JPS609590B2 - Manufacturing method for corrosion-resistant plated steel materials - Google Patents

Manufacturing method for corrosion-resistant plated steel materials

Info

Publication number
JPS609590B2
JPS609590B2 JP2095778A JP2095778A JPS609590B2 JP S609590 B2 JPS609590 B2 JP S609590B2 JP 2095778 A JP2095778 A JP 2095778A JP 2095778 A JP2095778 A JP 2095778A JP S609590 B2 JPS609590 B2 JP S609590B2
Authority
JP
Japan
Prior art keywords
plating
corrosion
metal
zinc
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2095778A
Other languages
Japanese (ja)
Other versions
JPS54114441A (en
Inventor
襄二 岡
勝士 斎藤
政志 高杉
忠 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2095778A priority Critical patent/JPS609590B2/en
Publication of JPS54114441A publication Critical patent/JPS54114441A/en
Publication of JPS609590B2 publication Critical patent/JPS609590B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は耐食性に優れたメッキ方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plating method with excellent corrosion resistance.

自然環境下において普通鋼は酸素、水、イオンの作用に
より腐食し消耗する。従って鋼材を防食するために各種
のめつき方法が広く活用されている。防食めつきを大別
すれば、亜鉛、カドミウム等(特殊環境下ではアルミニ
ウム、スズも含まれる)の蟻性防食作用を利用しためつ
き、およびニッケル、クロム、鉛、銅等の不働態化作用
を利用しためつきに分ける事が出来る。本発明は主に耐
久消費材料に用いる犠牲防食めつきの耐食陣を向上させ
る方法に関し、従来の常識を超越したきわめて高水準の
めつきを提供するものである。以下亜鉛めつきを主にし
て本発明について詳述する。亜鉛めつき鋼板の寿命は環
境下のめつきの腐食速度とめつき厚みで決定出来る。
In the natural environment, ordinary steel corrodes and wears out due to the action of oxygen, water, and ions. Therefore, various plating methods are widely used to prevent corrosion of steel materials. Anti-corrosion plating can be roughly divided into plating that utilizes the anti-corrosive action of zinc, cadmium, etc. (aluminum and tin are also included in special environments), and passivation action of nickel, chromium, lead, copper, etc. It can be divided into periods using . The present invention relates to a method for improving the corrosion resistance of sacrificial anti-corrosion plating mainly used for durable consumable materials, and provides an extremely high level of plating that goes beyond conventional wisdom. The present invention will be described in detail below, focusing mainly on galvanizing. The lifespan of galvanized steel sheets can be determined by the corrosion rate of the plating in the environment and the thickness of the plating.

自然環境下において亜鉛は、腐食すると白色の腐食生成
物を生成する。亜鉛の腐食速度はこの腐食生成物の繊密
さ、絶縁性、溶解性等の性質によって大きな影響を受け
る。例えば亜硫酸ガスを含む大気下で亜鉛は激しく腐食
する理由は腐食生成物が水に溶解し易く、保護作用を発
揮出来ないためである。高温水中の腐食、塩水中の腐食
が早い理由も粗い導電性の腐食生成物を形成することが
大きな要因である。これらの他にピンホールの存在が腐
食速度を決める大きな因子である。即ち、自然環境下に
おける金属の腐食は全て電気化学的に説明出来、亜鉛メ
ッキ鋼板のピンホール(鉄地)はカソード反応を容易に
し、周辺の亜鉛の腐食が箸るしく増大する。上述した如
くめつきの腐食は腐食生成物、ピンホールが主たる要因
であり、これ迄多くの研究、特許が公開されている。
In the natural environment, zinc produces white corrosion products when it corrodes. The corrosion rate of zinc is greatly influenced by the properties of this corrosion product, such as its fineness, insulation, and solubility. For example, the reason why zinc is severely corroded in an atmosphere containing sulfur dioxide gas is that the corrosion products are easily dissolved in water and cannot exert a protective effect. The formation of coarse conductive corrosion products is a major reason why corrosion occurs quickly in high-temperature water and salt water. In addition to these, the presence of pinholes is a major factor that determines the corrosion rate. In other words, all corrosion of metals in the natural environment can be explained electrochemically, and pinholes in galvanized steel sheets facilitate cathode reactions, significantly increasing corrosion of surrounding zinc. As mentioned above, corrosion products and pinholes are the main causes of corrosion of plating, and many studies and patents have been published so far.

公開された耐食性蛭鉛めつきの方法は、耐食性のあるク
ロム、ニッケル、アルミニウム「マグネシウム、コバル
ト等の金属を亜鉛に合金化せしめているものである。
The disclosed corrosion-resistant leech lead plating method involves alloying corrosion-resistant metals such as chromium, nickel, aluminum, magnesium, and cobalt with zinc.

本発明は基本的には上記の向上策に通じている点がある
がt合金化手法でなく、シリカ、ケイ酸塩、メタケィ酸
塩、ガラス類のケイ酸化合物、金属酸化物、リン酸塩化
合物、ホゥ酸塩化合物(以下複合化化合物と称する)を
亜鉛に複合させた画期的なものである。これらの複合化
化合物をめつきに適用した例は化成処理および化学めつ
き、一部の露気めつきに見られる程度で表面処理におけ
る公知例の大部分はジンクリツチベイントのバインダー
、ガラス面のコート、ホウロウ被膜である。
The present invention is basically similar to the above-mentioned improvements, but instead of using a t-alloying method, it uses silica, silicates, metasilicates, silicate compounds of glasses, metal oxides, and phosphates. This is an epoch-making compound in which a borate compound (hereinafter referred to as a composite compound) is combined with zinc. Examples of the application of these composite compounds to plating include chemical conversion treatment and chemical plating, and some examples of surface treatment include dew plating. This is an enamel coating.

本法によって形成した複合めつき鋼板は、従釆の常識か
らは考えられない特性を持っており、以下その特性を述
べ本法の新規性が高いことを詳述する。
The composite galvanized steel sheet formed by this method has characteristics that cannot be considered from common knowledge, and the characteristics will be described below and the novelty of this method will be explained in detail.

本発明に用いる複合化化合物は電気絶縁材料であり亜鉛
など金属と複合させるとめつき自身の電導性が低下し、
鉄鋼に対する陰極防食能が低下する。
The composite compound used in the present invention is an electrically insulating material, and when it is composited with metals such as zinc, the conductivity of the fitting itself decreases,
Cathodic protection ability for steel decreases.

ジンクリッチベィント等では、この問題からバインダー
量を制限せざるを得ない情況であり、且つ、高濃度亜鉛
塗膜でも陰極防食に役立つ有効亜鉛量が少く持続時間が
短い。純亜鉛めつきは腐食速度が早く、やはり有効時間
が短い。第1図は、電気亜鉛めつき鋼板、市販のジンク
リツチ塗料を塗布した鋼板および本発明による複合めつ
き鋼板を各々10×2仇肌こ切断し試験面にナイフで素
地に達する傷を一本入れ裏面、端面をみつろうでシール
した試料を3%NaCI水溶液200の‘中に浸潰し、
それぞれの腐食電位変化を記録したものである。
In zinc-rich vents, etc., the amount of binder has to be limited due to this problem, and even with a high concentration zinc coating, the effective amount of zinc useful for cathodic protection is small and the duration is short. Pure zinc plating has a fast corrosion rate and has a short useful life. Figure 1 shows an electrogalvanized steel plate, a steel plate coated with a commercially available zinc-rich paint, and a composite galvanized steel plate according to the present invention, each cut into 10 x 2 pieces, and a single scratch reaching the base material is made with a knife on the test surface. A sample whose back and end surfaces were sealed with beeswax was immersed in a 3% NaCI aqueous solution 200'.
This is a record of each corrosion potential change.

