JPS6093299A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6093299A
JPS6093299A JP20065083A JP20065083A JPS6093299A JP S6093299 A JPS6093299 A JP S6093299A JP 20065083 A JP20065083 A JP 20065083A JP 20065083 A JP20065083 A JP 20065083A JP S6093299 A JPS6093299 A JP S6093299A
Authority
JP
Japan
Prior art keywords
flow
flow path
plate
float
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20065083A
Other languages
Japanese (ja)
Other versions
JPH0472159B2 (en
Inventor
Shinichiro Masuda
増田 伸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20065083A priority Critical patent/JPS6093299A/en
Publication of JPS6093299A publication Critical patent/JPS6093299A/en
Publication of JPH0472159B2 publication Critical patent/JPH0472159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the deterioration of flow amount distribution of primary fluid, flowing through primary fluid parallel flow paths, and permit the temperature of structure of heat exchanger or follow a sudden temperature change generated in the primary fluid upon low flow amount by providing a float, capable of being displaced by the flow resistance of the primary fluid, at the entrance of the parallel flow paths. CONSTITUTION:The communicating hole 22' of a float plate 22, provided at the upper side of the flow regulating plate 16 of a flow path 20b formed by a flow path forming body 19 and an outer shroud 10, is bored at a different position from the communicating hole 16b of the flow regulating plate 16 and the communicating holes are closed mutually when the float plate 22 contacts with the flow regulating plate 16. However, a very small part of the communicating hole is being opened at all times and capable of coping with the reverse flow of small flow amount or drain in the flow path. When fluid flows into an empty chamber 18 and the flow amount thereof is small, a pressure difference between the upper and lower surfaces of the flow regulating plate 16 is small and the float plate 22 continues a condition of being contacted with the flow regulating plate 16, most of the fluid flows through the flow path 20a formed by the outer cylinder 1 and the flow path forming body 19 and flows into an inlet window 12. When the flow amount exceeds a given value, the float plate 22 a floats and the fluid flows into the flow path 20b also.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は熱交換器に関するもので、特に厳しい熱過渡現
象を受ける熱交換器構成部材の温度追従をよくし、強度
的に健全性を確保するのに好適な自己制御性のある1次
流体整流手段を備えた熱交換器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat exchanger, and particularly to improve the temperature tracking of heat exchanger constituent members that are subjected to severe thermal transient phenomena, and to ensure the strength and integrity of the heat exchanger components. The present invention relates to a heat exchanger equipped with a self-regulating primary fluid rectifying means suitable for use in the present invention.

〔発明の背景〕[Background of the invention]

従来の熱交換器は、第1図に示すように、1次側流体の
入口ノズル2と出口ノズル6を有する外胴1と、この外
胴内に収納され且つ上部に入口窓12を、下部に出口窓
13をそれぞれ有する外部シュラウド10と、この外部
シュラウド10に収納され且つ上、下管板4,8にそれ
ぞれ取りつけられた伝熱管束9とによシ構成されている
。土管板4上には、2次流体の出口ノズル7を有する2
次側上部鏡板3が一体に結合され、2次側上部ゾレナム
5が形成されている。上部プレナム51上部鏡板3.お
よび上、下管板4.8を貫通する2次流体入口管15の
下端は、下部管板8と一体に結合された2次側下部鏡板
の形成する2次側下部ゾレナム14内に開口している。
As shown in FIG. 1, a conventional heat exchanger includes an outer shell 1 having an inlet nozzle 2 and an outlet nozzle 6 for primary fluid, an inlet window 12 housed in the outer shell, and an inlet window 12 in the upper part, and an inlet window 12 in the lower part. It consists of an outer shroud 10 having an exit window 13 at each side, and heat exchanger tube bundles 9 housed in the outer shroud 10 and attached to the upper and lower tube plates 4 and 8, respectively. On the earthen pipe plate 4, there is a pipe 2 having an outlet nozzle 7 for the secondary fluid.
The next-side upper end plate 3 is integrally coupled to form a secondary-side upper solenum 5. Upper plenum 51 upper end plate 3. The lower end of the secondary fluid inlet pipe 15 passing through the upper and lower tube plates 4.8 opens into the secondary lower solenum 14 formed by the secondary lower end plate integrally connected to the lower tube plate 8. ing.

また外部シュラウド10の上、下管板4,8の近傍には
遮蔽板11が設けられている。
Further, a shielding plate 11 is provided above the external shroud 10 and near the lower tube plates 4 and 8.

