JPS6096517A - Ultrafine silicon carbidie - Google Patents

Ultrafine silicon carbidie

Info

Publication number
JPS6096517A
JPS6096517A JP58201202A JP20120283A JPS6096517A JP S6096517 A JPS6096517 A JP S6096517A JP 58201202 A JP58201202 A JP 58201202A JP 20120283 A JP20120283 A JP 20120283A JP S6096517 A JPS6096517 A JP S6096517A
Authority
JP
Japan
Prior art keywords
sic
ultrafine
beta type
silicon carbide
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201202A
Other languages
Japanese (ja)
Other versions
JPH0143684B2 (en
Inventor
Morinobu Endo
守信 遠藤
Minoru Takamizawa
高見沢 稔
Tatsuhiko Motomiya
本宮 達彦
Yasushi Kobayashi
小林 泰史
Akira Hayashida
章 林田
Nobuaki Urasato
延明 浦里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58201202A priority Critical patent/JPS6096517A/en
Priority to EP83112256A priority patent/EP0143122A3/en
Publication of JPS6096517A publication Critical patent/JPS6096517A/en
Publication of JPH0143684B2 publication Critical patent/JPH0143684B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:Ultrafine polycrystalline SiC of beta type having high purity and improved sintering properties, comprising crystallite of aggregate of SiC of beta type, having a shperical shape with submicron particle diameter. CONSTITUTION:Ultrafine polycrystalline of beta type comprising crystallite of aggregate of SiC of beta type with <=50Angstrom , having a shperical shape with 0.01-1mu average particle diameter, high purity, and improved sintering properties, useful as a raw material for a molded article of heat-resistant ceramic. The SiC can be obtained in high yield and in high purity in the form of ultrafine powder by decomposing thermally an organic silicon compound containing at least one SiH bond in the molecule and no SiX (X is halogen atom or oxygen atom) bond at >=about 750 deg.C in a gaseous phase without reguiring post-treatment such as grinding process, etc.

Description

【発明の詳細な説明】 本発明は球状形状をもつ超微粒子状炭化けい素に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ultrafine silicon carbide having a spherical shape.

炭化けい素粉束は、近年、耐熱セラミック成形体1宗料
として注目されているものであるが、これについてはそ
の用途面から特(二高純度で焼結性のよい、しかもサブ
ミクロンオーダーの微粉末体の供給が要望されている。
Silicon carbide powder bundles have recently been attracting attention as a material for heat-resistant ceramic compacts, but from the viewpoint of their uses (2) they have high purity, good sinterability, and submicron-order production. There is a demand for supply of fine powder.

そして、この炭化けい素粉束の製造法については、1)
金属けい素と炭素とを電気炉中において高温で反応させ
一ついで粉砕する方法、2)一般式 Rn5iX4−n
 (、。
Regarding the manufacturing method of this silicon carbide powder bundle, 1)
Method of reacting metal silicon and carbon at high temperature in an electric furnace and pulverizing them at the same time, 2) General formula Rn5iX4-n
(,.

(二Rは水素原子またはアルキル基、Xはハロゲン原子
、n=1〜4]で示されるシランまたはこのシランとメ
タンなどの炭化水素化合物との混合物を高温で熱分解さ
せる方法、3)高分子ポリカルボシランを熱分解させる
方法−および4)二酸化けい素(5in2)と炭素とを
混合し、高温に加熱する方法などが知られているけれど
も、このl)の方法はα型炭化けい素の製造方法には適
しているものの粉砕工程が必要とされるためC二高純度
品をサブミクロンオーダーで収率よ〈得ることが困難で
あり、2)の方法は高温が必要とされるはか一収率がわ
るく、微粉末のβ−810が得られるが。
(2R is a hydrogen atom or an alkyl group, X is a halogen atom, n = 1 to 4) A method of thermally decomposing a silane or a mixture of this silane and a hydrocarbon compound such as methane at high temperature, 3) Polymer Methods such as thermal decomposition of polycarbosilane and 4) mixing silicon dioxide (5 in 2) and carbon and heating to high temperature are known, but method l) Although it is suitable for the manufacturing method, it is difficult to obtain high-purity C2 products with submicron order yields because it requires a pulverization process, and method 2) requires high temperatures and is difficult to obtain. However, the yield is low and a fine powder of β-810 is obtained.