複合めつき材についてのみ20日後(電位は一0.8V
)更に新らしく素地に達する傷を入れた。鉄の腐食電位
は約一0.6V近傍であるから、本発明めつきは鉄を長
時間にわたって防食し、自身の溶出も少し、ことが分る
。一方電気亜鉛めつきは短時間に亜鉛が溶出し、ジンク
リッチベィントは、15日程で鉄が溶出し始め錆になる
。第2図は本発明のめつきについてシリカ含有率と電気
抵抗値の関係を示したものである。第2図からも明らか
なように、本発明においても亜鉛にシリカを複合させる
と電導性の小さし、めつきとなる。しかしながら、鷺ろ
くべきことに腐食性の水溶液例えば塩化ナトリウム水溶
液中に浸債すると常識外の多量のシリカを含有し、不良
導体めつきであるにもかかわらず亜鉛の犠牲溶出的な性
質を効率よく発揮することがわかった。
After 20 days only for composite plating materials (potential: -0.8V)
) Furthermore, I added scratches that reach the base material to make it look new. Since the corrosion potential of iron is around 10.6 V, it can be seen that the plating of the present invention protects iron from corrosion over a long period of time, and causes little elution of itself. On the other hand, with electrogalvanizing, zinc dissolves in a short period of time, and with zinc rich venting, iron begins to dissolve in 15 days and becomes rust. FIG. 2 shows the relationship between the silica content and the electrical resistance value for the plating of the present invention. As is clear from FIG. 2, in the present invention as well, when zinc is combined with silica, the electrical conductivity becomes low and plating occurs. However, when the bond is immersed in a corrosive aqueous solution, such as a sodium chloride aqueous solution, it contains an unusually large amount of silica, and despite the poor conductor plating, the sacrificial leaching properties of zinc are effectively suppressed. It was found that it works.

第3図に鉄とめつきの面積比を変えてめつきの犠牲防食
能を評価した結果を示す。
Figure 3 shows the results of evaluating the sacrificial anticorrosion ability of plating by changing the area ratio of iron and plating.

めつき面積1に対して陰極防食出来る鉄の広さを示した
ものでカップル電位が鉄の腐食電位(約0.6V近傍)
より低ければ防食する。ジンクリツチ塗膜の場合は塗膜
;鉄=1:0.5が限度である。試料は10×20肋の
大きさで表面にクリヤー絶縁塗膜を塗装した後、面積比
に相当する分だけ傷を入れたものを用いた。本発明によ
るめつきは面積比にして約2ぴ苔の鉄を陰極防食する能
力を持っている。
It shows the area of iron that can be cathodic protected against plating area 1, and the couple potential is the corrosion potential of iron (approximately 0.6V)
If it is lower, it will prevent corrosion. In the case of a zinc-rich coating, the upper limit is coating:iron=1:0.5. The sample used was one with a size of 10 x 20 ribs, the surface of which was coated with a clear insulating coating, and then scratched by an amount corresponding to the area ratio. The plating according to the present invention has the ability to cathodically protect about 2 pi of moss of iron in area.

しかも第1図に示した様に、20日間3%NaCI水溶
液中に浸潰しためつき鋼板の電位は−0.8V(3%N
aCI水溶液中の鉄の腐食電位は−0.66Vであるか
らめつきの犠牲溶出により陰極防食している)に安定し
ているが矢印に示した如く、新らしく人工傷を入れた場
合その電位は純亜鉛に近い−1.0Vに達し、鉄を陰極
防食する性能を持続している。即ち、本発明によるめつ
きは、鉄を陰極防食するのに必要な亜鉛を少量だけ溶出
させ純亜鉛めつきに見られる如き必要以上の過防食をさ
せずしかも、傷が入った時には必要充分な亜鉛が港出す
る性能を持っているきわめて理想的なめつきである。こ
のケイ酸化合物等を含む複合めつきは、又めつきのピン
ホールを少くする特徴を持っている。
Moreover, as shown in Fig. 1, the potential of the plated steel plate immersed in a 3% NaCI aqueous solution for 20 days was -0.8V (3%N
The corrosion potential of iron in aCI aqueous solution is stable at -0.66 V (cathodic protection is provided by sacrificial elution of the metal), but as shown by the arrow, when a new artificial scratch is made, the potential becomes pure. It reaches -1.0V, which is close to that of zinc, and maintains its ability to cathodically protect iron. In other words, the plating according to the present invention dissolves only a small amount of zinc necessary for cathodic protection of iron, and does not cause excessive corrosion protection more than necessary as seen in pure zinc plating. It is an extremely ideal plating that has the performance of zinc. This composite plating containing silicic acid compounds, etc. also has the characteristic of reducing pinholes in the plating.

即ち通常亜鉛めつきは板状の結晶を組みピンホ−ルが出
来易いが本法の場合通常の状態とは全く異る一見アモル
ファス状のめつきを形成する。(×線的には亜鉛の結晶
が認められている)第7図1に電気亜鉛めつき、第7図
2に亜鉛単独の真空蒸着亜鉛めつきの走査型電顕写真を
示す。第7図3は本発明による真空蒸着亜鉛シリカ榎合
めつき外観を示す写真である。第7図3に示す写真は電
気伝導度が低下するため鮮明な写真になり難いが、平滑
でアモルファス状である。従って、本発明によれば低い
めつき量でも孔のないめつきが得られることは明白であ
る。本発明被膜の耐食性向上および陰極防食能のメカニ
ズムは次の如く説明出来る。
That is, normally galvanizing produces plate-like crystals and pinholes are likely to form, but in this method, a plating that looks amorphous at first glance is formed, which is completely different from the normal state. (Zinc crystals are observed in the X-ray view.) FIG. 71 shows a scanning electron micrograph of electrogalvanizing, and FIG. 72 shows a scanning electron micrograph of vacuum-deposited galvanizing using only zinc. FIG. 7 is a photograph showing the appearance of vacuum-deposited zinc-silica plating according to the present invention. The photograph shown in FIG. 73 is difficult to obtain a clear photograph due to a decrease in electrical conductivity, but it is smooth and amorphous. Therefore, it is clear that according to the present invention, a plating without holes can be obtained even with a low plating amount. The mechanism of improved corrosion resistance and cathodic corrosion protection of the coating of the present invention can be explained as follows.