上記のように構成された熱交換器では、1次流体入ロノ
ズル2から外胴1円に導入されfc1次側の高温流体は
外部シュラウドlOの入口窓12から外部シュラウド1
0内に流入し、伝熱管束9内を上昇する2次流体と熱交
換しながら下降した後に出口窓13を通過して外胴1の
1次流体出口ノズル6から機器外へ流出する。一方、低
温の2次流体は入口管15よシ機器内に流入して2次側
下部プレナム14に至り、ここで反転した後に伝導管束
9の伝熱管内に流入し、その伝熱管外を流通する1次流
体と熱交換しながら上昇して2次側上部プレナム5に至
り、さらに2次流体出口ノズル7から機器外へ流出する
In the heat exchanger configured as described above, the high temperature fluid on the fc primary side is introduced from the primary fluid inlet nozzle 2 into the outer shell 1 circle, and the high temperature fluid on the fc primary side is passed from the inlet window 12 of the outer shroud lO to the outer shroud 1.
After flowing into the heat exchanger tube bundle 9 and descending while exchanging heat with the secondary fluid rising within the heat transfer tube bundle 9, it passes through the outlet window 13 and flows out of the device from the primary fluid outlet nozzle 6 of the outer shell 1. On the other hand, the low-temperature secondary fluid flows into the equipment through the inlet pipe 15, reaches the secondary lower plenum 14, where it is reversed, flows into the heat transfer tubes of the conduction tube bundle 9, and flows outside the heat transfer tubes. The fluid rises while exchanging heat with the primary fluid, reaches the secondary side upper plenum 5, and further flows out of the device from the secondary fluid outlet nozzle 7.

上述した熱交換器では、第2図に示すように、外胴11
外部シュラウド10および土管板4と一体に結合された
中実板17により形成された空室18内で且つ1次流体
入ロノズル2の近傍に多数の流通孔を有する整流板16
が突設されており、この整流板16は外部シュラウド1
0の外周面に固定されていて、入口ノズル2より流入す
る1次流体の周方向流動分布を調整して均一にする役目
をする。
In the heat exchanger described above, as shown in FIG.
A rectifier plate 16 having a large number of flow holes in a cavity 18 formed by a solid plate 17 integrally connected to an external shroud 10 and a clay pipe plate 4 and in the vicinity of the primary fluid entry nozzle 2.
is provided protrudingly, and this current plate 16 is connected to the outer shroud 1.
It is fixed to the outer peripheral surface of the inlet nozzle 2 and serves to adjust the circumferential flow distribution of the primary fluid flowing in from the inlet nozzle 2 to make it uniform.

前記外部シュラウド10の上部、すなわち中実板17と
整流板16との間の外部シュラウドには周方向に任意数
の入口窓12が設けられており、この入口窓12を経て
1次流体が伝熱管束へ導かれる。
An arbitrary number of inlet windows 12 are provided in the circumferential direction in the upper part of the external shroud 10, that is, in the outer shroud between the solid plate 17 and the rectifying plate 16, and the primary fluid is transmitted through the inlet windows 12. guided to the heat tube bundle.

さらに、空室18内には長手方向且つ周方向に延びる流
路形成体19が配設され、この流路形成体は整流板16
に固定されている。流路形成体19の配設により、空室
18内を流通する1次流体は、胴体1と流路形成体19
とでtin成される流路20aと流路形成体19と外部
シュラウド10とで構成される流路20bに分流され、
胴体1と流路形成体19とで構成される流路20&を上
昇する1次側流体は、中実板17に当って反転してから
外部シュラウドの入口窓12に流入する。これにより入
口ノズル2がら流入する1次流体に温度変化を生じた場
合、伝熱管束9によシ熱交換され7’c2次出ロ流体が
上管板4を流過しているため上管板4は1次流体の温度
変化に追従して膨張あるいは収縮するが、これに対応し
て土管板4に接続する中実板17の温度追従性がよくな
り、上管板4および中実板17に大きな熱応力が生じる
ことを防止できる。
Furthermore, a flow path forming body 19 extending in the longitudinal direction and the circumferential direction is arranged in the empty chamber 18, and this flow path forming body is connected to the rectifying plate 16.
is fixed. Due to the arrangement of the flow path forming body 19, the primary fluid flowing within the cavity 18 can flow between the body 1 and the flow path forming body 19.
The flow is divided into a flow path 20a formed by a flow path 20a, a flow path 20b formed by a flow path forming body 19, and an external shroud 10,
The primary fluid rising in the flow path 20 & formed by the body 1 and the flow path forming body 19 hits the solid plate 17 and is reversed before flowing into the inlet window 12 of the outer shroud. As a result, if a temperature change occurs in the primary fluid flowing in from the inlet nozzle 2, heat is exchanged by the heat transfer tube bundle 9, and the secondary output fluid flows through the upper tube plate 4, so the upper tube The plate 4 expands or contracts in accordance with the temperature change of the primary fluid. Correspondingly, the temperature followability of the solid plate 17 connected to the clay pipe plate 4 improves, and the upper tube plate 4 and the solid plate 17 can be prevented from being subjected to large thermal stress.

