measured using a rubber hardness meter and found to be 100.
The scale exceeded the above and it was impossible to measure.

また引張シ特性は、最大強さは10.3 Kt/ai 
−最大伸び100.1%以下であった。
In addition, the maximum strength of tensile strength is 10.3 Kt/ai
-The maximum elongation was 100.1% or less.

比較例2 セメント100部に比較例1で調製したSDRラテック
ス乳化物を300部添加し、更に7号硅砂750部を加
え充分混練した。
Comparative Example 2 300 parts of the SDR latex emulsion prepared in Comparative Example 1 was added to 100 parts of cement, and 750 parts of No. 7 silica sand were added and thoroughly kneaded.

かくして得られたセメント組成物を養生28日後、ゴム
硬度計を用いて表面硬さを測定したところ100以上で
あシ、 また引張シ特性は最大強さ12.6シ/cnl
 、最大伸び100.1%以下であった。
After curing the thus obtained cement composition for 28 days, the surface hardness was measured using a rubber hardness meter and it was over 100, and the tensile strength was 12.6 S/cnl at the maximum.
, the maximum elongation was 100.1% or less.

実施例4〜6.比較例6〜6 S D Rラテックスの添加量およびiiJ塑剤の添加
量(ゴム用ナフテン系グロセスオイルとジブチルフタレ
ートは等量とする〕を変える以外は実施例1と同様に実
験し、得ら力、たセメント組成物に対するS B 14
ラテツクス、可塑剤の影響を調べた。結果を第1表に示
す。
Examples 4-6. Comparative Examples 6 to 6 Experiments were conducted in the same manner as in Example 1, except that the amount of SDR latex added and the amount of iiJ plasticizer added (naphthenic gross oil for rubber and dibutyl phthalate were equal amounts). , S B 14 for cement compositions
The effects of latex and plasticizer were investigated. The results are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1、水硬性物質100重量部、合成ゴムラテックス、天
然ゴムラテックスおよび合成樹脂エマルジョンよりなる
群から選ばれた少くとも1種のポリマー10〜50重量
部、々らびに可塑剤15〜60重着部を主成分としたこ
とを特徴とする硬化後も変形能を有する水硬性組成物・
1. 100 parts by weight of a hydraulic substance, 10 to 50 parts by weight of at least one polymer selected from the group consisting of synthetic rubber latex, natural rubber latex, and synthetic resin emulsion, and 15 to 60 parts by weight of a plasticizer. A hydraulic composition having deformability even after curing, which is characterized by containing as a main component.
JP19994883A 1983-10-27 1983-10-27 Hydraulic composition deformable after curing Granted JPS6096559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19994883A JPS6096559A (en) 1983-10-27 1983-10-27 Hydraulic composition deformable after curing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19994883A JPS6096559A (en) 1983-10-27 1983-10-27 Hydraulic composition deformable after curing

Publications (2)

Publication Number Publication Date
JPS6096559A true JPS6096559A (en) 1985-05-30
JPH0216265B2 JPH0216265B2 (en) 1990-04-16

Family

ID=16416257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19994883A Granted JPS6096559A (en) 1983-10-27 1983-10-27 Hydraulic composition deformable after curing

Country Status (1)