本法は後述する様に物理的蒸着めつきに属し、めつき成
分の全てが蒸発着拡散凝縮するため、得られる榎合めつ
きは鉄地からめつき表面まで連続した金属と複合化化合
物が結合した一様な半導体層を形成している。即ち、め
つき層全体の絶縁性は高くなるが、金属としての性質は
失わず、ひとたび傷が入れば金属的性質が表れる。めつ
き自身は半導体的性質から腐食し難くなる。また第4図
は、本発明のめつきと電気亜鉛めつきについて、対極を
白金板として脱気した3%NaCI水溶液中で陽分極曲
線を測定した結果であるが、複合めつきの亜鉛溶出が非
常に抑制されていることがわかる。
As described later, this method belongs to physical vapor deposition plating, and since all the plating components are evaporated, diffused and condensed, the resulting Enoki plating is a combination of the metal and the composite compound that are continuous from the iron base to the plating surface. A uniform semiconductor layer is formed. That is, although the insulation of the entire plating layer increases, it does not lose its metallic properties, and once scratched, its metallic properties appear. The plating itself is difficult to corrode due to its semiconductor nature. Furthermore, Figure 4 shows the results of measuring anodic polarization curves in a degassed 3% NaCI aqueous solution using a platinum plate as a counter electrode for the plating and electrogalvanizing of the present invention. It can be seen that this is suppressed.

第4図の分極曲線図から明らかな如く溶出した金属イオ
ンは同時にフリーになったケイ酸イオン、ホウ酸イオン
、リン酸イオン、もしくはこれらのゾルと反応し、水に
不溶性で絶縁性の無機塩を主成分とする腐食生成物を形
成し、以後の腐食を抑制する。腐食生成物は繊密でこれ
までの亜鉛の白鏡と全く異り、見かけ上錆が発生しない
。この様な性質は物理的蒸着榎合めつきでなければ得ら
れない特性である。以上述べた如く本発明による複合め
つきは、そのめつき特性、めつき形状から従来のめつき
材料には存在しない新規なめつき鋼材であると信ずる。
As is clear from the polarization curve diagram in Figure 4, the eluted metal ions simultaneously react with the free silicate ions, borate ions, phosphate ions, or their sol, forming water-insoluble insulating inorganic salts. Forms a corrosion product whose main component is to inhibit further corrosion. The corrosion products are delicate and completely different from conventional zinc mirrors, and there is no apparent rust. Such properties can only be obtained by physical vapor deposition and interlocking. As stated above, we believe that the composite plating according to the present invention is a new plated steel material that does not exist in conventional plated materials due to its plating characteristics and plating shape.

以下本発明を得る具体的な方法について述べる。本発明
の方法は公知の文献で紹介されている物理蒸着法と総称
されている全ての方法によって得ることが出来る。
A specific method for achieving the present invention will be described below. The method of the present invention can be obtained by all methods generally referred to as physical vapor deposition methods introduced in known literature.

即ち減圧状態でめつき原料を蒸発させ、基板に凝縮され
る真空蒸着方法、蒸発しためつき原料蒸気をグロー放電
下でイオン化し基板に活性蒸着させるイオンプレイテン
グ法、あるし・は不活性ガス雰囲気でグロー放電を生ぜ
しめ、イオン化したガスの衝撃によってめつき原料がイ
オン化いまじき出され、基板に引きつけられ被看するス
パッタリング方法が適用出釆る。ケイ酸化合物等を複合
させる方法としては、化学ニッケルメッキ、電気ニッケ
ルメッキ等で公知例があるが、そ目的とする所はめつき
の硬度アップ等本発明の耐久消費材料用鋼材とは全く異
り、めつきの特性も異るもである。本発明のプロセスは
基本的には第5図に示すよう方法で、バッチ式、コイル
式いずれも共通である。
That is, a vacuum deposition method in which the plating raw material is evaporated under reduced pressure and condensed on the substrate, an ion plating method in which the evaporated plating raw material vapor is ionized under glow discharge and actively deposited on the substrate, and/or an inert gas. A sputtering method has been developed in which a glow discharge is generated in the atmosphere, and the plating raw material is immediately ionized by the impact of ionized gas, and is attracted to the substrate and exposed. Chemical nickel plating, electrolytic nickel plating, etc. are known methods of compounding silicic acid compounds, etc., but their purpose is to increase the hardness of plating, which is completely different from the steel material for durable consumable materials of the present invention. The plating characteristics are also different. The process of the present invention is basically the method shown in FIG. 5, and is common to both batch type and coil type.

前処理には、大気中で行われる脱脂、酸洗あるいは研磨
など、あるいは環元雰囲気中での加熱および真空中にお
ける研磨、脱水、加熱、およびグロ−放電によるイオン
エッチング等が含まれる。めつき工程はいわゆる複合化
化合物および金属を蒸発、イオン化、析出させる工程で
、必要に応じた多段システムで全て減圧中で行われる。
後処理は本法の場合必ずしも必要ないが、鋼材の目的(
例えば耐白錆性、塗料密着性、傷防止、着色により、ク
ロメート処理、リン酸塩処理、塗油する工程もしくは密
着性の改善、合金化を目的とした加熱工程で、一部真空
中で行う場合がある。本工程の内前処理及び後処理は特
に特徴がなく、通常の真空めつき及び他のめつき方法に
準ずる方法を採用することができる。本発明は圧力10
‐2Tonから10‐6Torrの真空下で行われる。
Pretreatment includes degreasing, pickling, polishing, etc. performed in the atmosphere, heating in a cyclic atmosphere, polishing in vacuum, dehydration, heating, and ion etching by glow discharge. The plating process is a process in which so-called composite compounds and metals are evaporated, ionized, and precipitated, all of which are carried out under reduced pressure in a multistage system as required.
Post-treatment is not necessarily necessary in this method, but depending on the purpose of the steel material (
For example, for white rust resistance, paint adhesion, scratch prevention, coloring, chromate treatment, phosphate treatment, oiling process, or heating process for the purpose of improving adhesion and alloying, which is partially done in vacuum. There are cases. The pre-treatment and post-treatment in this step have no particular characteristics, and methods similar to ordinary vacuum plating and other plating methods can be employed. The present invention has a pressure of 10
-2Ton to 10-6Torr vacuum.

最適範囲はめつき法、めつき速度、品質水準、経済性か
ら決定する。即ち、イオンめつきあるいはスパッタリン
グの場合にはグロー放電が生ずる10‐ITorr以下
10‐2Tonから10‐3Tonで行い導入するガス
は窒素、ヘリウム、アルゴンなどである。窒素は放電中
に窒化物を形成する煩向、ヘリウムはイオン化力が弱い
などの欠点があり、本発明の場合アルゴンガスが最も好
ましい。真空蒸着の場合の圧力は、10‐りorrから
10‐6Torrの広範囲操業が可能である。好ましく
は10‐4Ton以下の圧力(即ち10‐4Tonから
10‐汀orrの範囲)で行われる。真空蒸着の場合1
0‐4Ton以上の圧力では析出速度が遅く、且つ、め
つきの品質特に加工性、密着性が悪くなり、10‐6T
om以下は実操業上ライン延長となり経済的でない。イ
オンプレイテングおよびスパッタリングの場合には、グ
。−放電が生ずる10‐3Tonから10‐汀omで行
い、密着性の良いめつきが得られる。蒸発源は、金属及
び複合化化合物を別個に蒸発させるか、蒸発温度、蒸気
圧が近似している際には予め混合もしくは溶融した複合
金属源を用いる事も出来る。加熱源は、抵抗加熱法、誘
導加熱法、エレクトロンビーム法およびこれらの組み合
せた方法が採用出来る。
The optimum range is determined based on the plating method, plating speed, quality level, and economic efficiency. That is, in the case of ion plating or sputtering, it is carried out at a pressure of 10-2 to 10-3 Ton below 10-ITorr, which causes glow discharge, and the gas introduced is nitrogen, helium, argon, or the like. Nitrogen has disadvantages such as the tendency to form nitrides during discharge, and helium has disadvantages such as weak ionizing power, so argon gas is most preferred in the present invention. In the case of vacuum deposition, the pressure can be operated over a wide range from 10-torr to 10-6 torr. It is preferably carried out at a pressure below 10-4 Ton (ie in the range of 10-4 Ton to 10-orr). In the case of vacuum evaporation 1
At a pressure of 0-4T or higher, the deposition rate is slow, and the quality of plating, especially workability and adhesion, deteriorates, and 10-6T
If it is less than 1.5 oz, the line will be extended in actual operation, which is not economical. For ion plating and sputtering, g. - Plating with good adhesion can be obtained by carrying out the process from 10-3Ton where electric discharge occurs to 10-Ton Om. As the evaporation source, the metal and the composite compound can be evaporated separately, or if the evaporation temperatures and vapor pressures are similar, a composite metal source that has been mixed or melted in advance can be used. As the heating source, a resistance heating method, an induction heating method, an electron beam method, or a combination thereof can be used.