しかし、胴体1と流路形成板19で構成される流路20
&の抵抗は、流路形成板19と外部シュラウド10で構
成される流路20bの抵抗より大きいため、1次側流体
に急激な温度変化が生じるような低流量時には、前者の
流路の流量低下が後者の流路のそれより大きくなり、空
室18内の1次流体の温度の層状化が生じ、上管板4お
よび中実板17の1次流体の温度への追従性が悪くなる
惧れがある。上記のような状況を出来るだけ防止するた
め、整流板16の流通孔16mの数を調整し、流路形成
体19と外部シュラウド10とで構成される流路20b
の抵抗を大きくすることも考えられるが、この場合、空
室18の周方向の流動分布が不均一になシ、定常運転時
の圧力損失が大きくなる欠点がある。
However, the flow path 20 composed of the body 1 and the flow path forming plate 19
The resistance of & is greater than the resistance of the flow path 20b composed of the flow path forming plate 19 and the external shroud 10, so at low flow rates where a sudden temperature change occurs in the primary fluid, the flow rate of the former flow path is The drop becomes larger than that in the latter flow path, stratification of the temperature of the primary fluid in the cavity 18 occurs, and the ability of the upper tube plate 4 and the solid plate 17 to follow the temperature of the primary fluid deteriorates. There is a fear. In order to prevent the above situation as much as possible, the number of flow holes 16m in the current plate 16 is adjusted, and the flow path 20b composed of the flow path forming body 19 and the external shroud 10 is
It is also possible to increase the resistance, but in this case, the flow distribution in the circumferential direction of the cavity 18 becomes non-uniform and the pressure loss during steady operation becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱交換器の外胴と伝熱管束を囲む外部
シュラウドとの間の流路形成部材によって分けられfc
1次流体流体並列流路れる1次流体の流量配分が悪化す
ることを防止し、以て低流量時に1次流体に生じた急な
温度変化に熱交換器の構造物温度が速やかに追従できる
よう構造物周辺の流動を確保すると共に、定常時の高流
量における流動特性に影響を与えない自己制御性おる整
流手段を具えた熱交換器を提供することにある。
It is an object of the present invention to provide an fc
Primary Fluid Prevents the flow rate distribution of the primary fluid in the parallel flow path from deteriorating, allowing the temperature of the heat exchanger structure to quickly follow sudden temperature changes that occur in the primary fluid at low flow rates. It is an object of the present invention to provide a heat exchanger equipped with a self-controlling rectifying means that ensures flow around a structure and does not affect the flow characteristics at high flow rate during steady state.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上下管板に取付けられた伝熱管束を内
蔵する外部シュラウドを外胴内に収納し、外部シーラウ
ドと外胴との間の空間内に流路形成体を長手方向且つ周
方向に延在せしめ、この流路形成体により該空間を外部
シュラウド内へ流入する1次流体の並列流路に分割する
と共に、この並列流路の入口に孔明き整流板を具えた熱
交換器において、−次流体の流動抗力により変位可能な
浮子を上記並列流路の入口に配し、この浮子が上記孔明
き整流板と協同して低流量時に該並列流路の内側流路の
流路抵抗を外側流路の流路抵抗より大きくするようにし
た点にある。
A feature of the present invention is that an external shroud containing heat transfer tube bundles attached to upper and lower tube plates is housed in an outer shell, and a flow path forming body is provided in a space between the outer shroud and the outer shell in the longitudinal direction and circumferential direction. a heat exchanger extending in the direction, the flow path forming body dividing the space into parallel flow paths for the primary fluid flowing into the external shroud, and having a perforated baffle plate at the inlet of the parallel flow path; A float that can be displaced by the flow resistance of the second fluid is disposed at the inlet of the parallel flow path, and this float cooperates with the perforated baffle plate to control the flow path of the inner flow path of the parallel flow path at low flow rates. The point is that the resistance is made larger than the flow path resistance of the outer flow path.