Country Link
JP (1) JPS6096559A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649275A (en) * 1987-07-01 1989-01-12 Heiutsudo Internatl Kk Anti-slip agent
JPH01282141A (en) * 1988-05-06 1989-11-14 Nippon Cement Co Ltd Additive for mortar
WO1992007804A1 (en) * 1990-10-24 1992-05-14 International Financial Real Estate Corporation Flexible concrete
WO1997023433A3 (en) * 1995-12-22 1997-09-04 Bauer Wulf Dispersions and the use thereof in concrete mixtures
WO2004001183A1 (en) * 2002-06-21 2003-12-31 Halliburton Energy Services, Inc. Methods of sealing expandable pipe in well bores and sealing compositions
WO2006012680A1 (en) * 2004-08-02 2006-02-09 P.W. Saddington And Sons Pty Ltd Termite proof mortar and method of termite proofing a structure
CN102503265A (en) * 2011-10-24 2012-06-20 珠海保税区台商科技开发区有限公司 Environmentally-friendly cement mortar containing rice husk
JP2015523312A (en) * 2012-07-10 2015-08-13 シーカ・テクノロジー・アーゲー Two-component cement composition
CN107903873A (en) * 2017-12-13 2018-04-13 陕西省交通建设集团公司 A kind of environmental-friendly plant cleft weld material and production technology
CN111116126A (en) * 2019-12-04 2020-05-08 上海现代建筑装饰环境设计研究院有限公司 Composite cement mortar and floor construction method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649275A (en) * 1987-07-01 1989-01-12 Heiutsudo Internatl Kk Anti-slip agent
JPH01282141A (en) * 1988-05-06 1989-11-14 Nippon Cement Co Ltd Additive for mortar
WO1992007804A1 (en) * 1990-10-24 1992-05-14 International Financial Real Estate Corporation Flexible concrete
WO1997023433A3 (en) * 1995-12-22 1997-09-04 Bauer Wulf Dispersions and the use thereof in concrete mixtures
US6126739A (en) * 1995-12-22 2000-10-03 Thoene; Gerd Dispersions and the use thereof in concrete mixtures
WO2004001183A1 (en) * 2002-06-21 2003-12-31 Halliburton Energy Services, Inc. Methods of sealing expandable pipe in well bores and sealing compositions
WO2006012680A1 (en) * 2004-08-02 2006-02-09 P.W. Saddington And Sons Pty Ltd Termite proof mortar and method of termite proofing a structure
CN102503265A (en) * 2011-10-24 2012-06-20 珠海保税区台商科技开发区有限公司 Environmentally-friendly cement mortar containing rice husk
JP2015523312A (en) * 2012-07-10 2015-08-13 シーカ・テクノロジー・アーゲー Two-component cement composition
CN107903873A (en) * 2017-12-13 2018-04-13 陕西省交通建设集团公司 A kind of environmental-friendly plant cleft weld material and production technology
CN111116126A (en) * 2019-12-04 2020-05-08 上海现代建筑装饰环境设计研究院有限公司 Composite cement mortar and floor construction method thereof

Also Published As

Publication number Publication date
JPH0216265B2 (en) 1990-04-16

Similar Documents

Publication Publication Date Title
CA2774395C (en) Concrete mix having anti-efflorescence properties and method of making concrete using the same
KR20180131532A (en) Quick hard mortar composition
JP2002520468A (en) Bitumen emulsion, method for obtaining bitumen emulsion and composition comprising bitumen emulsion
KR102054434B1 (en) Eco-Friendly Mortar Composite for Repair Section Comprising Function of Preventing Neutralization and Saltdamage and Constructing Methods Using Thereof
US3228907A (en) Mortar compositions containing latex blends
KR101740559B1 (en) Eco-friendly and highly durable non-shrink grout composition for pc charge and reinforcement
JPH03187963A (en) Cement substrate filled grout
JPS6096559A (en) Hydraulic composition deformable after curing
CN108558292A (en) A kind of anti-crack concrete mixture and preparation method thereof
US4125504A (en) Cement additives comprising a polymer latex containing a styrene-acrylate-acrylamide interpolymer and a butadiene rubber
JP2006160589A (en) Admixture for plaster mortar and mortar composition containing the same
JPS61158851A (en) Cement composition
CN107352851B (en) Cement-free anti-seepage grouting material composition
EP0067690A2 (en) Methacrylate polymer concrete mix with reduced shrinkage during cure
US3779971A (en) Latex-modified mortar compositions
JP2727214B2 (en) Polymer cement composition
JP2730234B2 (en) High flow and high durability fiber reinforced filling mortar with excellent salt barrier properties
JP4926387B2 (en) Cured polymer cement mortar
JPS5935052A (en) Self leveling material
JP2688774B2 (en) Semi-rigid pavement method
JP4108165B2 (en) Resin mortar composition
JPS61281083A (en) Super thick paint material
Abdalqader et al. Optimization of fresh properties, rheological parameters and mechanical performances of grouts containing bentonite
JP4519480B2 (en) Acid resistant cement composition
JPH1045453A (en) Resin concrete and resin mortar