ルッボはエレクトロンビームの場合水冷鋼ルッボ、セラ
ミック等、その他の加熱の場合カーボンボート、タング
ステンボートしタンタルボート、セラミックボートが使
用出来る。スパッタリング法の場合には、複合金属もし
くは単体をターゲットとしてスパッタリングする。蒸発
速度は、金属および複合化化合物の種類、真空度、加熱
温度によって異るが、本発明の場合特に制限はない。し
かし、圧力の高い状態でむやみに高温度高速めつきは品
質上好ましくない。素材の温度は品質特に密着性の点で
高い方が好しし、が「金属の再蒸発による歩解悪化等を
考慮し〜可能な温度は20〜30000で好しくはt
loo〜200o0が密着性が良く且つ歩留が良い。本
発明はその目的に応じていくつかの複合方式がある。
Rubbo can be water-cooled steel Rubbo, ceramic, etc. for electron beam, and carbon boat, tungsten boat, tantalum boat, ceramic boat can be used for other heating. In the case of the sputtering method, sputtering is performed using a composite metal or a single metal as a target. The evaporation rate varies depending on the type of metal and composite compound, degree of vacuum, and heating temperature, but is not particularly limited in the case of the present invention. However, unnecessarily high-temperature, high-speed plating under high pressure is not desirable in terms of quality. It is preferable for the temperature of the material to be high in terms of quality, especially adhesion. However, considering the deterioration of yield due to re-evaporation of the metal, the possible temperature is 20 to 30,000, preferably t.
Loo to 200o0 has good adhesion and good yield. The present invention has several combination methods depending on its purpose.

■ 前処理工程を経た鋼材表面に複合化化合物と金属の
複合めつきを行う複合方式■ 前処理工程を経た鋼材表
面に金属のみを析出させたのちトただちに複合化化合物
と金属の複合めつきを行う複合方式。
■ A composite method that performs composite plating of a composite compound and metal on the surface of a steel material that has undergone a pretreatment process. ■ A composite method that deposits only metal on the surface of a steel material that has undergone a pretreatment process, and then immediately applies composite plating of a composite compound and metal. Composite method to do.

■ 前処理工程を経た鋼材表面に金属と複合化化合物の
複合めつきを行った後ただちに金属をめつきする方法。
■ A method in which composite plating of metal and composite compound is applied to the surface of steel material that has gone through a pretreatment process, and then metal is immediately plated.

■ 従来行われている電気めつき「溶融めつきした鋼材
表面に■の複合方式を行う複合方式。この4つの複合方
式はそれぞれ特徴のあるめつき鋼材を提供する。即ち、
密着性の点では■及び■の方式が最も良い。又〜耐食性
の点ではいずれも良好であるが、めつき層全体が複合め
つきの■の方式が最も良く、■及び■の方式では「下層
の金属層が選択溶出する傾向がある。■の方式は、めつ
き外観の向上(即ち、ケイ酸複合めつきはケイ酸含有率
に比例して黒い外観に変化して行く)あるいは、後処理
がし易し、めつきへの改善あるいは陰極防食能の改善を
目的とした場合に有効である。また■の方式は短時間に
耐食性の優れた厚めつきが得られる。従来めつきと同様
の陰極防食能を示し、下層のめつきのピンホールを封孔
し、且つめつき表面の白錆化を防止する複合系が得られ
る。以下本発明に用いる鋼材および複合めつきに用いる
金属及び複合化化合物について詳述する。
■ Conventional electroplating: A composite method in which the composite method (■) is applied to the surface of a hot-dipped steel material. Each of these four composite methods provides a plated steel material with its own characteristics. In other words,
In terms of adhesion, methods ■ and ■ are the best. In addition, all methods are good in terms of corrosion resistance, but the method (■) in which the entire plating layer is composite plated is the best, and in the methods (■) and (2), "the underlying metal layer tends to selectively elute." This improves the plating appearance (i.e., silicic acid composite plating changes to a black appearance in proportion to the silicic acid content), or facilitates post-treatment, improves plating, or improves cathodic protection. It is effective when the purpose is to improve the plating of the lower layer. Also, the method (①) can obtain thick plating with excellent corrosion resistance in a short time. It exhibits the same cathodic corrosion protection as conventional plating, and is effective in sealing pinholes in the underlying plating. A composite system is obtained that prevents white rust on the plating surface.The steel material used in the present invention, the metal and the composite compound used in composite plating will be described in detail below.

本発明に用いる鋼材は、鋼板、線材、パイプ等の耐久消
費材料で、そのまま使用されるものもしくは、塗装、ラ
ィニングされ使用されるものである。めつき金属はほと
んどの自然環境中で鉄を陰極防食する亜鉛、カドミウム
、マグネシウム及びこれらの金属を主成分とする合金あ
るいは塩水雰囲気「海水中「S○2含大気中等で鋼を陰
極防食するアルミニウム、マンガンおよびこれらの金属
を主成分とする合金である。本発明の主旨において最も
効果が発揮されるものは港出速度制御が必要で、広く耐
久材料として使用されている亜鉛である本発明に用いる
複合化化合物はケイ酸化合物、金属酸化物、リン酸塩化
合物、ホウ酸塩化合物である。
The steel materials used in the present invention are durable consumable materials such as steel plates, wire rods, and pipes, and are used as they are or after being painted or lined. Plated metals include zinc, cadmium, magnesium, which provide cathodic protection for iron in most natural environments, and alloys containing these metals as main components, or aluminum, which provides cathodic protection for steel in saltwater atmospheres, seawater, and S○2-containing atmospheres. , manganese, and alloys containing these metals as main components.The most effective material according to the purpose of the present invention is zinc, which requires port exit speed control and is widely used as a durable material. The complexing compounds used are silicic acid compounds, metal oxides, phosphate compounds, and borate compounds.

これらの化合物の内ケイ酸塩は比較的低温で蒸気圧が高
く蒸発管理しやすい。本発明のケイ酸化合物は、一酸化
ケイ素、二酸化ケイ素(シリカ)の酸化物類およびM2
0/Si02(Mは一例として1価の金属)比が0〜2
に入るケイ酸、メタケィ酸、オルソケィ酸塩類である。
Among these compounds, silicates have a high vapor pressure at a relatively low temperature and are easy to control by evaporation. The silicic acid compound of the present invention includes silicon monoxide, silicon dioxide (silica) oxides and M2
0/Si02 (M is a monovalent metal as an example) ratio is 0 to 2
These are silicic acid, metasilicic acid, and orthosilicates.