微量の5i−atが残留するためCニセラミック焼結体
の製造に問題があって1反応時に副生ずるHOl の処
理が必要とされるという不利があり−3)の方法には原
料とされるポリカルボシランが高価であり、得られた炭
化けい素を微粉砕するための後処理工程が必要とされ、
さら(二4)の方法はかなり高温を必要とされるばか粉
砕工程が必要であり、さらC二反応物中に未反応原料や
副産する金胸けい素などが含まれるために事後に高純度
化処理が必要とされるという欠点があるほか、これらの
粉砕方法で得られた炭化けい素はいずれも球状形状をと
らず、高純度化も困難で、また焼結性(二ついても満足
すべきものではなかった。
Since a small amount of 5i-at remains, there is a problem in the production of C-ceramic sintered bodies, and there is a disadvantage that it is necessary to treat HOl, which is produced as a by-product during one reaction, and is used as a raw material in method 3). Polycarbosilane is expensive and requires a post-processing step to finely grind the resulting silicon carbide;
Furthermore, method (24) requires a grinding process that requires considerably high temperatures, and furthermore, because the C2 reactant contains unreacted raw materials and by-product silicon silica, the high temperature is high after the fact. In addition to the disadvantage that purification treatment is required, the silicon carbide obtained by these pulverization methods does not have a spherical shape, making it difficult to achieve high purity, and the sinterability (even two methods are not satisfactory). It wasn't something that should have been done.

本発明I工このような不利を解決した高純度で焼結性の
よい超微粒子状炭化けい素(−関するものであり、これ
は結晶子が50A以下のβ型炭化けい塁の集合体で、平
均粒径が0.01〜1μである球状形状をもつことを特
徴とするものである。
The present invention solves these disadvantages by using ultrafine silicon carbide particles with high purity and good sinterability, which is an aggregate of β-type silicon carbide with crystallites of 50A or less It is characterized by having a spherical shape with an average particle size of 0.01 to 1 μ.

これを説明すると1本発明者らは高純度の炭化けい素を
粉砕工程を経ることなく微粉末状で取得する方法につい
て種々検討し、さきにその分子中に少なくとも1個の8
1H結合を含むが、しかし81xに\にxi’;zハロ
ゲン原子−酸素原子]を含まない有機けい素化合物を7
50℃以上で気相熱分解させれば収率よ〈、高純度の炭
化けい素微粉末を粉砕工程などの後処理なしに得ること
ができることを見出した←特願昭57−147342号
、特願昭58−155911号参照)。これC二ついて
さらに研究を進め、この方法で得られた微粉末の性状と
焼結性およびその製造条件などC二ついての検討を行な
い、この微粉末炭化けい素を電子顕微鏡で観測、測足し
たところ、従来の製法C二よる市販品と異なるはり完全
な球状形状をもつものであること、またβ−8iO(1
,1,1)の回折による暗視野像から個々の粒子が50
A以下のβ型炭化けい素の結晶子の集合体であり、その
平均粒径が0.01−1μであるということを確認する
と共に、この超微粉末状炭化けい素は従来の炭化けい素
粉末で42その焼結に不可避とされていた焼結助剤など
を全く添加しなくても容易C二高密匿化した焼結体とす
ることができるということを見出して本発明を完成させ
た。
To explain this, 1. The present inventors have studied various methods of obtaining high-purity silicon carbide in the form of fine powder without going through a pulverization process, and first found that at least one 8-8
An organosilicon compound that contains a 1H bond but does not contain \ to xi'; z halogen atom - oxygen atom in 81x
It has been discovered that high-purity fine silicon carbide powder can be obtained without post-treatment such as a grinding process with a higher yield by performing gas-phase pyrolysis at 50°C or higher. (See Application No. 58-155911). Further research was carried out using C2, examining the properties and sinterability of the fine powder obtained by this method, and its manufacturing conditions. As a result, it was found that the beam had a completely spherical shape, which was different from the commercially available product produced by the conventional manufacturing method C2, and that β-8iO (1
, 1, 1), individual particles are found in the dark-field image by diffraction of 50
It was confirmed that it is an aggregate of β-type silicon carbide crystallites of A or less, and its average particle size is 0.01-1μ, and that this ultrafine powder silicon carbide is different from conventional silicon carbide. The present invention was completed by discovering that it is possible to easily form a highly densified sintered body of C2 without adding any sintering aids, etc., which were thought to be indispensable to the sintering process. .