第3図は本発明の原理を模式的に示したものである。図
示の如く流路が途中から分岐して縦置の並列流路2Qa
 、20bを形成し、さらに後流では合流し、且つ並列
流路20a 、20bの一部に流量均一化のための整流
孔16a 、16bを有する整流板16が設けられてい
るような流路において、並列流路の一方の整流板16の
上に浮子板22を設ける。この浮子板22は流体の流動
抗力を受け、この流動抗力がその自重より小さいか又は
大きいかによって整流板16に載り又は浮き上るもので
あって、整流板16と接触しているときは整流板16の
整流孔16bを塞ぎ、浮上ったときは整流孔16bを開
くようになっている。流量が少なくて整流板16の前後
の圧力差が小さい場合は、浮子板22は整流板の整流孔
16bを塞いだままであシ、流体は浮子板22のない流
路にのみ流れる。流量が多くなると、整流板16の上流
側と下流側の圧力差が大きくなり、浮子板22が整流板
16から浮上る。この浮上りにより、浮子板22の設け
られている側の流路20bの圧力損失は、浮子板22の
浮上り前よりその増加割合が低下する。これを流路の流
量と圧力損失の関係で示せば第4図の如くであり、また
、流路の全流量と浮子板の設けられていない流路および
設けられている流路の流量との関係で示せば第5図の如
くである。第5図の斜線で示した部分が浮子板を設けた
ことによる両流路への流量配分の改善量である。
FIG. 3 schematically shows the principle of the present invention. As shown in the figure, the flow path branches from the middle and is arranged vertically in parallel flow path 2Qa.
, 20b and further merge in the downstream, and a part of the parallel flow paths 20a, 20b is provided with a rectifying plate 16 having rectifying holes 16a, 16b for equalizing the flow rate. , a float plate 22 is provided on one of the rectifying plates 16 of the parallel flow paths. This float plate 22 is subjected to flow resistance of the fluid, and depending on whether this flow resistance is smaller or larger than its own weight, it rests on or floats on the current plate 16, and when it is in contact with the current plate 16, the current flow plate 22 16 rectifying holes 16b are closed, and when floating, the rectifying holes 16b are opened. When the flow rate is low and the pressure difference across the rectifier plate 16 is small, the float plate 22 remains blocking the rectifier hole 16b of the rectifier plate, and the fluid flows only into the flow path where the float plate 22 does not exist. When the flow rate increases, the pressure difference between the upstream side and the downstream side of the current plate 16 increases, and the float plate 22 floats up from the current plate 16. Due to this floating, the rate of increase in the pressure loss in the flow path 20b on the side where the float plate 22 is provided is lower than before the float plate 22 floats. Figure 4 shows this in terms of the relationship between the flow rate and pressure loss in the flow path, and also the relationship between the total flow rate in the flow path and the flow rate in the flow path without a float plate and in the flow path with a float plate. The relationship is shown in Figure 5. The shaded area in FIG. 5 is the amount of improvement in flow distribution to both channels due to the provision of the float plate.

本発明はこのような原理を前記熱交換器の外胴−外部シ
ュラウド間の並列流路に適用したものである。
The present invention applies such a principle to the parallel flow path between the outer shell and the outer shroud of the heat exchanger.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第6図および第7図に示す。 An embodiment of the invention is shown in FIGS. 6 and 7.

前記従来例と同じ部分は同じ符号で示す。前記と同様に
、熱交換器の外胴lと伝熱管束部の外部シュラウド10
と上管板4に接続する中実板17とで形成される空室1
8内には、外部シュラウド10に固定された孔明き整流
板16と、これに固定され空室18を長手方向且つ周方
向に二分割し並列流路20a 、20bを形成する長手
方向および周方向に延びている流路形成体19が設置さ
れている。
The same parts as in the conventional example are indicated by the same reference numerals. Similarly to the above, the outer shell 1 of the heat exchanger and the outer shroud 10 of the heat exchanger tube bundle part
and a solid plate 17 connected to the upper tube plate 4.
8 includes a perforated current plate 16 fixed to the external shroud 10, and a perforated current plate 16 fixed to the perforated current plate 16, which divides the chamber 18 into two in the longitudinal direction and circumferential direction to form parallel flow paths 20a and 20b. A flow path forming body 19 extending therein is installed.