Mは「上述の場合1価のアルカリ金属Lj+,Nが,K
+,Cu+を示し、この他アルカリ士類、金属類由e2
十? Mg2十,Ca2十,Sr2十,Ba2十および
Zn2十母 Fe2十りNi2十,Co2十などの金属
酸化物である。その他一般にガラスと呼ばれているもの
例えばホウケィ酸塩、アルミノケィ酸塩も含む。金属酸
化物といふめつき金属より卑な金属酸化物例えばアルミ
ナ、酸化チタン、酸化ジルコニウム「アルカリ土類金属
酸化物である。又ホゥ酸塩化合物は酸化ホウ素及びホゥ
酸塩化合物である。リン酸塩化合物は第1リン酸塩、第
2リン酸塩「第3リン酸塩化合物である5これらの複合
化剤はめつき皮膜の電気抵抗を低下させ金属の熔出し歎
く÷且つ、溶出した金属イオンと不溶性の沈殿生成物を
形成し安定化せしめる。従って、めつき金属より貴な金
属イオン例えばNj3十,Coが蔓 Fe2十を提供す
る様な金属酸化物の複合化剤はめつき金属の熔出を促進
するため好ましくない。含有率は、めつき金属に対し、
0.1〜80%(重量)の複合化化合物を加える。
M is ``In the above case, the monovalent alkali metal Lj+,N is K
+, Cu+, and other alkali metals and metals e2
Ten? These are metal oxides such as Mg20, Ca20, Sr20, Ba20, Zn20, Fe20, Ni20, Co20, etc. It also includes other materials commonly called glasses, such as borosilicates and aluminosilicates. Metal oxides are oxides of metals baser than metals, such as alumina, titanium oxide, zirconium oxide, and alkaline earth metal oxides. Borate compounds include boron oxide and borate compounds. Phosphates The compounds are primary phosphates, secondary phosphates, and tertiary phosphate compounds.5 These compounding agents lower the electrical resistance of the plating film, reduce the melting of the metal, and reduce the amount of eluted metal ions. Therefore, complexing agents of metal oxides, such as those that provide metal ions more noble than the plating metal, such as Nj30, Co, and Fe20, are effective in the melting of the plating metal. It is undesirable because it promotes
Add 0.1-80% (by weight) of complexing compound.

耐食性は複合化化合物含有率に比例して向上し、その関
係はケイ酸の場合第6図に示す如くである。Znめつき
の場合0.5%のケイ酸含有で約2倍、20%で1M音
60%で数10M音の耐食性が得られる。現行の金属め
つき鋼板等後加工される材料へ通用するためにはめつき
の加工密着性を考慮する必要があり、実用的には、0.
1〜20%のケイ酸含有率が好ましい。以下本発明の実
施例を示す。実施例 1 冷延、焼鈍、調質圧延後の鋼板をアルカリ脱脂、傷洗、
水洗、酸洗、乾燥し真空槽に入れアルゴン気流中でイオ
ンボンバード処理した後真空複合めつきを行った。
Corrosion resistance improves in proportion to the composite compound content, and the relationship is as shown in FIG. 6 in the case of silicic acid. In the case of Zn plating, 0.5% silicic acid content provides approximately twice the corrosion resistance, and 20% silicic acid content provides a corrosion resistance of 1M sound and 60% corrosion resistance of several 10M sound. In order to be applicable to materials that are to be post-processed, such as current metal-plated steel plates, it is necessary to consider the adhesion of plating, and in practical terms, 0.
A silicic acid content of 1 to 20% is preferred. Examples of the present invention will be shown below. Example 1 A steel plate after cold rolling, annealing, and temper rolling was subjected to alkaline degreasing, scratch cleaning,
It was washed with water, pickled, dried, placed in a vacuum chamber, and subjected to ion bombardment in an argon stream, followed by vacuum composite plating.

ボンバード条件は10‐3Tonの圧力でバイアス電圧
3.歌V 5仇hAで60秒行った。めつき条件は純度
99.9%の亜鉛をタングステン抵抗ボートで加熱蒸発
させ、同時に水袷式の銅ルッボに石英を入れエレクトロ
ンビーム(以下EBと略す)出力1〜2KWで加熱した
。めつき中の圧力は2×10‐5Torrで行った。基
板と蒸発源の距離は150肌である。めつき厚みはシャ
ッターを用い時間を変えSi02含有率はEB出力を変
えて制御し亜鉛と同時に析出させた。めつき時の鋼板の
温度は裏面からタンタルシーズヒータで加熱し50〜1
00ooで行った。共析しためつき組成は化学分析によ
って定量した。得られためつきの外観はシリカ含有率が
高くなるにつれ白色(0〜5%)→青色(10〜20%
)→黒(40%)と変化し走査型露顕(以下SEMと略
す)による観察では第7図3に示す写真の如く平滑でぼ
やけて見える。
The bombardment conditions were a pressure of 10-3Ton and a bias voltage of 3. Song V was performed for 60 seconds at 5 hA. The plating conditions were as follows: Zinc with a purity of 99.9% was heated and evaporated in a tungsten resistance boat, and at the same time, quartz was placed in a copper rubbo and heated with an electron beam (hereinafter abbreviated as EB) output of 1 to 2 KW. The pressure during plating was 2 x 10-5 Torr. The distance between the substrate and the evaporation source is 150 cm. The plating thickness was controlled by changing the time using a shutter and the Si02 content was controlled by changing the EB output, and was deposited simultaneously with zinc. The temperature of the steel plate during plating is heated from the back side with a tantalum sheathed heater to 50~1.
I went with 00oo. The eutectoid stain composition was determined by chemical analysis. The appearance of the resulting glaze changes from white (0-5%) to blue (10-20%) as the silica content increases.
) → black (40%), and when observed using a scanning exposure microscope (hereinafter abbreviated as SEM), it appears smooth and blurred as shown in the photograph shown in FIG. 7.

X線回折では亜鉛結晶が認められ、シリカは非晶質であ
った。耐食性を調べるためJIS−Z−2371規定の
塩水隣霧試験(以下S.S.T.と略)を行い一定時間
後濃クロム酸格で白錆を除去し、腐食減量を測定し、単
位時間、単位面積当りの腐食量を算出し、結果を第6図
に示した。
Zinc crystals were observed by X-ray diffraction, and the silica was amorphous. In order to investigate corrosion resistance, a salt water fog test (hereinafter abbreviated as S.S.T.) as specified in JIS-Z-2371 was conducted, and after a certain period of time, the white rust was removed with concentrated chromium acid, and the corrosion loss was measured. The amount of corrosion per unit area was calculated and the results are shown in FIG.

シリカ60%を含むめつき(めつき量10夕/〆)は白
錆の発生がなく、40餌時間でも赤錆が発生しなかった
。また、同じめつき材について、人工的に傷を入れ3%
NaCI水溶液中で時間−腐食電位曲線を測定した結果
を第1図に示した。本発明のめつきの電気伝導度を測定
した結果を第2図に示す。
Plating containing 60% silica (plating amount 10 days/final) did not generate white rust, and no red rust occurred even after 40 feeding hours. In addition, the same plating material was artificially scratched and 3%
The results of measuring the time-corrosion potential curve in an aqueous NaCI solution are shown in FIG. The results of measuring the electrical conductivity of the plating of the present invention are shown in FIG.

