JPS6093536A - Control method of reactive power compensating device - Google Patents

Control method of reactive power compensating device

Info

Publication number
JPS6093536A
JPS6093536A JP58199971A JP19997183A JPS6093536A JP S6093536 A JPS6093536 A JP S6093536A JP 58199971 A JP58199971 A JP 58199971A JP 19997183 A JP19997183 A JP 19997183A JP S6093536 A JPS6093536 A JP S6093536A
Authority
JP
Japan
Prior art keywords
current
reactive power
circuit
load
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58199971A
Other languages
Japanese (ja)
Inventor
Tadashi Nishikawa
正 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58199971A priority Critical patent/JPS6093536A/en
Publication of JPS6093536A publication Critical patent/JPS6093536A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To simplify a circuit and to improve control precision by detecting reactive power on the basis of the value obtained by subtracting the current which flows to a reactive power compensating device from the current at the composite initial power receiving point of a load and the reactive power compensating device. CONSTITUTION:A current transformer 14 detects load currents i3-1-i3-n and the composite current IT of the current iC of the compensating capacitor 8-2 of the reactive power compensating device and the current iL of the compensating reactor 8-1. Namely, iT=iS-1+-+iS-n+iL-iCo. The current transformer 8-5 detects the composite current iS of the current iC of the capacitor 802 and the current i1 of the reactor 8-1. Namely, iS=iL-iCo. Those outputs of the current transformer are inputted to a subtracting circuit 6-1 to perform arithmetic according to iT-iS=i3-1+-+iL-iC-(iL-iC)= i3-1+-+iS-no. Consequent ly, this circuit constitution simplifies the arithmetic. Further, the current signal inputted to a control circuit 7 does not contains the currents of the capacitor 8-2 and reactor 8-1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電力系統に変動負荷と並列に接続され、サイリ
スタにより位相制御される補償リアクトルと補償コンデ
ンサの組合せにより、変動負荷の無効電力を開ループで
補償する無効電力補償装置の制御方法に関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention utilizes a combination of a compensation reactor and a compensation capacitor that are connected in parallel with a variable load in a power system and whose phase is controlled by a thyristor to open-loop the reactive power of the variable load. The present invention relates to a control method for a reactive power compensator that compensates for

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

不規則かつ急激に変動する無効電力を発生する負荷、例
えばアーク炉などが接続されている電力系統においては
、無効電力の変動に起因する電圧変動が生じ、フリッカ
が発生する。これを抑制するために無効電力補償装置が
設置される。これを第1図を用いて説明する。
In a power system to which a load that generates reactive power that fluctuates irregularly and rapidly, such as an arc furnace, is connected, voltage fluctuations occur due to fluctuations in reactive power, and flicker occurs. A reactive power compensator is installed to suppress this. This will be explained using FIG.

第1図は従来のサイリスタ制御式補償リアクトルの無効
電力補償装置の構成図および負荷である。
FIG. 1 is a block diagram and load of a conventional reactive power compensator for a thyristor-controlled compensation reactor.

図において1は発電機、2は線路インピーダンス、3−
1〜3−nは負荷、4−1〜4−nは変流器、5は電圧
変成器、6は加算回路、7は無効電力補償装置の制御回
路、8は無効電力補償装置、8−1は補償リアクトル、
8−2は補償コンデンサ、8−3と8−4はサイリスク
である。
In the figure, 1 is the generator, 2 is the line impedance, and 3-
1 to 3-n are loads, 4-1 to 4-n are current transformers, 5 is a voltage transformer, 6 is an addition circuit, 7 is a control circuit for a reactive power compensator, 8 is a reactive power compensator, 8- 1 is a compensation reactor,
8-2 is a compensation capacitor, and 8-3 and 8-4 are cyrisks.

