JPS6095919A - Semiconductor element and manufacture thereof - Google Patents

Semiconductor element and manufacture thereof

Info

Publication number
JPS6095919A
JPS6095919A JP58203864A JP20386483A JPS6095919A JP S6095919 A JPS6095919 A JP S6095919A JP 58203864 A JP58203864 A JP 58203864A JP 20386483 A JP20386483 A JP 20386483A JP S6095919 A JPS6095919 A JP S6095919A
Authority
JP
Japan
Prior art keywords
gap
nitrogen
substrate
grown layer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58203864A
Other languages
Japanese (ja)
Inventor
Yujiro Ueki
植木 勇次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58203864A priority Critical patent/JPS6095919A/en
Publication of JPS6095919A publication Critical patent/JPS6095919A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To prevent any crystalline defect from happening in a nitrogen-doped n<-> grown layer by a method wherein nitrogen and neutral impurity with larger atomic radius than that of nitrogen having no influence upon impurity concentration is added to an n<->GaP grown layer. CONSTITUTION:A boat comprising a member containing a GaP substrates 12 and GaP solution 17 is mounted in a main furnace. Firstly after heating the main furnace up to specified temperature, a Ga.GaP solution reservoir 18 is shifted in the arrow B direction to drain Ga.GaP solution containing Si and Al in a member 11 forming an n<+> grown layer doped with Si and Al on the substrate 12. Secondly when a reactor is filled with Ar+NH3 gas, an n<-> grown layer with N in the form of GaN added thereto is formed on the N<+> grown layer. At this time, Al with larger atomic radius than that of N is trapped in a distorted crystal part due to smaller atomic radius of N than that of P to prevent any crystalline defect from happening. Successively p<+> grown layer may be continuously formed on the n<+> grown layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体素子およびその製造方法に係シ、特に
GaP発光素子用化合物半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a compound semiconductor device for a GaP light emitting device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にGaP発光素子、例えばGaP 緑色発光素子に
用いられる化合物半竪体素子は、第1図に示す如く、N
型GaP 基板1土に当該GaP基板7.Jl、J)高
濃度の第1のN型C3aPN4(以下。
Generally, a compound semi-vertical element used for a GaP light-emitting element, for example, a GaP green light-emitting element, has an N
Type GaP substrate 1. Place the GaP substrate 7. Jl, J) High concentration of first N-type C3aPN4 (hereinafter referred to as

n 成長層と称する’)2.OaP 基板1より低a度
の第2のN型GaP 層(以下、n−成長層と称する)
3.およびGaP 基板1よυ高elfのP型GaP 
層C以下、p+成長層と称する)4を連続1−て液相成
長させることによシ製造される。このようにして製造さ
れた化合物半導体素子には、第2図に示すようにボイド
と称される穴状の結晶欠陥5.5・・・が含まれている
のが一般的である。特にn−成長層3Vc発生する結晶
欠陥5,5・・・は、p+成長層4とのPN接合部を貫
通するものが多く、この種半堺体素子を用いてGaP 
緑色発光素子を製造し7た場合、通電後における輝度劣
化を招いていた。
n called growth layer')2. A second N-type GaP layer with a lower a degree than the OaP substrate 1 (hereinafter referred to as an n-growth layer)
3. and GaP substrate 1 υ high elf P-type GaP
Layer C (hereinafter referred to as p+ growth layer) 4 is manufactured by continuous liquid phase growth. The compound semiconductor device manufactured in this manner generally contains hole-shaped crystal defects 5.5 called voids, as shown in FIG. In particular, many of the crystal defects 5, 5, etc. generated in the n- growth layer 3Vc penetrate the PN junction with the p+ growth layer 4.
When a green light emitting element was manufactured, the brightness deteriorated after being energized.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に鑑みてなされたものでその目的は
、GaP 基板上にGaP 成長層が多層に形成されて
なる、結晶欠陥の少ない半導体素子およびその製造方法
を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a semiconductor element with fewer crystal defects and a method for manufacturing the same, in which a multilayer GaP growth layer is formed on a GaP substrate.