得られたシリカ複合めつきの鉄に対する陰極防食能を調
べるため、鉄とSi0260%含有のめつきの面積比を
変え3%NaCI水溶液中に浸潰し、その時のカップル
電位を測定した結果を第3図に示した。複合亜鉛めつき
、電気亜鉛めつきについて3%NaCI水溶液中で陽分
極した時の結果を第4図に示す。
In order to investigate the cathodic corrosion protection ability of the obtained silica composite plating against iron, the area ratio of the iron and plating containing 60% SiO2 was changed and the sample was immersed in a 3% NaCI aqueous solution, and the couple potential at that time was measured. The results are shown in Figure 3. Indicated. Figure 4 shows the results of composite galvanizing and electrogalvanizing when anodic polarization was performed in a 3% NaCI aqueous solution.

以上種々行った試験が示すように、本実施例で得られた
シリカ−亜鉛複合めつきは、優れた耐食性を示した。
As shown by the various tests conducted above, the silica-zinc composite plating obtained in this example exhibited excellent corrosion resistance.

実施例 2 実施例1の手順に従って前処理を行った鋼板に次の条件
でイオンめつきを行った。
Example 2 A steel plate pretreated according to the procedure of Example 1 was subjected to ion plating under the following conditions.

アルゴンガス圧5×10‐3〜7×10‐3Ton、バ
イアス電圧4.郎VI仇hAでグo‐放電させ、抵抗ボ
ートから純度99.9%の亜鉛を蒸発イオン化させ、同
時に水袷鋼ルッボ内の石英をEB加熱蒸発イオン化させ
ためつき量は略20夕/仇片面になる様にめつき時間で
制御し、シリカ含有量は、EBの出力を0.8KW、0
.7KW、1.0KW、1.9KWに変えてそれぞれ0
.6、5%、15%、25%に制御した。得られためつ
きの耐食性をS.S.T.で評価した所、シリカ含有率
に比例して向上し、赤錆発生迄の時間は純亜鉛2餌時間
、シリカ0.5%含有亜鉛30時間、シリカ5%含有7
畑時間、シリカ15%含有亜鉛20畑寺間、シリカ25
%亜鉛30畑寺間であった。又めつきの密着性を90度
曲げて評価したが剥離を認められなかった。実施例 3 実施例1の手順に従って前処理を行った鋼板に予めアル
ゴン不活性ガス中で溶融均一化した亜鉛.シリカを蒸発
源として水冷会同ルッボに入れ、圧力2×10‐5To
rr、EB2KWで蒸発させ3仏の複合めつきを作成し
た。
Argon gas pressure 5×10-3 to 7×10-3 Ton, bias voltage 4. By discharging it with VI and hA, the zinc with a purity of 99.9% was evaporated and ionized from the resistance boat, and at the same time, the quartz in the Mizuboko Rubbo was evaporated and ionized by EB heating, and the amount of light was approximately 20 minutes per side. The silica content was controlled by the plating time so that the EB output was 0.8KW, 0.
.. Change to 7KW, 1.0KW, 1.9KW and 0 respectively.
.. It was controlled at 6, 5%, 15%, and 25%. The corrosion resistance of the obtained stain was measured by S. S. T. When evaluated, the improvement was proportional to the silica content, and the time until red rust appeared was 2 feeding hours for pure zinc, 30 hours for zinc containing 0.5% silica, and 7 feeding hours for zinc containing 5% silica.
Field time, silica 15% zinc 20 Haterama, silica 25
% Zinc was 30 Hataterama. Also, the adhesion of the plating was evaluated by bending it 90 degrees, but no peeling was observed. Example 3 Zinc was melted and homogenized in an argon inert gas onto a steel plate that had been pretreated according to the procedure of Example 1. Silica was placed in a water-cooled tube as an evaporation source, and the pressure was 2 x 10-5 To.
rr, I evaporated it with EB2KW and created a composite plating of 3 Buddhas.

得られためつき中のシリカは約40%含まれており、実
施例1の如く黒い外観を呈し、S.S.T.で40功時
間経過しても赤錆の発生を認めなかった。又、市販の焼
付型メラミンアルキッド樹脂塗料を20〆塗装し密着性
を調べた所JIS規定の碁盤目試験(JIS−G一33
)、屈曲試験(JIS−K−5400)で剥離を認めな
かった。実施例 4実施例1の手順に従って前処理を行
った鋼板に最初に亜鉛のみを抵抗ボートから6.5×l
o‐坪orr、バイアス電圧小V2仇hA、アルゴンガ
ス圧2×10‐2Torrでグロー放電させイオンめつ
き0.別を行ないシャッターを開き水冷鋼ルッボからE
BIKW加熱したシリカを蒸発させ複合亜鉛めつきを1
仏行った。
The resulting flask contained about 40% silica and had a black appearance as in Example 1. S. T. No red rust was observed even after 40 hours had passed. In addition, when we applied 20 coats of commercially available baking type melamine alkyd resin paint and examined its adhesion, it passed the JIS standard grid test (JIS-G-133).
), no peeling was observed in the bending test (JIS-K-5400). Example 4 First, 6.5×l of zinc was applied from a resistance boat to a steel plate pretreated according to the procedure of Example 1.
Ion plating was performed by glow discharge at o-tsubo orr, bias voltage low V2 hA, and argon gas pressure 2 x 10-2 Torr. Do another and open the shutter to E from the water-cooled steel Rubbo.
BIKW heated silica is evaporated and composite galvanized 1
I went to Buddha.

得られためつきの耐食性はS.S.T.で40餌時間後
赤錆の発生を認めず3r折曲加工(JIS−G−331
2で規定)、で剥離しなかった。実施例 5実施例1の
手順に従って前処理を行った鋼板に抵抗ボートから亜鉛
水冷鋼ルッボからEB加熱してシリカを同時蒸発させ2
仏共折ごせた後水袷鋼ルッボ上のシャッターを閉じ亜鉛
のみを0.か車ねめつきした。
The corrosion resistance of the obtained stain is S. S. T. After 40 feeding hours, no red rust was observed and 3R bending process (JIS-G-331
2), and did not peel off. Example 5 A steel plate pretreated according to the procedure of Example 1 was heated with EB from a zinc water-cooled steel rubbo from a resistance boat to simultaneously evaporate silica.
After folding the French joint, close the shutter on the steel Rubbo and remove only the zinc. Or the car got sticky.

得られためつきの耐食性はS.ST.1時間で白錆が発
生したが、赤錆は400時間経過しても発生しなかった
。又市販のリン酸塩亜鉛系処理を行った所、電気亜鉛め
つきと同機のリン酸塩処理が可能であった。実施例 6 実施例1と同様の方法で水冷銅ルッボ内に市販のソーダ
ーガラスを入れ亜鉛と同時蒸発共析させ3仏厚の複合め
つき鋼板を作成した。
The corrosion resistance of the obtained stain is S. ST. White rust occurred after 1 hour, but red rust did not occur even after 400 hours. Furthermore, when a commercially available zinc phosphate treatment was applied, phosphate treatment using the same machine as electrogalvanizing was possible. Example 6 In the same manner as in Example 1, commercially available soda glass was placed in a water-cooled copper rubbo and co-evaporated and eutectoided with zinc to produce a composite galvanized steel sheet with a thickness of 3 mm.