複数台の負荷3−1〜3−nの実際の例としてはアーク
炉、又は電動機があげられる。これらの負荷電流を変流
器4−1〜4−nで検出し、加算回路6により、負荷電
流信号を合成する。加算回路についての説明は後で説明
する。ここで合成された負荷電流信号は無効電力補償装
置の制御回路7に入力される。また系統電圧を電圧変成
器5を使って検出し、その電圧信号は無効電力補償装置
の制御回路7に入力される。この制御回路7では電圧信
号と電流信号により負荷の無効電力を演算し、さらに無
効電力補償装置8が負荷に供給すべき無効電力を演算し
、サイリスタ8−3と8−4の点弧位相を決定する。さ
らに点弧位相に対応した点弧ノくルスをサイリスタ8−
3と8−4に送る。補償1ノアクトル8−1はサイリス
タ8−3と8−41こより制御される電流にて遅相の無
効電力を電力系統へ供給する。また補償コンデンサ8−
2は進相の無効電力を供給する。即ち、サイリスタ制御
式補償リアクトルは等価リアクタンスが制御遅れ角αの
値で連続的に変化させることが出来、補償コンデンサ8
−2との並用により自由に進みから遅れの無効電力を系
統に供給し、制御することが出来る。この結果、送電線
が持つ線路インピーダンス2による電圧降下を補償し、
電圧を一定に保ったり電力系統の安定化を図ることが出
来る。
An actual example of the plurality of loads 3-1 to 3-n is an arc furnace or an electric motor. These load currents are detected by current transformers 4-1 to 4-n, and an adder circuit 6 synthesizes a load current signal. The addition circuit will be explained later. The load current signal synthesized here is input to the control circuit 7 of the reactive power compensator. Moreover, the system voltage is detected using the voltage transformer 5, and the voltage signal is input to the control circuit 7 of the reactive power compensator. This control circuit 7 calculates the reactive power of the load based on the voltage signal and the current signal, and further, the reactive power compensator 8 calculates the reactive power to be supplied to the load, and adjusts the firing phase of the thyristors 8-3 and 8-4. decide. Furthermore, the ignition pulse corresponding to the ignition phase is set to the thyristor 8-
Send it to 3 and 8-4. The compensation 1-noctor 8-1 supplies delayed phase reactive power to the power system using current controlled by the thyristors 8-3 and 8-41. Also, compensation capacitor 8-
2 supplies phase-advanced reactive power. That is, in the thyristor-controlled compensation reactor, the equivalent reactance can be continuously changed by the value of the control delay angle α, and the compensation capacitor 8
-2, it is possible to freely supply leading and lagging reactive power to the grid and control it. As a result, the voltage drop due to line impedance 2 of the power transmission line is compensated for,
It is possible to keep the voltage constant and stabilize the power system.

次に従来方式における不具合点について第1図、第2図
と第3図を用いて説明をする。第1図のように負荷3−
1〜3−nが複数台、系統に接続される場合、開ループ
制御をするために各フィーダの負荷毎に電流を検出する
必要がある。これらの電流の検出は変流器4−1〜4−
nにより行なわれるがn個の変流器が必要となる。さら
にこれらの電流を合成するために第2図、第3図の様な
回路が用いられる。第2図は合成変流器と称し、−次側
に流れた各巻線・の電流が合成されて二次側に出力され
る。変流器4−1〜4−nの変流比が異なる場合には一
次側のそれぞれの巻線にそれぞれの変流比に応じた巻数
比となる様に構成する。次に第3図の構成を説明する。
Next, the disadvantages of the conventional system will be explained using FIG. 1, FIG. 2, and FIG. 3. As shown in Figure 1, load 3-
When a plurality of feeders 1 to 3-n are connected to a system, it is necessary to detect the current for each load of each feeder in order to perform open loop control. These currents are detected by current transformers 4-1 to 4-
n current transformers are required. Furthermore, circuits such as those shown in FIGS. 2 and 3 are used to combine these currents. FIG. 2 is called a composite current transformer, in which the currents of each winding flowing to the negative side are combined and output to the secondary side. When the current transformation ratios of the current transformers 4-1 to 4-n are different, each winding on the primary side is configured to have a turn ratio corresponding to the respective current transformation ratio. Next, the configuration of FIG. 3 will be explained.

10−1〜10−nは電流電圧変換器、11−1〜11
−nは入力抵抗、12は帰還抵抗、13は演算増幅器で
ある。電流電圧変換610−1〜10−nは変流器4−
1〜4−nの電流信号を電圧信号に変換する機能を持つ
。その出力は入力抵抗11−1〜11−nに入力され、
演算増幅器により合成される。それぞれのゲインは帰還
抵抗12と入力抵抗11−1〜11−nにより決定され
る。
10-1 to 10-n are current-voltage converters, 11-1 to 11
-n is an input resistor, 12 is a feedback resistor, and 13 is an operational amplifier. Current-voltage converters 610-1 to 10-n are current transformers 4-
It has a function of converting 1 to 4-n current signals into voltage signals. The output is input to input resistors 11-1 to 11-n,
Combined by an operational amplifier. Each gain is determined by the feedback resistor 12 and input resistors 11-1 to 11-n.

以上の結果から従来方式は多くの変流器と電流合成回路
が必要とすることから複雑になることと、検出精度が悪
くなるという不具合があった。
As can be seen from the above results, the conventional method requires many current transformers and current combining circuits, which makes it complicated, and the detection accuracy deteriorates.