さて、本実施例では浮子板22を設ける。浮子板22は
整流板16と同様多数の流通孔22′を有し、流路形成
体19と外部シュラウド10とで形成される流路20b
の整流板16の上側に設けられる。浮子板22の流通孔
22′は整流板16の流通孔16bとは異った位置に穿
孔され、浮子板22と整流板16が接触している場合は
互に流通孔を塞ぐ状態になる。ただし、この場合、整流
板16の流通孔16bが完全に閉塞されるので1なく、
極く一部の流通孔は常時開いて小流量の逆流や流路のド
レンには対応できるようになっている。
Now, in this embodiment, a float plate 22 is provided. The float plate 22 has a large number of flow holes 22' like the current plate 16, and has a flow path 20b formed by the flow path forming body 19 and the external shroud 10.
is provided above the current plate 16. The communication holes 22' of the float plate 22 are bored at different positions from the communication holes 16b of the current plate 16, and when the float plate 22 and the current plate 16 are in contact with each other, the communication holes are mutually blocked. However, in this case, the flow holes 16b of the current plate 16 are completely blocked, so
A very small number of the flow holes are always open to accommodate small flow rates such as backflow and drainage of the flow path.

この構造により、空室18内に流体が流れた場合、小流
量の時には、整流板16の上下面間の圧力差が小さく、
浮子板22は、この圧力差により押上げられる力より自
重の方が大きいため、整流板16と接触したままの状態
であり、流体は大部分が外胴1と流路形成体19で形成
される流路20&に流れ、流路形成体19の上端を越え
て、上管板4に接続した中実板17及び土管板4のまわ
りを流れて入口窓12に流入する。空室18内に流れる
流量が増え、ある一定値を越えると浮子板22に働く押
上げ力が浮子板22の重力よυ大きくなって浮子板22
は浮上がり、浮子板22を設けた流路20bにも流体が
流れ込む。さらに流量が大きくなると、浮子板は空室1
8の上方へ高く浮上がるが、浮子板案内機構23により
ある程度以上の浮上りは制限される。このような状態で
は、整流板16部の圧力損失は、浮子板22を設けない
場合と大きな差はなくなり、熱交換器の流動特性に与え
る影響は少ない。浮子板22の浮上り特性は空室18を
流れる流体の流量だけによって決まる。浮子板の浮上す
る流量は浮子板の重量と流路抵抗によって決まるが、こ
れは使用条件によって任意に設定することが出来る。
With this structure, when fluid flows into the cavity 18, the pressure difference between the upper and lower surfaces of the current plate 16 is small when the flow rate is small.
Since the weight of the float plate 22 is greater than the force pushed up by this pressure difference, the float plate 22 remains in contact with the rectifier plate 16, and most of the fluid is formed by the outer shell 1 and the channel forming body 19. The liquid flows into the flow path 20&, passes over the upper end of the flow path forming body 19, flows around the solid plate 17 connected to the upper tube plate 4 and the earthen tube plate 4, and flows into the inlet window 12. When the flow rate flowing into the chamber 18 increases and exceeds a certain value, the pushing up force acting on the float plate 22 becomes larger than the gravity of the float plate 22, and the float plate 22
floats up, and the fluid also flows into the channel 20b provided with the float plate 22. When the flow rate increases further, the float plate becomes vacant 1
8, but the float plate guide mechanism 23 restricts floating beyond a certain level. In such a state, the pressure loss at the baffle plate 16 portion is not significantly different from that in the case where the float plate 22 is not provided, and there is little influence on the flow characteristics of the heat exchanger. The floating characteristics of the float plate 22 are determined solely by the flow rate of the fluid flowing through the cavity 18. The flow rate at which the float plate floats is determined by the weight of the float plate and the flow path resistance, but this can be arbitrarily set depending on the conditions of use.