本発明の超微粒子状β型炭化けい素は1分子中に少なく
とも1個の三81H結合を有し、81X(Xはハロゲン
原子、酸素原子)結合を含まない有機けい素化合物を7
50℃以上で気相熱分解させることによって得ることが
できる。これは特(二に一般式(OH3)aSibHo
に\にb=i〜3の整数、2b+1≧a、a≧b、2b
+1≧C≧l−a+o=2b+2 )で示されるメチル
ハイドロジエン、7−9ン化合物の少なくとも1種を水
素、窒素。
The ultrafine particulate β-type silicon carbide of the present invention is an organosilicon compound that has at least one 381H bond in one molecule and does not contain an 81X bond (X is a halogen atom or an oxygen atom).
It can be obtained by vapor phase pyrolysis at 50°C or higher. This is especially (secondly, the general formula (OH3) aSibHo
b=integer from i to 3, 2b+1≧a, a≧b, 2b
+1≧C≧l−a+o=2b+2) at least one of methylhydrodiene and 7-9 compounds represented by hydrogen or nitrogen.

ヘリウム−アルゴンなどのキャビ1ヤーガスの存在下に
30容量係以下の濃度で750〜1,600℃の反応帯
域中で気相熱分解させることが好ましい。
Preferably, the gas phase pyrolysis is carried out in a reaction zone at a temperature of 750 DEG to 1,600 DEG C. in the presence of a cavity gas such as helium-argon at a concentration of 30% by volume or less.

なお、この始発材料としてのメチルハイl−’cyジエ
ンリラン化合物は精留(:よって予じめ容易直二高純度
化することができるので、得られる超微粒子状β型炭化
けい素も非常I:高い純度で得ることができる。また、
得られる炭化けい素の結晶子の大きさ1球状形状、集合
体粉末の粒径はメチルハイドロジエンシラン化合物の反
応帯域中での濃度、帯貿時間、ガス線速1反応温度、キ
ャリヤーガスの種類などσ)反応条件を選択することに
よって自由に調節することができるので、目的に応じこ
れらの条件を任意に設定すればよい。
In addition, since the methylhy-l-'cy dienelyrane compound as the starting material can be easily purified in advance by rectification, the obtained ultrafine particulate β-type silicon carbide also has a very high purity. Purity can be obtained.Also,
The size of the resulting silicon carbide crystallites, the spherical shape, and the particle size of the aggregate powder are determined by the concentration of the methylhydrodiene silane compound in the reaction zone, the trading time, the linear gas velocity, the reaction temperature, and the type of carrier gas. etc. σ) Since reaction conditions can be freely adjusted by selecting them, these conditions may be arbitrarily set according to the purpose.

つぎC二本発明の実施例をあげる。Next, C2 Examples of the present invention will be described.

実施例1゜ 内径524111.長さ1.000 mのアルミナ製反
応管を横型反応炉内e二設置し、中心部の温度を1.1
50℃に保ち、ここに OH,0H3 WS含有する水素ガス40011/分を8時間導入して
気相熱分解させ1反応終了後冷却したところ。
Example 1゜Inner diameter 524111. An alumina reaction tube with a length of 1.000 m was installed in a horizontal reactor, and the temperature at the center was kept at 1.1.
The temperature was maintained at 50°C, and 40011/min of hydrogen gas containing OH, 0H3 WS was introduced for 8 hours to cause gas phase thermal decomposition, and after one reaction was completed, it was cooled.

茶褐色の超微粒子状炭化けい索15.5g(収率75.
0係)が得られた。
15.5g of brown ultrafine carbonized cord (yield: 75.5g)
0) was obtained.

この粉末の化学分析値は81=69.9%、0=29.
4%で、@光分析によるAA −Or −Ou −Fe
 、Mg −Mn −Ni −Ti 、V などの金集
不純物の含有11はいずれも10ppm以下であり。
The chemical analysis values of this powder are 81=69.9%, 0=29.
AA-Or-Ou-Fe at 4% by optical analysis
, Mg-Mn-Ni-Ti, V, and other gold-collecting impurities 11 are all 10 ppm or less.

市販の炭化けい素にくらべて非常に高純度のものであっ
た。
The purity was much higher than that of commercially available silicon carbide.