〔発明の概要〕[Summary of the invention]

この発明は、GaP 基板上に形成される複数のGaP
 成長層のうち、G a P 基板と同一導電型で且つ
当該GaP %板より低濃度のGaP 成長層(n−成
長層)に結晶欠陥が集中することに着目12、その原因
が当該n−成長層に含まれるドーパントにあることを究
明したことに基づいてなされたものである。即ち、木発
明者は、n−成長層のドーパントとして一般に用いられ
ているN(窒素)の原子半径が、他のGaP成長層(n
+成長層、p+成長層など)に用いられるドーパント(
例えばSi、Zn)やGaP 基板のGa、Pの原子半
径より小さく、このためn−成長層の形成時においてN
(窒素)がGaP 中のPと1dき換わる際に、原子半
径の差にょシ成長中の結晶にずれが生じ、このずれの度
合が成る限界を越すと結晶欠陥が発生することを究明]
This invention relates to a plurality of GaP substrates formed on a GaP substrate.
Among the growth layers, we focused on the fact that crystal defects were concentrated in the GaP growth layer (n-growth layer), which had the same conductivity type as the GaP substrate and had a lower concentration than the GaP % board12, and found that the cause was the n-growth layer. This was done based on the discovery that this was due to the dopant contained in the layer. In other words, the inventors discovered that the atomic radius of N (nitrogen), which is commonly used as a dopant for the n-growth layer, is different from that of other GaP growth layers (n
+ growth layer, p+ growth layer, etc.) dopant (
For example, it is smaller than the atomic radius of Ga and P in the substrate (Si, Zn) and GaP.
We discovered that when (nitrogen) replaces P in GaP by 1d, a difference in atomic radius causes a shift in the growing crystal, and when the degree of shift exceeds the limit, crystal defects occur]
.

た。そこで、この発明では、n−成長層中に、N(窒素
)のほかに、当該Nよりも原子半径が大きく、且つ不純
物り変に影響を与えない中性不純物が添加された構成と
することにより、結晶欠陥の軽減化を図っている。
Ta. Therefore, in this invention, in addition to N (nitrogen), a neutral impurity having an atomic radius larger than that of N and having no effect on impurity transition is added to the n- growth layer. This aims to reduce crystal defects.

〔発明の実砲例〕[Actual example of invention]

本発明の一実施例を図面を参照1.で説明する。 Refer to the drawings for an embodiment of the present invention1. I will explain.

第3図(alは液相エピタキシャル成長用ボートの長手
方向に沿った断面図、第3図(blは第3図(alのY
−Y線に沿う断面図である。これら第3図(al 、 
(blにおいて11はカーボン製の収納部材を承12、
その底部にはGaP 幕板12.12・・・が載置され
る。収納部材11の上部開口には、第4図に示す如く第
1開孔部13,13・・・と第2開孔部14,14・・
・とを耳するカーボン大蓋15が設けられている。なお
、第3図(alは第4図のY’ −Y′ 線に対応Iた
断面図である。また第4図において破線で示された部分
はGaP %板(12゜12・・・)に対応するもので
、これによりカーボン大蓋15(収納部材11)とGa
P1&板(1212・・・)との平面的な位置関係が示
される。カーボン大蓋15の長手方向に沿いそのほぼ中
心線上には、スライド自在に設置され、底部に注出口1
6.16・・・を有し、内部にGa、GaP溶液17を
夫々収容するGa、GaP溶液溜部材18が設けられて
いる。このGa、GaP溶液17は、Gaと、Oaの飽
和号に尾るGar(poly)と、n+成長層のドーパ
ントであるSr(シリコン)と、原子半径がN(窒素)
より尺p(Ga、Pと同程度の中性不純物、例えば微量
のAI (アルミニウム)からなる。なお、下記表にG
a、P。
Figure 3 (al is a sectional view along the longitudinal direction of the boat for liquid phase epitaxial growth, Figure 3 (bl is a cross-sectional view of Figure 3 (al)
It is a sectional view along the -Y line. These Figures 3 (al,
(In BL, 11 accepts a carbon storage member 12,
GaP curtain plates 12, 12, . . . are placed on the bottom thereof. As shown in FIG. 4, the upper opening of the storage member 11 has first openings 13, 13... and second openings 14, 14...
・A large carbon lid 15 is provided to cover the ears. In addition, FIG. 3 (al is a sectional view I corresponding to the Y'-Y' line in FIG. 4. Also, the part indicated by the broken line in FIG. 4 is a GaP% plate (12°12...) This corresponds to the carbon large lid 15 (storage member 11) and the Ga
The planar positional relationship with P1 & plates (1212...) is shown. Along the longitudinal direction of the carbon large lid 15, it is slidably installed approximately on its center line, and a spout 1 is provided at the bottom.
A Ga/GaP solution reservoir member 18 having a diameter of 6.16 and accommodating a Ga solution 17 and a GaP solution 17 inside is provided. This Ga, GaP solution 17 contains Ga, Gar (poly) which follows the saturation of Oa, Sr (silicon) which is a dopant of the n+ growth layer, and N (nitrogen) with an atomic radius.
It consists of a neutral impurity similar to Ga, P, for example, a trace amount of AI (aluminum).
a.P.