浮子板案内機構23の詳細を第7図に示す。これは、浮
子板22を浮上り時に整流板16と平行位置を保ち、周
方向に回転するのを防止すると同時に、速い繰返しの流
量変動に対しては不動で、遅い流動変動に対してはでき
るだけ速やかに追従させる一種のダンパーの機能を持つ
ように構成される。すなわち、浮子板案内機構は、整流
板16に固定され浮子板22を貫通しその先嬬が浮子板
貫通孔より大きい案内棒24と、浮子板22に固定され
た円筒25とで構成され、案内棒24は円筒25に小さ
なギャップで差込まれ、円筒25唱面には小さな孔26
を設けてあり、円筒25内は流体が充満している。この
ような浮子板案内機構23は整流板16の周方向三ケ所
以上に設置する・上記の構造により、浮子板22は安定
に浮上し、流体の循環ポンプ等の速い繰返し流量変動に
対しては追従せず、循環ポンプのコーストダウンのよう
な一方向への変動に対しては速やかに追従する・第8図
は本発明の他の実施例を示す。本実施例では、低流量時
に流量を姐保したい方の流路20mに浮子板22を設け
る。先に述べた実施例では浮子板が浮上ることにより整
流板16の流通口16bを開くのに対し、本実施例では
浮子板22は浮上することにより整流板16の流通口1
6&を制限するように整流板16の下部に設けられてい
る。
Details of the float plate guide mechanism 23 are shown in FIG. This keeps the float plate 22 parallel to the current plate 16 during floating and prevents it from rotating in the circumferential direction, and at the same time, it remains immovable against fast repeated flow fluctuations and is as strong as possible against slow flow fluctuations. It is configured to have the function of a kind of damper that quickly follows. That is, the float plate guide mechanism includes a guide rod 24 that is fixed to the current plate 16 and passes through the float plate 22 and whose tip is larger than the float plate through hole, and a cylinder 25 that is fixed to the float plate 22. The rod 24 is inserted into the cylinder 25 with a small gap, and the cylinder 25 has a small hole 26 in its face.
The cylinder 25 is filled with fluid. Such float plate guide mechanisms 23 are installed at three or more locations in the circumferential direction of the rectifier plate 16. With the above structure, the float plate 22 floats stably, and is able to withstand rapid repeated flow rate fluctuations of fluid circulation pumps, etc. 8 shows another embodiment of the present invention. In this embodiment, a float plate 22 is provided in the flow path 20m in which the flow rate is desired to be kept low at low flow rates. In the previously described embodiment, the float plate 22 floats to open the flow port 16b of the current plate 16, whereas in this embodiment, the float plate 22 floats to open the flow port 16b of the current plate 16.
6& is provided at the lower part of the rectifying plate 16.

整流板16の流通口は、低流用時に流量を確保したい流
路20aの流通口16aの開口の方が大きく、もう1つ
の流路20bの流通口16bの開口の方が小さく作られ
ている。低流量時には、浮子板22は流動による抗力よ
りも自重の方が大きいので、下端位置にあり、整流板1
6の流通口16aは完全に開口している。したがって、
流体は整流板16の開口面積が大きく流路抵抗の小さな
流通口16aの側の流路20mに多く流れる。高流量時
には浮子板22はそこを流れる流体により浮上り、整流
板16の流通口16aを制限する。このため流水は流通
ロ16b側の流路20bにも同様に流れるようになる。
The flow ports of the current plate 16 are made such that the flow port 16a of the flow path 20a where the flow rate is to be ensured during low flow is larger, and the flow port 16b of the other flow path 20b is smaller. At low flow rates, the weight of the float plate 22 is greater than the drag force caused by the flow, so the float plate 22 is at the lower end position, and the rectifier plate 1
The flow port 16a of No. 6 is completely opened. therefore,
A large amount of fluid flows into the flow path 20m on the side of the flow port 16a, where the opening area of the rectifying plate 16 is large and the flow path resistance is low. When the flow rate is high, the float plate 22 floats due to the fluid flowing therethrough, thereby restricting the flow opening 16a of the current plate 16. Therefore, the water also flows into the flow path 20b on the side of the flow chamber 16b.

この場合、流通口16bの開口は周方向流量配分を均一
にするように予め設定できるので流動特性には何んら影
響を及ぼさない。
In this case, the opening of the flow port 16b can be set in advance so as to uniformly distribute the flow rate in the circumferential direction, so that it does not affect the flow characteristics at all.

これにより、先の実施例で示したのと同様な効果を得る
ことができ、熱交換器の型式等によっては接近性の改善
、保守・補修等の作業性の改善を図ることができる。
As a result, the same effects as shown in the previous embodiment can be obtained, and depending on the type of heat exchanger, it is possible to improve the accessibility and the workability of maintenance and repair.

