JPS609382B2 - Multi-beam satellite onboard relay device - Google Patents

Multi-beam satellite onboard relay device

Info

Publication number
JPS609382B2
JPS609382B2 JP56024863A JP2486381A JPS609382B2 JP S609382 B2 JPS609382 B2 JP S609382B2 JP 56024863 A JP56024863 A JP 56024863A JP 2486381 A JP2486381 A JP 2486381A JP S609382 B2 JPS609382 B2 JP S609382B2
Authority
JP
Japan
Prior art keywords
signal
signals
relay device
beam satellite
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56024863A
Other languages
Japanese (ja)
Other versions
JPS57140043A (en
Inventor
俊雄 高橋
康夫 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP56024863A priority Critical patent/JPS609382B2/en
Publication of JPS57140043A publication Critical patent/JPS57140043A/en
Publication of JPS609382B2 publication Critical patent/JPS609382B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2046SS-TDMA, TDMA satellite switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 本発明はディジタル衛星通信方式に用いられる衛星搭載
用中継装置に係るものであり、特に複数の搬送波のバー
スト信号を中継増幅するマルチビーム衛星通信システム
に有効な衛星搭載用中継装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a satellite-mounted repeater used in a digital satellite communication system, and is particularly effective for a multi-beam satellite communication system that relays and amplifies burst signals of multiple carrier waves. This relates to a relay device.

従来、衛星通信システムで最も多く用いられている通信
方式はFDM‐FM‐FDMA方式であった。
Conventionally, the communication method most commonly used in satellite communication systems has been the FDM-FM-FDMA method.

しかし、システムに参加する地球局数の増加や通信需要
の増大に対処するため、さらに高能率、大容量でかつト
ラフィックの変動に柔軟に追従できるディジタル衛星通
信方式の導入が検討されてきている。その一つであるマ
ルチビーム衛星とTOMA技術を組み合せ、衛星にダイ
ナミックスイッチを搭載し、TDMAフレームに同期し
て高速でビームの接続を切替えるSatellites
MtchedTDMA(SS/TDMA)と呼ばれる方
式がすでに実用化されている。第1図はSS/TDMA
方式のうち、特に通信量の少ない小局用として提案され
ている複数の搬送波を用いるSS/TDMA方式におけ
る衛星中継器の構成例を示している。
However, in order to cope with the increase in the number of earth stations participating in the system and the increase in communication demand, consideration is being given to introducing digital satellite communication systems that have higher efficiency, larger capacity, and can flexibly follow traffic fluctuations. One of these is Satellites, which combines multi-beam satellites and TOMA technology, and is equipped with a dynamic switch on the satellite to switch beam connections at high speed in synchronization with the TDMA frame.
A method called Mtched TDMA (SS/TDMA) has already been put into practical use. Figure 1 shows SS/TDMA
Among the systems, an example of the configuration of a satellite repeater in the SS/TDMA system using multiple carrier waves, which has been proposed especially for small stations with a small amount of communication, is shown.

図はRB,RB2,R&がが衛星の受信ビーム素子でR
B,はA,B,C局を、RB2はD,E,F局を、R&
はG,日,1局を収容している例である。また、各地球
局には、同一受信ビーム内で送信周波数が複合しないよ
うにf.,ら,f3が割当てられている。2は受信機、
3は各受信ビーム毎に設けられ、それぞれの受信信号を
f,,f2,f3の周波数に分波する分波器、4は復調
器、5は予め定められた手順により復調器で得られたベ
ースバンド信号のタィムス。
In the figure, RB, RB2, R& are the receiving beam elements of the satellite.
B, is for A, B, C stations, RB2 is for D, E, F stations, R&
is an example of accommodating one station of G and one day. Each earth station also has f. , et al., f3 are assigned. 2 is the receiver,
3 is a demultiplexer that is provided for each receiving beam and separates each received signal into frequencies f, , f2, and f3; 4 is a demodulator; Baseband signal times.