Si、N、Zn、AJの原子半径(具体的には四面体共
有φ結合半径)を示す。
The atomic radius (specifically, the tetrahedral covalent φ bond radius) of Si, N, Zn, and AJ is shown.

表 次に上述またポートを用いて、GaP 基板12.12
・・・にGa、GaPの液相成長を行にう具体例を、上
述の第3図(al 、 (bl、第4図、qlに第5図
および第6図を参照1て税、明する。この第5図はGa
、GaP溶液をGaP 基板上に流【、込んだ後の状態
を示すボートの断面図であり、第6図は液相エピタキシ
ャル成長時の温明プログラム図である。
GaP substrate 12.12 also uses the ports listed above in the table below.
A specific example of performing liquid phase growth of Ga and GaP on... This figure 5 shows Ga
FIG. 6 is a cross-sectional view of the boat showing the state after a GaP solution is poured onto a GaP substrate, and FIG. 6 is a diagram of a heating program during liquid phase epitaxial growth.

(1) まず、主炉と補助炉からなる反応炉のうち、主
炉K G’a P 基板72 、12−=およびGa。
(1) First, in the reactor consisting of a main furnace and an auxiliary furnace, the main furnace K G'a P substrate 72 , 12-= and Ga.

GaP 溶液17を収容1.た部t、+からなるボート
を、補助炉にZn用ルツボを夫々セットする。
Contains GaP solution 17 1. The boats consisting of parts t and + were each set with Zn crucibles in the auxiliary furnace.

この後、反応炉内を真空引き【、、l);4れがないこ
とを確認1−た後、水素(Hl)ガスを流量901/H
で反応炉内に流1..込み、主炉の昇温を開始する。主
炉内が均熱(1000℃)になってから30分経過時点
(第6図のa点)で、Ga、OaI’溶液溜部材18を
第3図(alの矢印B方向にスライド17、当該GaP
 溶液溜部杓18の注出口16.16・・・を夫々カー
ボン大差15の第2開孔部14.14・・・に合致させ
て、当該部柑18内に収容されている(SiおよびAl
を含む)Ga。
After this, the inside of the reactor was evacuated [,,l); After confirming that there was no leakage, hydrogen (Hl) gas was introduced at a flow rate of 901/H.
Flow into the reactor at 1. .. and start raising the temperature of the main furnace. When 30 minutes have elapsed since the main furnace has become uniformly heated (1000° C.) (point a in FIG. 6), slide the Ga, OaI' solution reservoir member 18 in the direction of arrow B in FIG. The GaP
The pouring ports 16, 16,... of the solution reservoir ladle 18 are aligned with the second openings 14, 14,... of the carbon dimple 15, respectively, and are accommodated in the ladle 18 (Si and Al
)Ga.