得られためつきの耐食性はS.S.T.で300時間後
も赤錆の発生を認めなかった。実施例 7 実施例6のソーダーガラスの代りに、カリウムガラス、
ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ストロ
ンチウムLケイ酸バリウム、ケイ酸亜鉛、ケイ酸鉄、ケ
イ酸ニッケル、ケイ酸コバルトについても同様に複合亜
鉛めつきを作成した。
The corrosion resistance of the obtained stain is S. S. T. No red rust was observed even after 300 hours. Example 7 Instead of the soda glass in Example 6, potassium glass,
Composite zinc plating was similarly created using magnesium silicate, calcium silicate, strontium silicate, L barium silicate, zinc silicate, iron silicate, nickel silicate, and cobalt silicate.

めつきの耐食性はいずれもS.S.T.で10脚寺間後
赤錆の発生を認めなかった。実施例 8 実施例1の手法に於て、抵抗ボートにアルミニウムを入
れ蒸発させシリカを10%含有した複合アルミめつき(
3〆厚)鋼板を作成した。
The corrosion resistance of plating is S. S. T. No red rust was observed after 10 legs. Example 8 Using the method of Example 1, aluminum was placed in a resistance boat and evaporated to form a composite aluminum plating containing 10% silica (
A steel plate (3mm thick) was prepared.

めつきのピンホールはフエロオキシルテスト(JIS−
H−0402)で1の当り0点でアルミニウム単独めつ
きの10点に比べ格段に改善され、耐食性もS.S.T
.50瓜時間後赤錆の発生を認めなかった。。実施例
9実施例6のソーダーガラスの代り1こリン酸亜鉛、ホ
ゥ酸亜鉛を水冷鋼ルッボからEB加熱雛Wで蒸発させ複
合めつきを作成した。
The plating pinholes are determined by the ferrooxyl test (JIS-
H-0402) gave a score of 0 per 1, which was significantly improved compared to 10 points for single aluminum plating, and the corrosion resistance also improved to S. S. T
.. No red rust was observed after 50 hours. . Example
9 In place of the soda glass in Example 6, zinc phosphate and zinc borate were evaporated from water-cooled steel Rubbo using an EB heating chick W to create a composite plating.

めつき中のリンおよびホウ素の含有率は略5%および2
%で〆ッキ厚は2ミクロンであった。メッキの耐食性は
S.S.T.5加持間で赤錆が若干発生していた。実施
例 10実施例2の手順で抵抗ボートにアルミニウムを
入れ、最初Si02−Zn蒸発をシャッターで抑え、ア
ルミニウムめつきを0.1仏行った後シャッターを開き
Zn−AI−Si02の複合めつきをIM行った。
The content of phosphorus and boron in the plating is approximately 5% and 2%.
% and the thickness of the lining was 2 microns. The corrosion resistance of plating is S. S. T. Some red rust had occurred during the 5-year period. Example 10 Put aluminum into a resistance boat according to the procedure of Example 2, first suppress Si02-Zn evaporation with a shutter, and after 0.1 degrees of aluminum plating, open the shutter and start Zn-AI-Si02 composite plating. I went to IM.

めつきの密着性は、汀曲げて剥離せず耐食性もS.S.
T.30餌時間経過しても赤錆が発生しなかつた。実施
例 11 実施例1と同様の方法で表面を処理した後アルゴンを止
め真空度1.4×10‐5で抵抗ボートから亜鉛を蒸発
させ、水冷鋼ルッボからアルミナをEB加熱(IKW)
蒸発させた。
The adhesion of the plating does not peel off even when bent, and the corrosion resistance is S. S.
T. Red rust did not occur even after 30 feeding hours had passed. Example 11 After the surface was treated in the same manner as in Example 1, the argon was stopped, zinc was evaporated from the resistance boat at a vacuum level of 1.4 x 10-5, and alumina was heated by EB (IKW) from a water-cooled steel rubbo.
Evaporated.

めつき量は70夕/で(片面)、アルミナ含有率0.5
%であった。めつきの耐食性をS.S.T.で調べた所
15加持間で赤錆が発生し、純亜鉛めつきの約2倍の耐
食性を示した。実施例 12実施例11のアルミナの代
ゆこ酸化チタン、酸化ジルコンをEB加熱蒸発させて複
合亜鉛めつきを作った。
The plating amount is 70mm/(one side), and the alumina content is 0.5.
%Met. The corrosion resistance of plating was determined by S. S. T. When examined, red rust developed after 15 cycles, and the corrosion resistance was approximately twice that of pure zinc plating. Example 12 Titanium oxide and zirconium oxide, which were substituted for alumina in Example 11, were evaporated by EB heating to produce a composite zinc plating.

含有率はそれぞれ5%であった。S.S.T.のめつき
の腐食速度は実施例1の方法で1時間当り0.4タノめ
であった。実施例 13 冷延鋼板を脱脂酸洗後、硫酸亜鉛俗(pH=1.2)で
、電流密度10A/dめで約3仏の露気めつきを行った
後、水洗、強制乾燥し、実施例1の前処理を行い真空複
合メッキをlr行った(E試料)。
The content was 5% in each case. S. S. T. The corrosion rate of plating was 0.4 mm per hour using the method of Example 1. Example 13 After degreasing and pickling a cold rolled steel plate, plating with zinc sulfate (pH = 1.2) at a current density of 10 A/d and dew plating of about 3 degrees, followed by washing with water and forced drying. The pretreatment of Example 1 was carried out, and vacuum composite plating was performed at 1r (Sample E).

又、同様に連続溶融めつき鋼板(めつき厚1地)につい
ても真空複合めつき1仏行った(D試料)。複合めつき
の組成は、亜鉛90%、シリカ10%であった。
Similarly, a continuous hot-dip galvanized steel plate (with a plating thickness of 1) was subjected to vacuum composite plating (sample D). The composition of the composite plating was 90% zinc and 10% silica.