ットを入替えて送信ビーム素子、TB,,T弦,T&毎
にベースバンド信号を再編成するベースバンドスイッチ
マトリックス、6は送信ビーム素子に対応して設けられ
る変調器、TB,,TB2,T&は受信ビームRB,,
R&,RB3と同様にA〜1局を収容している送信ビー
ム素子である。第2図はこのシステムの運用手順、特に
各地球局に割当たるタイムスロットを示す図である。
A baseband switch matrix that rearranges the baseband signal for each transmitting beam element, TB, T string, T& by exchanging the bits; 6 is a modulator provided corresponding to the transmitting beam element; TB, TB2, T&; is the receiving beam RB,,
Like R& and RB3, this is a transmission beam element accommodating stations A to 1. FIG. 2 is a diagram showing the operating procedure of this system, particularly the time slots assigned to each earth station.

TDMAフレーム長T(通常2〜3胸hsの範囲に設定
される)が区間7,,72,T3に分割されていて、区
間7,は受信ビーム素子RB,に収容されている地球局
が、区間丁2はRB2に収容されている地球局が区間7
3 はRB3に収容れている地球局が使用するようにさ
れている。さらに、各区間ヶ・’丁2’73は、それぞ
れの区間内において、各地球局が各送信ビーム素子TB
,,TB2,TB3向けに送出する信号が時間軸上で重
複しないように、各地球局のタイムスロットが決められ
ている。ベースバンドスイッチマトリックス5は、各送
信ビーム素子TB,TB2,TB3別に信号を集め、時
間軸上達続したTDMA信号となるように動作する。以
上、従来技術について説明したが、従来の構成について
次の欠点が指摘できる。
The TDMA frame length T (usually set in the range of 2 to 3 hs) is divided into sections 7, 72, T3, and in section 7, the earth station accommodated in the receiving beam element RB, In section 2, the earth station housed in RB2 is in section 7.
3 is used by the earth station housed in RB3. Furthermore, in each section 73, each earth station uses each transmit beam element TB in each section.
,, The time slot of each earth station is determined so that the signals sent to TB2 and TB3 do not overlap on the time axis. The baseband switch matrix 5 collects signals for each transmission beam element TB, TB2, and TB3 and operates to generate a TDMA signal that is continuous on the time axis. Although the conventional technology has been described above, the following drawbacks can be pointed out regarding the conventional configuration.

‘1}第1図から明らかなように、ベースバンドスイッ
チマトリックス5が、受信ビーム数を1、周波数の数を
m、送信ビーム数をnとするとき、(1×m)入力対n
出力となり、構成が複雑になる。‘2第2図から明らか
なように各復調器4の動作率は、第2図の例の場合1′
3と低く、かつ、1×m個の復調器が必要で消費電力の
無駄が多い。本発明は、前述の従来の欠点を解決するた
めになされたものであって、能動的回路を削減し省電力
化と高信頼度化を図るとともに構成が簡単なマルチビー
ム衛星搭載用中継装置を提供することを目的とする。
'1} As is clear from FIG. 1, when the number of reception beams is 1, the number of frequencies is m, and the number of transmission beams is n, the baseband switch matrix 5 has (1×m) input pairs n
output, making the configuration complex. '2As is clear from Fig. 2, the operating rate of each demodulator 4 is 1' in the example of Fig. 2.
3, and 1×m demodulators are required, resulting in a lot of wasted power consumption. The present invention has been made in order to solve the above-mentioned conventional drawbacks, and provides a multi-beam satellite onboard relay device that reduces active circuits, saves power and improves reliability, and has a simple configuration. The purpose is to provide.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

第3図は、第1図と同様にベースバンド帯でタイムスロ
ットの入替えを行うシステムに、本発明を適用した場合
の実施例を示す。
FIG. 3 shows an embodiment in which the present invention is applied to a system that replaces time slots in the baseband band similarly to FIG. 1.