GaP 溶液17を収納部材11内にiij、I−込む
(第5図参照)。続いて、Ga、GaP溶l夜溜部材1
8を元の位fJ+’へ戻j、た後、主炉を1000℃で
120分保持12、OaP Q板12.12士に流1、
込まれたGa溶液の空焼きを行なうと同時に。
The GaP solution 17 is poured into the storage member 11 (see FIG. 5). Next, Ga, GaP molten night gathering member 1
After returning 8 to the original position fJ+', hold the main furnace at 1000℃ for 120 minutes12, OaP Q plate 12.
At the same time, the loaded Ga solution is baked.

H,ガスの還元作用によりGa溶液中に適量の8iドナ
ーおよびAIを1容出させた後、970℃まで降温(第
6図のb点)122、GaP基板12゜12・・・上に
、SiおよびAIがドープされた高濃度(4X10I7
cm−”)のn++長層を形成する。
After an appropriate amount of 8i donor and 1 volume of AI were released into the Ga solution by the reducing action of H and gas, the temperature was lowered to 970°C (point b in Figure 6) 122, and the GaP substrate 12°12... was placed on top of it. High concentration doped with Si and AI (4X10I7
cm-") to form an n++ long layer.

fill 次いで、キャリアガスとしてH,ガスの代り
にA「ガスを流すと同時に、Ar ガスをベースとする
(Ar+NH,)混合ガスを反応炉内に流す。なお、こ
の時点でのNH3濃度は0.04〜0.40% である
。これらガスを流し始めてから、主炉内を120 分保
持(また。この間、Ga溶液中のSiはNH,と次のよ
うに反応して窒化物Si、N、を形成する。
fill Next, while flowing H as a carrier gas and A gas instead of gas, a mixed gas based on Ar gas (Ar+NH) is flowed into the reactor.The NH3 concentration at this point is 0. After starting to flow these gases, the main furnace was kept for 120 minutes (also. During this time, Si in the Ga solution reacts with NH as follows, forming nitrides Si, N, form.

3 S I + 4NHB ;=! S i3N4 +
 51(。
3 SI + 4NHB ;=! Si3N4+
51(.

また、NH,はGa溶液と次のように反応してGaN 
(ガリウムナイトライド)の形で固化する。
In addition, NH, reacts with Ga solution as follows to form GaN.
It solidifies in the form of (gallium nitride).

2Ga +2NHs:2GaN+3 H。2Ga + 2NHs: 2GaN + 3H.

このGa溶液中にもn+成成長層形成上シル率は少ない
がA7成分が残留[2ている。この後、主炉内を930
℃まで降温(第6図のC点)すると、n++長層上にG
aN の形でN(窒素)が添加された低ドナー濃度(0
,8X 10”cf ” 〜1.5 XIQIllcm
 ! )のn−成長@(低a度GaP成長層)が形成さ
れる。このn−成長層の成長時に、N(窒素)の原子半
径がP(GaP中のP(+)ン)〕に比べて小さいため
に生じる結晶の歪み部分に、N(窒素)より原子半径の
大きいAJ (アルミニウム)カドラップされ、ボイド
と称される結晶欠陥の発生が阻止される。このAd (
アルミニウム)は、ドナーにもアクセプタにもなり得な
い中性の不純物であり、n−成長層等の濃度に影響しな
い。
Even in this Ga solution, the A7 component remains [2] although the silage rate is small due to the formation of the n+ growth layer. After this, the inside of the main furnace was
When the temperature is lowered to ℃ (point C in Figure 6), G is formed on the n++ long layer.
A low donor concentration (0
,8X 10"cf" ~1.5XIQIllcm
! ) n-growth @ (low a degree GaP growth layer) is formed. During the growth of this n- growth layer, the atomic radius of N (nitrogen) is smaller than that of P (P(+)n in GaP). A large AJ (aluminum) quadrupole is used to prevent the formation of crystal defects called voids. This Ad (
Aluminum) is a neutral impurity that cannot serve as either a donor or an acceptor, and does not affect the concentration of the n- growth layer or the like.

oril 続いて、補助炉を720℃に昇1品させ、Z
nを蒸気状にして主炉にアクセプタ不純物を供給する。
oril Next, the auxiliary furnace was heated to 720℃ and one product was heated to Z
The acceptor impurities are supplied to the main furnace by converting n into a vapor state.