[発明の目的〕 本発明の目的はこのような点に鑑み、制御ループは開ル
ープのままで検出回路の簡易化を図ルコとが出来る無効
電力補償装置の制御方法を提供することにある。
[Object of the Invention] In view of the above points, an object of the present invention is to provide a control method for a reactive power compensator that can simplify the detection circuit while keeping the control loop open.

〔発明の概要〕[Summary of the invention]

本発明は、この目的を達成するために、負荷と無効電力
補償装置の合成した受電点での電流カシら無効電力補償
装置に流れる電流を引いた値で無効電力を検出する様に
したのもので、この様にすれば開ループのまま制御が可
能となる。
In order to achieve this object, the present invention detects reactive power by subtracting the current flowing through the reactive power compensator from the combined current at the receiving point of the load and the reactive power compensator. In this way, control can be performed in an open loop.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の構成例を第4図を参照しながら説明する
。第4図において第1図と同一番号のものは同じものを
示しである。6−1は減算回路、8−5と14は変流器
である。
Hereinafter, a configuration example of the present invention will be explained with reference to FIG. 4. In FIG. 4, the same numbers as in FIG. 1 indicate the same items. 6-1 is a subtraction circuit, and 8-5 and 14 are current transformers.

変流器14により負荷電流i3−□−・・曲r 13−
n と無効電力補償装置の補償コンデンサ8−2の電流
4oと補償リアクトルの電流iLの合成電流i7を検出
する。
The load current i3-□-...curve r13- by the current transformer 14
A composite current i7 of n, the current 4o of the compensation capacitor 8-2 of the reactive power compensator, and the current iL of the compensation reactor is detected.

即ち、次のように表わせる。(遅れ電流をプラス、進み
電流をマイナスとした。) Iテ=is−+ +・・・・・・・・・+13−1 +
iL−i(、・・・・・・・・・・・・ (11また変
流器8−5#こより補償コンデンサ8−2の電流i(1
と補償リアクトルの電流iLの合成電流18を検出する
That is, it can be expressed as follows. (The lagging current is plus and the leading current is minus.) Ite=is-+ +・・・・・・・・・+13-1 +
iL-i(,......(11) Also, the current i(1
A composite current 18 of the compensation reactor current iL and the current iL of the compensation reactor is detected.

18= iL−i(、・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・(2)そ
れら変流器の出力は減算回路6−1に入力されて次の様
な演算が行なわれる。
18= iL-i(, ・・・・・・・・・・・・・・・
(2) The outputs of these current transformers are input to the subtraction circuit 6-1, and the following calculations are performed.

it−js=Ig−1+−−−+13−7l+1L−i
o−(L、to)”’m−1+・・・・・・+1s−n
 ・・・・・・・・・・・・・・・・・・・・・・・・
 (3)従って、この様な回路構成で演算すれば簡単に
なる。さらに(3)式を見て分るように制御回路7に入
力される電流信号は補償コンデンサ8−2と補償リアク
トル8−1の電流が含まれない。即ち開ループ制御とな
る。
it-js=Ig-1+----+13-7l+1L-i
o-(L, to)"'m-1+...+1s-n
・・・・・・・・・・・・・・・・・・・・・・・・
(3) Therefore, calculations using such a circuit configuration will be simpler. Furthermore, as can be seen from equation (3), the current signal input to the control circuit 7 does not include the currents of the compensation capacitor 8-2 and the compensation reactor 8-1. In other words, it becomes open loop control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、負荷が沢山さっても変流器の数は少な
くでもすみ簡単な回路構成となり制御精度が向上する。
According to the present invention, even if there is a large load, the number of current transformers can be reduced, resulting in a simple circuit configuration and improved control accuracy.