図において、7は合成器であり、他の符号はそれぞれ第
1図の従来例と同一部分を示す。本実施例は受信信号を
復調する前に、同一周波数の信号を予め合成器7で合成
し、その後復調するものである。この受信信号の合成は
、第2図から明らかなように、同一周波数のタイムスロ
ットが時間軸上重複することはないので単に電力合成す
ればよい。本発明によれば第1図と第3図との比較から
明らかなように、ベースバンドスイッチマトリックス5
は、(1×m)入力対n出力の構成からm入力対n出力
の構成へと簡単化され、復調器4の数も(1×m)個か
らm個へと削減され、かつ各復調器4の動作率も第2図
の手順で運用される場合原理的にほぼ100%となって
いる。また、合成器7は受動素子で構成できることから
、全体として高信頼度化も達成でき、さらに省電力化も
達成できている。なお、第3図において合成器7により
電力合成する際、合成器7の三入力のうちにいずれかの
一入力から信号が入力し、他の二入力からは雑音が入力
するために、合成器7の出力において信号のSN比を劣
化させる恐れがある。このような場合には、第4図に示
すように分波器3と合成器7の間に、振幅制限器8を設
ければよい。この振幅制限器8はほぼ第5図に示すよう
な特性を有するダイオードなどで構成でき、この振幅制
限器を設けたことによる前記の本発明の効果への影響は
ほとんどない。次に本発明をマイクロ波帯で信号のタイ
ムスロットの入替えを行う衛星搭載用中継器に適用した
場合について述べる。
In the figure, 7 is a synthesizer, and other symbols indicate the same parts as in the conventional example of FIG. 1, respectively. In this embodiment, before demodulating the received signal, signals of the same frequency are synthesized in advance by a synthesizer 7, and then demodulated. As is clear from FIG. 2, the received signals can be combined simply by power combining since time slots of the same frequency do not overlap on the time axis. According to the present invention, as is clear from the comparison between FIGS. 1 and 3, the baseband switch matrix 5
is simplified from a configuration of (1×m) inputs to n outputs to a configuration of m inputs to n outputs, the number of demodulators 4 is also reduced from (1×m) to m, and each demodulator In principle, the operation rate of the device 4 is approximately 100% when operated according to the procedure shown in FIG. In addition, since the synthesizer 7 can be configured with passive elements, high reliability can be achieved as a whole, and furthermore, power saving can be achieved. In addition, when power is combined by the combiner 7 in FIG. 3, a signal is input from one of the three inputs of the combiner 7, and noise is input from the other two inputs. There is a possibility that the signal-to-noise ratio of the signal at the output of 7 may deteriorate. In such a case, an amplitude limiter 8 may be provided between the demultiplexer 3 and the combiner 7, as shown in FIG. This amplitude limiter 8 can be constructed of a diode or the like having characteristics approximately as shown in FIG. 5, and the provision of this amplitude limiter has almost no effect on the effects of the present invention. Next, a case will be described in which the present invention is applied to a satellite-mounted repeater that switches time slots of signals in the microwave band.

まず従来例を第6図に示す。First, a conventional example is shown in FIG.

図において、9は受信周波数f,,ら,f3を所定の周
波数(『)に変換す る周波数変換器(Frequen
cy/Convener)、1 0はIF信号のタイム
スロットを入替えるマイクロ波帯スイッチマトリックス
、11はIF信号を所定の送信周波数に変換し、所定の
電力で信号を送出する送信機であり、他の符号はそれぞ
れ第1図、第3図、第4図の該当個所と同一部分を示す
。この従来例に本発明を適用した場合の実施例を第7図
に示す。
In the figure, 9 is a frequency converter that converts the received frequencies f, , f3 to a predetermined frequency (').
cy/Convener), 10 is a microwave band switch matrix that switches the time slots of the IF signal, 11 is a transmitter that converts the IF signal to a predetermined transmission frequency, and sends out the signal with a predetermined power; Reference numerals indicate the same parts as those in FIGS. 1, 3, and 4, respectively. FIG. 7 shows an embodiment in which the present invention is applied to this conventional example.