一方、主炉f930℃で100 分保持12、Znを前
8e n−成長層上のGa溶液中に十分溶出させた後、
(xr−1−NH3)混合ガスの供給を止め、750℃
まで降温(第6図のd点)【2てにn+ 537長層、
n−成長層、およびp+成長層声連続的に形成されたG
aP 緑色発光素子用の化合物半導体素子が得られる。
On the other hand, after holding the main furnace at f930°C for 100 minutes 12 and sufficiently eluting Zn into the Ga solution on the previous 8e n-growth layer,
(xr-1-NH3) Stop the supply of mixed gas and heat to 750°C.
temperature decreases to (point d in Figure 6) [2nd n+ 537 long layer,
The n- growth layer and the p+ growth layer formed continuously
A compound semiconductor device for aP green light emitting device is obtained.

但11、p++長層のアクセプタa興は例えば6 x 
1017α−3〜3×10I8cIn−3の範囲として
もよい。
However, 11, the acceptor a of the p++ long layer is, for example, 6 x
It may be in the range of 1017α-3 to 3×10I8cIn-3.

なお、前6ピ冥施例では、結晶欠陥発生防止用のドーパ
ントと1.てAlを用いたが、Nより 1m子半径が大
きく、且つ中性の不純物であればよし)。
In addition, in the previous 6-Pyrolysis Example, a dopant for preventing the occurrence of crystal defects and 1. Al was used in this study, but any impurity that has a 1 m radius larger than N and is neutral is sufficient).

〔発明の効果〕〔Effect of the invention〕

以上詳述1.たようにこの発明によれば、GaP緑色発
光素子用の化合物半導体素子など、GaP八板へに複数
のOaP 成長層が形成された半導体素子の特にN(窒
素)ドープされた低濃変GaP 成長層(n−成長層)
に発生する結晶欠陥(ボイド)の減少が図れる。
Detailed explanation above 1. According to the present invention, in particular, N (nitrogen) doped low concentration change GaP growth can be used for semiconductor devices in which a plurality of OaP growth layers are formed on GaP 8 plates, such as compound semiconductor devices for GaP green light emitting devices. layer (n-growth layer)
It is possible to reduce crystal defects (voids) that occur in the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGaP 緑色発光素子用化合物半導体3図(a
lは本発明の一実柿例に係る液相エピタキリセル成長用
ボートの断面図、同図(blは同図(alに示すY−Y
線に沿う断面図、第4図は第3図(a) 、 (blに
示すカーボン大蓋の平面図、第5図はGa、GaP溶液
をGaP 基板上に流【、込んだ後の状態を示すポート
の断面図、第6図は液相エピタキシャル成長時の温度プ
ログラム図である。 11・・・収納部材、13・・・第1開孔部、14・・
・第2開孔部、15・・・カーボン大蓋、16・・・注
、出口、17−Ga、GaP溶液、1B−C)a、Ga
P溶液溜部材。 出願人代理人 弁理士 鈴 江 武 彦第4図 15 第5図 第6図
Figure 1 is a diagram of GaP compound semiconductor for green light emitting device (a
1 is a cross-sectional view of a boat for liquid phase epitaxial cell growth according to the present invention;
Figure 4 is a cross-sectional view along the line, Figure 4 is a plan view of the carbon large lid shown in Figures 3(a) and (bl), Figure 5 is the state after pouring Ga and GaP solutions onto the GaP substrate. The cross-sectional view of the port shown in FIG. 6 is a temperature program diagram during liquid phase epitaxial growth. 11... Storage member, 13... First opening portion, 14...
・Second opening, 15... Carbon large lid, 16... Note, outlet, 17-Ga, GaP solution, 1B-C) a, Ga
P solution reservoir member. Applicant's agent Patent attorney Takehiko Suzue Figure 4 15 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (11GaP 基板と、このGaP 4板上に多層に形
成され、このGaP 基板と同一導電型でこのGaP 
基板よシ低濃度であシ、窒素および当該窒素より原子半
径の大きい中性不純物がドープされた低濃度GaP 成
長層を含む複数のGaP成長層とを具備することを特徴
とする半導体素子。 121 0aP 基板が収納される収納部材と、この収
納部材の上部開口に設けられ、複数の開孔部を有する蓋
と、この蓋上にスライド自在に設瞳され、底部に注出口
を有し、内部に所定のドーパントが添加されたGa、G
aP溶液溜部材からなる液相エピタキシャル成長用ポー
トを用い、上記収納部材内のGaP 基板上に、このG
aP基板と同一導電型で且つこのGaP 基板よシ低濃
度の低濃度GaP 成長層を含む複数のGaP成長層を
順次液相成長させるのに際し、上記Ga、Ga、P溶液
と【7て、窒素よシ原子半径の大きい中性不純物を含む
所定のドーパントが添加されたGa 、 Ga P溶液
を用い、上記低温#′GaP成長層の形成時にNH3を
含むガスを用いることを特徴とする半導体素子製造方法
[Scope of Claims]
1. A semiconductor device comprising a plurality of GaP growth layers doped with nitrogen and a neutral impurity having an atomic radius larger than that of the nitrogen at a low concentration on a substrate. 121 0aP A storage member in which a substrate is stored, a lid provided at the upper opening of the storage member and having a plurality of openings, a pupil slidably provided on the lid, and a spout at the bottom, Ga, G with predetermined dopants added inside
Using a liquid phase epitaxial growth port made of an aP solution reservoir member, this G
In order to sequentially liquid-phase grow a plurality of GaP growth layers including a low concentration GaP growth layer that has the same conductivity type as the aP substrate and has a lower concentration than the GaP substrate, the above Ga, Ga, P solution and [7] nitrogen A semiconductor device manufacturing method characterized by using a Ga, GaP solution to which a predetermined dopant containing a neutral impurity with a large atomic radius is added, and using a gas containing NH3 when forming the low-temperature #'GaP growth layer. Method.
JP58203864A 1983-10-31 1983-10-31 Semiconductor element and manufacture thereof Pending JPS6095919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58203864A JPS6095919A (en) 1983-10-31 1983-10-31 Semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58203864A JPS6095919A (en) 1983-10-31 1983-10-31 Semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6095919A true JPS6095919A (en) 1985-05-29