耐食性をS.S.T.で調べた結果、赤錆発生迄に要し
た時間はE試料は5独特間(純亜鉛の約3倍)、D試料
は10斑時間(純亜鉛の1針音)であった。又、密着性
を虹折曲げて評価した所、剥離を認めなかった。
Corrosion resistance is S. S. T. As a result of the investigation, the time required for red rust to occur was 5 hours for sample E (approximately three times that of pure zinc), and 10 hours for sample D (one needle sound of pure zinc). Further, when the adhesion was evaluated by rainbow bending, no peeling was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は人工的に傷を入れた各種表面処理鋼板の3%塩
化ナトリウム水溶液中の時間−腐食電位変化の結果を示
す。 第2図は、本発明のめつきについてシリカ含有率と電気
抵抗値の関係を示したものである。第3図は本発明のめ
つきを含む各種表面処理鋼板の鉄に対する陰極防食能を
鉄とめつきの面積比を変えて調べたものである。第4図
は本発明のめつきと電気亜鉛めつきについての脱気した
3%塩化ナトリウム水溶液中における陽分極曲線図であ
る。(対極は白金極使用)第5図は本発明の製造プロセ
スの基本工程を示す。第6図は本発明のめつき皮膜中の
シリカ含有率とS.S.T.の腐食速度の関係を示した
図である。第7図1は酸性硫酸俗から電析した亜鉛めつ
きの走査型電気顕微鏡(SEM)写真である。第7図2
は真空蒸着めつきで圧力2×10‐5Torrめつき厚
3山のSEM写真である。第7図3は真空蒸着亜鉛シリ
カ複合めつきで圧力2×10‐5Torr、めつき厚み
3仏、二元蒸発のSEM写真である。茅/図 多2図 多3図 繁4図 多づ図 多ク図 g′ 7 図
FIG. 1 shows the results of changes in corrosion potential over time in a 3% sodium chloride aqueous solution for various surface-treated steel sheets with artificial scratches. FIG. 2 shows the relationship between the silica content and the electrical resistance value for the plating of the present invention. FIG. 3 shows the cathodic corrosion protection ability against iron of various surface-treated steel sheets including plating according to the present invention, which was investigated by changing the area ratio of iron to plating. FIG. 4 is an anodic polarization curve diagram in a degassed 3% sodium chloride aqueous solution for plating and electrogalvanizing of the present invention. (A platinum electrode is used as the counter electrode.) FIG. 5 shows the basic steps of the manufacturing process of the present invention. FIG. 6 shows the silica content in the plating film of the present invention and the S.I. S. T. FIG. 3 is a diagram showing the relationship between the corrosion rate of FIG. 71 is a scanning electric microscope (SEM) photograph of zinc plating deposited from acidic sulfuric acid. Figure 7 2
This is an SEM photograph of three plating layers with a pressure of 2×10-5 Torr and a thickness of 3 platings with vacuum evaporation plating. Figure 7-3 is an SEM photograph of vacuum-deposited zinc-silica composite plating at a pressure of 2 x 10-5 Torr, plating thickness of 3 Torr, and binary evaporation. Kaya/Figure 2 Figures 3 Figures Traditional 4 Figures Many Figures Many Figures g' 7 Figures

Claims (1)

【特許請求の範囲】 1 ケイ酸化合物、金属酸化物、ホウ酸塩化合物、リン
酸塩化合物の一種又は二種以上よりなる化合物と鉄に対
し犠性防食作用のある金属もしくは合金とを物理的蒸着
により被めつき鋼材に前記化合物と金属もしくは合金と
を同時にめつきすることを特徴とする耐食性めつき鋼材
の製造法。 2 鉄に対し犠性防食作用のある金属もしくは合金を電
気めつき又は溶融めつき又は物理的蒸着めつきした後、
更にその上にケイ酸化合物、金属酸化物ホウ酸塩化合物
、リン酸塩化合物の一種又は二種以上よりなる化合物と
鉄に対して犠性防食作用のある金属もしくは合金とを物
理的蒸着により同時にめつきすることを特徴とする耐食
性めつき鋼材の製造法。 3 ケイ酸化合物、金属酸化物、ホウ酸塩化合物、リン
酸塩化合物の一種又は二種以上なる化合物と鉄に対し犠
性防食作用のある金属もしくは合金とを物理的蒸着によ
り被めつき鋼材に前記化合物と金属もしくは合金とを同
時にめつきした後、更にその上に鉄に対し犠性防食作用
のある金属もしくは合金を物理的蒸着めつき又は電気め
つき又は溶融めつきすることを特徴とする耐食性めつき
鋼材の製造法。
[Claims] 1. A compound consisting of one or more of silicic acid compounds, metal oxides, borate compounds, and phosphate compounds and a metal or alloy having a sacrificial anticorrosion effect on iron. A method for producing a corrosion-resistant plated steel material, comprising simultaneously plating the compound and a metal or alloy onto the plated steel material by vapor deposition. 2. After electroplating, hot-melting, or physical vapor deposition of a metal or alloy that has a sacrificial anticorrosion effect on iron,
Furthermore, a compound consisting of one or more of silicate compounds, metal oxide borate compounds, and phosphate compounds and a metal or alloy having a sacrificial anticorrosion effect on iron are simultaneously applied by physical vapor deposition. A method for producing corrosion-resistant plated steel material characterized by plating. 3 Coating steel materials by physical vapor deposition with one or more compounds of silicate compounds, metal oxides, borate compounds, and phosphate compounds, and metals or alloys that have a sacrificial anticorrosion effect on iron. After simultaneously plating the compound and the metal or alloy, a metal or alloy having a sacrificial anti-corrosion effect on iron is further plated by physical vapor deposition, electroplating, or hot-dip plating. A method for manufacturing corrosion-resistant plated steel materials.
JP2095778A 1978-02-27 1978-02-27 Manufacturing method for corrosion-resistant plated steel materials Expired JPS609590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095778A JPS609590B2 (en) 1978-02-27 1978-02-27 Manufacturing method for corrosion-resistant plated steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095778A JPS609590B2 (en) 1978-02-27 1978-02-27 Manufacturing method for corrosion-resistant plated steel materials

Publications (2)

Publication Number Publication Date
JPS54114441A JPS54114441A (en) 1979-09-06
JPS609590B2 true JPS609590B2 (en) 1985-03-11

Family

ID=12041652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095778A Expired JPS609590B2 (en) 1978-02-27 1978-02-27 Manufacturing method for corrosion-resistant plated steel materials

Country Status (1)

Country Link
JP (1) JPS609590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8401636D0 (en) * 1984-01-21 1984-02-22 British Petroleum Co Plc Coating process

Also Published As

Publication number Publication date
JPS54114441A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
CN105358729B (en) For reducing metal board processing method and the metallic plate with this method processing of blackening or corrosion during storing
JP2001355055A (en) HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
KR100378878B1 (en) Zn-Mg electroplated metal sheet and fabrication process therefor
JPS6038480B2 (en) Method for manufacturing corrosion-resistant electrolytic zinc composite plated steel materials
JP6280049B2 (en) Use of solutions containing sulfate ions to reduce blackening or discoloration of metal plates during storage and metal plates treated with such solutions
JP2782451B2 (en) High corrosion resistance superimposed plated steel sheet
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
Tang et al. Corrosion performance of aluminum-containing zinc coatings
KR20100002745A (en) Solution for surface treatment of magnesium material, method for surface treatment of magnesium material, and magnesium material treated by using the same
JPH01139755A (en) Surface treated steel sheet having superior press formability
JPS609590B2 (en) Manufacturing method for corrosion-resistant plated steel materials
JP2001020050A (en) HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE IN NONCOATED PART AND COATED EDGE PART AND ITS PRODUCTION
KR100311062B1 (en) Manufacturing method of zinc-containing metal plated steel sheet with excellent black resistance and whiteness
JP3219453B2 (en) Manufacturing method of galvanized steel sheet with excellent blackening resistance
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JPH05214544A (en) Highly corrosion-resistant galvanized steel sheet and its production
CA2152969A1 (en) Method for vacuum plasma protective treatment of metal substrates
US7311787B2 (en) Method for the darkening of a surface layer of a piece of material containing zinc
JP2003183800A (en) Hot-dip zinc-base coated steel sheet superior in blackening resistance and corrosion resistance, and manufacturing method therefor
JPH04301068A (en) Vacuum-deposited cu series plated steel sheet excellent in weatherability
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPH0214436B2 (en)
KR960015380B1 (en) Method for manufacturing molten galvanized sheet iron
JPS581185B2 (en) Manufacturing method of organic composite plated steel material
JPH0657393A (en) Flux treating method