この実施例においても、同一周波数の信号を合成器7に
よって予め合成した後、周波数変換器9により周波数変
換を行うもので、第6図と第7図の比較から明らかなよ
うに、マイクロ波帯スイッチマトリックス10の簡単化
を図り、周波数変換器9の数を削減しかつ動作率の向上
が図られ、第3図の実施例と同様な効果をもたらせてい
る。なお、本実施例においても、合成器7による電力合
成の際の信号の品質劣化を防ぐためには、第4図の実施
例の如く、分波器3と合成器7の間に振幅制限器8を設
ければよい。以上、本発明の実施例の説明は、受信ビー
ムはニビーム、各ビームに収容される地球局は三地球局
、使用する周波数は三波である例について説明したが、
これらの数に本発明の実施が制限されるものでない。
In this embodiment as well, signals of the same frequency are synthesized in advance by the synthesizer 7, and then the frequency is converted by the frequency converter 9. As is clear from the comparison between FIG. 6 and FIG. By simplifying the switch matrix 10, reducing the number of frequency converters 9, and improving the operating rate, the same effects as the embodiment shown in FIG. 3 can be achieved. In this embodiment as well, in order to prevent signal quality deterioration during power combination by the combiner 7, an amplitude limiter 8 is installed between the demultiplexer 3 and the combiner 7, as in the embodiment shown in FIG. All you have to do is set it up. In the above embodiments of the present invention, the receiving beam is two beams, the number of earth stations accommodated in each beam is three earth stations, and the frequency used is three waves.
The implementation of the present invention is not limited to these numbers.

また実施例は、受信信号相互間のタイムスロットの入替
えのみを行うシステムを例にとったが、特に第3図、第
4図の実施例においては、ベースバンドスイッチマトリ
ックス5に代えて、受信信号の信号速度変換処理や多重
化処理を行う信号処理回路を設けたシステムにも本発明
の適用が可能である。以上のように、本発明によれば、
構成が簡単で高能率・高信頼度かつ電力消費の少ない衛
星搭載用中継装置を実現でき、その効果は非常に大であ
る。
In addition, in the embodiment, a system that only exchanges time slots between received signals is taken as an example, but in the embodiments shown in FIGS. 3 and 4, in place of the baseband switch matrix 5, the received signal The present invention can also be applied to a system provided with a signal processing circuit that performs signal speed conversion processing and multiplexing processing. As described above, according to the present invention,
It is possible to realize a satellite-mounted relay device that has a simple configuration, high efficiency, high reliability, and low power consumption, and its effects are very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第6図は従来例を示すブロック図、第2図は第
1図の例の動作を説明するためのタイムチャート、第3
図、第4図、第7図は本発明の実施例を示すブロック図
、第5図は第4図の実施例による振幅制限器の特性例図
である。 RB,,RB2,R&・・・・・・受信ビーム素子、T
B,,TB2,TB3……送信ビーム素子、2・・・…
受信機、3..….分波器、4・・・・・・復調器、5
・・・・・・ベースバンドスイッチマトリックス、6・
・・・・・変調器、7・・・・・・合成器、8・・…・
振幅制限器、9…・・・周波数変換器、10……マイク
ロ波スイッチマトリックス、11・・・・・・送信機。 努1図努2図 多3図 多4図 彰5図 劣6図 多7図
1 and 6 are block diagrams showing conventional examples, FIG. 2 is a time chart for explaining the operation of the example in FIG. 1, and FIG.
4 and 7 are block diagrams showing embodiments of the present invention, and FIG. 5 is a characteristic diagram of the amplitude limiter according to the embodiment of FIG. 4. RB,,RB2,R&... Receive beam element, T
B,, TB2, TB3... Transmission beam element, 2...
receiver, 3. .. …. Demultiplexer, 4... Demodulator, 5
...Baseband switch matrix, 6.
...Modulator, 7...Synthesizer, 8...
Amplitude limiter, 9... Frequency converter, 10... Microwave switch matrix, 11... Transmitter. Tsutomu 1 drawing Tsutomu 2 drawings High 3 drawings Multi 4 drawings Akira 5 drawings Poor 6 drawings Multi 7 drawings

Claims (1)