Family

ID=16480963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58203864A Pending JPS6095919A (en) 1983-10-31 1983-10-31 Semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6095919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607595B1 (en) * 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607595B1 (en) * 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device

Similar Documents

Publication Publication Date Title
TW494587B (en) Gallium phosphide green- emitting component
JP6083096B2 (en) Crystal growth method and crystal growth apparatus
JPH11171699A (en) Growth of gallium nitride phosphide single crystal
US7459023B2 (en) Method for producing semiconductor crystal
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JP4014411B2 (en) Group III nitride crystal manufacturing method
JPS6095919A (en) Semiconductor element and manufacture thereof
US20070117356A1 (en) Method of manufacturing single crystalline gallium nitride thick film
US3948693A (en) Process for the production of yellow glowing gallium phosphide diodes
JPS60236220A (en) Method for liquid-phase epitaxial growth
JPS60236221A (en) Method for liquid-phase epitaxial growth
WO2024009683A1 (en) Method for producing group iii nitride crystals
JP3538634B2 (en) Semiconductor element substrate, method of manufacturing semiconductor element, and semiconductor element
JPS59111996A (en) Boat for liquid-phase epitaxial growth
TW451505B (en) Epitaxial wafer for luminous semiconductor element and luminous semiconductor element
JPS593097A (en) Liquid phase epitaxial growth method
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
JPS59102897A (en) Apparatus for liquid-phase crystal growth
JP3598593B2 (en) Nitrogen-containing semiconductor devices
JPH05335621A (en) Gallium phosphide green light emitting diode
JPS606552B2 (en) Gallium phosphide green light emitting device
US6197441B1 (en) Cubic nitride semiconductor device and fabrication method of the same
JPH01245529A (en) Manufacture of compound semiconductor device
JPS6136396B2 (en)
JPS5936981A (en) Green light emitting element of gallium phosphide