なお、このものを電子顕微鏡で観測して得られた明視野
像およびβ−8iO(1,1,1)回折による暗視野像
を第1図、第2図に示したが、暗視野像からこのものは
50λ以下の結晶子の集合体からなり、七〇粒径が0.
1〜0.2μの内にあること、また遠心式自動粒度分布
測定装置0A−P A 5 (l O型(堀場製作所製
商品名戸二よる測定結果では0.08μ以下および0.
5μ以上の粒子は全く見られず1粒径0.1〜0.3μ
の粒子が88.3鴨である均一な球状形状をもつもので
あることが確認された。また、この粉末のKBr 法に
よる赤外吸収スペクトルおよびX線回折の結果は第3図
および第4図−二示したとおりであり、β型S10であ
ることが確認され、このものの比表面積はベット法で測
定したところ26.8d/11であった。
The bright-field image obtained by observing this material with an electron microscope and the dark-field image obtained by β-8iO (1,1,1) diffraction are shown in Figures 1 and 2. This material consists of an aggregate of crystallites of 50λ or less, and has a grain size of 70.
It must be within the range of 0.08μ or less and 0.2μ or less, and the measurement results using a centrifugal automatic particle size distribution analyzer 0A-P A5 (l O type (trade name: Toji, manufactured by Horiba, Ltd.) indicate that it is less than 0.08μ and 0.
There are no particles larger than 5μ, and each particle size is 0.1 to 0.3μ.
It was confirmed that the particles had a uniform spherical shape with a diameter of 88.3 mm. In addition, the results of the infrared absorption spectrum and X-ray diffraction of this powder by the KBr method are shown in Figures 3 and 4-2, confirming that it is β-type S10, and the specific surface area of this powder is When measured by method, it was 26.8d/11.

つぎに、上記で得た超微粒子状炭化けい累を焼結助剤を
添加することな(,40w+yJのホットプレス用カー
ボン型5二人れて減圧脱気し、ついで系内をアルゴンガ
ス雰囲気下としてから200Kt/−の加圧下に2,0
00℃で50分間加熱して焼結させ一冷却後焼結体を取
出して密度を測定したところ、 a、o7g10.o、
 (3!!!論密度3.2:l二対し95.3係)であ
り1以上の結果からこの吟、水様良好な焼結性を4つも
のであることが確認された。
Next, the ultrafine particulate carbonized silicon obtained above was degassed under reduced pressure in a 40W+yJ carbon mold for hot pressing by two people without adding any sintering aid. 2,0 under a pressure of 200Kt/-.
The sintered body was sintered by heating at 00°C for 50 minutes, and after cooling, the sintered body was taken out and the density was measured. o,
(3!!! theoretical density 3.2: 95.3 ratio to 12), and from the results of 1 or more, it was confirmed that this material had good sinterability like water.

比較例 市販のイビデン(株)社製高純度β型災化けい素像粉末
は平均粒径が0.4μ、比表面積が18.6wl/Iで
あり、これに含まれている金属不純物量はAt450p
pm、Or 10100pp cu<10ppm 、F
e 500ppm 、MMg30pp。
Comparative Example A commercially available high-purity β-type disaster silicon image powder manufactured by Ibiden Co., Ltd. has an average particle size of 0.4 μ and a specific surface area of 18.6 wl/I, and the amount of metal impurities contained in it is At450p
pm, Or 10100pp cu<10ppm, F
e 500ppm, MMg 30pp.

Mn (5ppm、 Nil 90ppm−T1300
ppm−V 370 m)1)m であった。また、こ
のものの電子顕微鏡による明視野像およびβ−810(
1,1、l)回折による暗視野像は第5図、第6図に示
したとおりであり、これはその球状が均一な球状でなく
、また明瞭な結晶子も認められなかった。
Mn (5ppm, Nil 90ppm-T1300
ppm-V 370 m)1)m. In addition, a bright field image of this product and β-810 (
1,1,l) The dark-field image obtained by diffraction is as shown in FIGS. 5 and 6, and the spherical shape was not uniform and no clear crystallites were observed.