また開ループ制御となるので負荷の急速な変動に対して
応答の速い制御が可能である。従って負荷のフィーダ数
が多くなればなるほど本発明の効果が大きく表われる。
Furthermore, since it is an open-loop control, control with a quick response to rapid changes in load is possible. Therefore, the greater the number of feeders in the load, the greater the effects of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサイリスタ制御式補償リアクトルの無効
電力補償装置の構成図、第2図は第1図で用いられる合
成変流器の回路図、第3図は第1図で用いられる加算回
路図、第4図は本発明の一実施例を示す構成図である。 l・・・発電機 2・・・線路インピーダンス3−1.
〜,3−n・・・負荷 4−1.〜,4−n・・・変流
器5・・・電圧変成器 6・・・加算回路7・・・無効
電力補償装置の制御回路 8・・・無効電力補償装置 8−1・・・補償リアクトル 8−2・・・補償コンデ
ンサ8−3と8−4・・・サイリスク 8−5・・・変流器 10−1.〜+1On・・・電流電圧変換器11−1.
〜,11−11−=入力抵抗12・・・帰還抵抗 13
−、演算増幅器14・・・変流器 (7317) 代理人弁理士−則 近 憲 佑 (ほか
1名)第 1 区 第 2 図 @3図
Figure 1 is a block diagram of a conventional reactive power compensator for a thyristor-controlled compensation reactor, Figure 2 is a circuit diagram of a composite current transformer used in Figure 1, and Figure 3 is an adder circuit used in Figure 1. FIG. 4 is a configuration diagram showing an embodiment of the present invention. l... Generator 2... Line impedance 3-1.
~, 3-n...Load 4-1. ~, 4-n...Current transformer 5...Voltage transformer 6...Addition circuit 7...Control circuit of reactive power compensator 8...Reactive power compensator 8-1...Compensation Reactor 8-2...Compensation capacitors 8-3 and 8-4...Sirisk 8-5...Current transformer 10-1. ~+1On...Current voltage converter 11-1.
~, 11-11-=input resistance 12...feedback resistance 13
-, operational amplifier 14...Current transformer (7317) Agent Patent Attorney - Kensuke Chika (and 1 other person) District 1, No. 2 Figure @ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 負荷が発生する無効電力を補償するために、電力系統と
複数の負荷との間に補償リアクトルと補償コンデンサを
並列に設け、前記補償リアクトルに流れる亜流をサイリ
スクにより位相制御する無効電力補償装置において、前
記複数の負荷電流を検出するために電力系統に流れる電
流から無効電力補償装置に流れる電流を引き、この値に
て無効電力補償装置を制御することを特徴とする無効電
力補償装置の制御方法。
In a reactive power compensator, a compensating reactor and a compensating capacitor are provided in parallel between an electric power system and a plurality of loads in order to compensate for reactive power generated by a load, and the phase of a subcurrent flowing to the compensating reactor is controlled by cyrisk, A method for controlling a reactive power compensator, comprising subtracting a current flowing through the reactive power compensator from a current flowing in the power system to detect the plurality of load currents, and controlling the reactive power compensator using this value.
JP58199971A 1983-10-27 1983-10-27 Control method of reactive power compensating device Pending JPS6093536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199971A JPS6093536A (en) 1983-10-27 1983-10-27 Control method of reactive power compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199971A JPS6093536A (en) 1983-10-27 1983-10-27 Control method of reactive power compensating device

Publications (1)

Publication Number Publication Date
JPS6093536A true JPS6093536A (en) 1985-05-25

Family

ID=16416634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199971A Pending JPS6093536A (en) 1983-10-27 1983-10-27 Control method of reactive power compensating device

Country Status (1)

Country Link
JP (1) JPS6093536A (en)

Similar Documents

Publication Publication Date Title
US3936727A (en) High speed control of reactive power for voltage stabilization in electric power systems
US3963978A (en) Reactive power compensator
US6274851B1 (en) Electric arc furnace controller
US4028614A (en) High speed control of reactive power for voltage stabilization in electric power systems
US3968432A (en) Remote voltage sensor for power system regulation
US4121150A (en) Gain compensation for power factor in line current regulating systems involving reactive power
US4339705A (en) Thyristor switched inductor circuit for regulating voltage
JPS6093536A (en) Control method of reactive power compensating device
JP2001211551A (en) Voltage-compensation device
JP3068897B2 (en) Automatic power factor adjustment device
US4933826A (en) Cancellation of regulator output filter poles by second derivative feedback and error amplifier compensation
JPH03222016A (en) Control system for reactive power compensator
SU903843A2 (en) Device for forming control signal
US4937721A (en) Cancellation of regulator output filter poles by second derivative feedback
JPH0487522A (en) Static reactive power controller model for analog simulator
JPH07212979A (en) Controller of flicker handling equipment
JPH0736138B2 (en) Reactive power compensator
JPS5856008A (en) Control system for reactive power compensating device
SU866555A1 (en) Method of control of inductive-capacitive voltage-to-current source converter operating mode
JPH08314557A (en) Controller for reactive power compensator
JPH11191929A (en) Controller for reactive power compensator
SU773608A1 (en) Dc supply source
JPS61264416A (en) Control system for reactive power compensating device
JPH08137564A (en) Self-excited reactive power compensating device
JPH0744788B2 (en) Control system of reactive power compensator