【特許請求の範囲】[Claims] 1 複数の受信ビームに対応して設けれる複数の受信機
と、該複数の受信機の各出力信号を搬送周波数別にそれ
ぞれ分波出力する複数の分波器と、該複数の分波器の各
出力信号を個別に所望の周波数帯域の信号に変換する複
数の信号変換手段とを少なくとも備えたマルチビーム衛
星搭載用中継装置において、前記複数の分波器と前記複
数の信号変換手段との間に複数の合成器を設け、前記複
数の分波器の各出力信号を前記複数の合成器のうちのそ
れぞれ対応する合成器により搬送波周波数別に合成した
後、前記複数の信号変換手段により所望の周波数帯域の
信号に変換することを特徴とするマルチビーム衛星搭載
用中継装置。
1. A plurality of receivers provided corresponding to a plurality of receiving beams, a plurality of branching filters that separate and output each output signal of the plurality of receivers by carrier frequency, and each of the plurality of branching filters. In a multi-beam satellite on-board relay device comprising at least a plurality of signal conversion means for individually converting output signals into signals of desired frequency bands, between the plurality of demultiplexers and the plurality of signal conversion means. A plurality of combiners are provided, and after each output signal of the plurality of demultiplexers is combined for each carrier frequency by a corresponding one of the plurality of combiners, the signal is converted into a desired frequency band by the plurality of signal conversion means. A relay device for use on a multi-beam satellite, which is characterized by converting signals into signals.
JP56024863A 1981-02-24 1981-02-24 Multi-beam satellite onboard relay device Expired JPS609382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56024863A JPS609382B2 (en) 1981-02-24 1981-02-24 Multi-beam satellite onboard relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56024863A JPS609382B2 (en) 1981-02-24 1981-02-24 Multi-beam satellite onboard relay device

Publications (2)

Publication Number Publication Date
JPS57140043A JPS57140043A (en) 1982-08-30
JPS609382B2 true JPS609382B2 (en) 1985-03-09

Family

ID=12150048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56024863A Expired JPS609382B2 (en) 1981-02-24 1981-02-24 Multi-beam satellite onboard relay device

Country Status (1)

Country Link
JP (1) JPS609382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007273B1 (en) * 1986-09-16 1990-10-06 미쓰비시전기 주식회사 Circuit breaker

Also Published As

Publication number Publication date
JPS57140043A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
US4506383A (en) Method and apparatus for relaying signals between a ground station and a satellite using a ground relay station
JP3406527B2 (en) Optical repeater system for service area expansion
US10454567B2 (en) Multi-beam satellite communication system
EP0442617A1 (en) Apparatus and method for expanding cellular system capacity
CA2157209C (en) Repeaters for multibeam satellites
US20080305736A1 (en) Systems and methods of utilizing multiple satellite transponders for data distribution
US8160522B2 (en) Apparatus and method for receiving signal in multiple input multiple output system
JP2576769B2 (en) Regional wireless communication system
US6009306A (en) Hub communications satellite and system
JP3657343B2 (en) Wireless transmission system
US4134069A (en) Single side band multiplex signal radio relay
JPS6062739A (en) Satellite mounting device
US6081709A (en) Mobile satellite radiotelephone systems and methods including mobile radiotelephone bandwidth conversion
JPS609382B2 (en) Multi-beam satellite onboard relay device
EP0813775B1 (en) Method and apparatus for mobile station-to-mobile station calls in a mobile satellite communications system with on-board tdma format conversion
JP3194297B2 (en) Satellite transponder
KR20020014457A (en) Multi-frequency converting repeater and communication method using the same
JP2503869B2 (en) Wireless communication system
JPS58186236A (en) Multi-dimensional connecting system for satellite communication
CA2540037A1 (en) Communication system and method using time division multiplexed (tdm) downlink
JP3194296B2 (en) Satellite transponder
JP2008236047A (en) Relay system and master station apparatus and slave station apparatus used for relay system
JPS619045A (en) Radio communication system
JPS6072337A (en) On-satellite repeator
JPS6315775B2 (en)