実施例2〜8 実施例1と同じ反応装置を使用し、原料リラどの種類、
濃I1.キャリヤーガスの種類1組成、導入vk−反応
温Ifを第1表g:示したように神々に変化させて原料
vランの気相熱分解を行なわせたところ、第1表に併記
したとおりの収率で炭化けい素が得られ、これらは第2
表に示したとおりの物性を示した。
Examples 2 to 8 Using the same reactor as in Example 1, the type of raw material lira,
Dark I1. When the gas phase thermal decomposition of the raw material v run was carried out by changing the carrier gas type 1 composition, introduction vk - reaction temperature If as shown in Table 1g:, the results were as shown in Table 1. Silicon carbide is obtained in yield, these are secondary
It exhibited the physical properties shown in the table.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超微粒子状βヤ多結晶炭化けい素の電
子顕微鏡の明視野像、第2図1工そのβ−810(1,
1,IJ回回折直上る暗視野像、第3図tXそのKBr
 法による赤外吸収スペクトル、第4図はX#1!11
回折図、第5図、第6図は比較例としての市販のβ型炭
化けい累の電子顕微鏡の明視野像およびβ−810(1
,1,1)回折C二よる暗視野像を示したものである。
Figure 1 shows a bright-field electron microscope image of the ultrafine particulate β-polycrystalline silicon carbide of the present invention, and Figure 2 shows the β-810 (1,
1. Dark field image directly above IJ diffraction, Figure 3 tX that KBr
Infrared absorption spectrum by method, Figure 4 is X#1!11
Diffraction diagrams, Figures 5 and 6 are electron microscopic bright field images of commercially available β-type carbide as a comparative example and β-810 (1
, 1, 1) This is a dark field image obtained by diffraction C2.

Claims (1)

【特許請求の範囲】[Claims] 1、結晶子が50X以下のβ型炭化けい素の集合体であ
り、平均粒径が0.01〜1μである球状形状をもつ超
微粒子状β型多結晶炭化けい素。
1. Ultrafine particulate β-type polycrystalline silicon carbide which is an aggregate of β-type silicon carbide with crystallites of 50X or less and has a spherical shape with an average particle size of 0.01 to 1μ.
JP58201202A 1983-08-26 1983-10-27 Ultrafine silicon carbidie Granted JPS6096517A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58201202A JPS6096517A (en) 1983-10-27 1983-10-27 Ultrafine silicon carbidie
EP83112256A EP0143122A3 (en) 1983-08-26 1983-12-06 An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201202A JPS6096517A (en) 1983-10-27 1983-10-27 Ultrafine silicon carbidie

Publications (2)

Publication Number Publication Date
JPS6096517A true JPS6096517A (en) 1985-05-30
JPH0143684B2 JPH0143684B2 (en) 1989-09-22

Family

ID=16437036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201202A Granted JPS6096517A (en) 1983-08-26 1983-10-27 Ultrafine silicon carbidie

Country Status (1)

Country Link
JP (1) JPS6096517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820708A (en) * 1981-07-22 1983-02-07 Ibiden Co Ltd Production of superfine powder of silicon carbide mainly composed of beta-type crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820708A (en) * 1981-07-22 1983-02-07 Ibiden Co Ltd Production of superfine powder of silicon carbide mainly composed of beta-type crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JPH0143684B2 (en) 1989-09-22

Similar Documents

Publication Publication Date Title
GB2040902A (en) High purity silicon nitride and its production
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
US4346068A (en) Process for preparing high-purity α-type silicon nitride
EP0143122A2 (en) An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom
JPH0476924B2 (en)
JPS5939708A (en) Manufacture of fine silicon carbide powder
JPS6096517A (en) Ultrafine silicon carbidie
US4582696A (en) Method of making a special purity silicon nitride powder
EP0219764A2 (en) Silicon nitride and process for its preparation
JPS6111885B2 (en)
JPS6227003B2 (en)
JPS6046912A (en) Production of ultrafine granule of silicon carbide
JPS60195099A (en) Production of silicon nitride whisker
JPS6046911A (en) Production of fine silicon carbide powder
JPS6148409A (en) Fine powder comprising silicon, carbon, and nitrogen, and process for preparing such powder
JPS5973412A (en) Preparation of powder of silicone nitride
JPH0454610B2 (en)
JPS6227004B2 (en)
KR950001659B1 (en) Method of preparing ñô-sic particles by pyrolysis of disilalkane
JPS621564B2 (en)
JP2784060B2 (en) Manufacturing method of high purity silicon nitride powder
JPH062568B2 (en) Method for producing high-purity silicon carbide powder
JPH0764533B2 (en) Method for producing fine silicon carbide powder
Kasai et al. Synthesis of Si3N4 powder by thermal decomposition of Si (NH) 2 and sintering properties
JPH0454609B2 (en)