第9図には、第6図および第7図に示した流路20bの
整流板16の流通口16bの開口の調整手段を変形した
本発明の他の実施例を示す。第6図、第7図の実施例で
は、整流板16の流通口16bと浮子22の流通孔22
′とは互に重り合わないような位置に配置され、流通口
16bの閉塞。
FIG. 9 shows another embodiment of the present invention in which the means for adjusting the opening of the flow port 16b of the flow path 20b of the flow path 20b shown in FIGS. 6 and 7 is modified. In the embodiments shown in FIGS. 6 and 7, the flow opening 16b of the current plate 16 and the flow hole 22 of the float 22 are
' and are placed in a position that does not overlap with each other to block the flow port 16b.

開口をFJ!4整するものであった。第9図に示す実施
例では、浮子22に突起27を取りつけ、この突起27
が整流板16の流通口16bに挿入されるようになって
いる。浮子22したがって突起27と整流板16との相
対変位により開口面績が変わるように突起27と整流板
の流通口16bにはテーノ母がついている。これにより
、浮子22の移動に伴う流路面積の変化を緩やかにする
ことができ、作動の安定が保たれる。また、流通口16
bと突起27の位置が一致しているため、流通口の開口
を広い範囲にわたって変えることができるため適用範囲
が広くなるという利点もある。
FJ the opening! It was a four-way adjustment. In the embodiment shown in FIG. 9, a protrusion 27 is attached to the float 22, and the protrusion 27
is inserted into the flow port 16b of the current plate 16. The protrusion 27 and the flow opening 16b of the rectifying plate are provided with tenor plates so that the opening area changes depending on the relative displacement between the float 22, the protrusion 27, and the rectifying plate 16. Thereby, the change in the flow path area due to the movement of the float 22 can be made gentler, and the stability of the operation can be maintained. In addition, the distribution port 16
Since the position of the protrusion 27 coincides with the position of the protrusion 27, the opening of the flow port can be changed over a wide range, which has the advantage of widening the range of application.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器の外胴と外部シュラウド間空
室内の流路形成体で分けられた2つの並列な1次流体流
路に対する低流量時の流r−配分の悪化を防ぐことがで
き、これにより、伝熱管束の管板と共にそれに結合した
中実板が低流量時における1次流体の温度変化に速やか
に追従し得るようにその周辺の流動を確保することが可
能であり、しかも高流量時の流動特性には影響を与える
ことがなく、また、構造も簡単であるという利点がある
According to the present invention, it is possible to prevent deterioration of the flow r-distribution at low flow rates for two parallel primary fluid flow paths separated by a flow path forming member in the outer shell of the heat exchanger and the outer shroud space. As a result, it is possible to secure the flow around the tube plate of the heat transfer tube bundle and the solid plate connected thereto so that it can quickly follow the temperature change of the primary fluid at low flow rates. Moreover, it has the advantage that it does not affect the flow characteristics at high flow rates and has a simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例の熱交換器の構成を示す断面図
、第3図は本発明の作動原理の説明図、第4図、第5図
は本発明による流動特性の説明図、第6図は本発明の一
実施例を示す断面図、第7図は該実施例の一部詳細図、
第8図、第9図は夫々本発明の異る他の実施例の断面図
である。 1・・・胴体、 2・・・ノズル、 4・・・上管板、 8・・・下管板、 9・・・管束、 10・・・外部シュラウド、12・・
・入口窓、 13・・・出口窓、16・・・整流板、 
16a・・・流通孔、17・・・中実板、 18・・・
空室、19・・・流路形成体、22・・・浮子板、23
・・・浮子板案内機構、 24・・・案内棒、 25・・・円筒。 第1図 第2図 第3図 低5危量藺 高;危量哨 第4図 5光量 ↑ ンブ社コ 量 第7図
Figures 1 and 2 are cross-sectional views showing the configuration of a conventional heat exchanger, Figure 3 is an explanatory diagram of the operating principle of the present invention, and Figures 4 and 5 are explanatory diagrams of the flow characteristics according to the present invention. , FIG. 6 is a sectional view showing an embodiment of the present invention, FIG. 7 is a partially detailed view of the embodiment,
FIGS. 8 and 9 are sectional views of other different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Body, 2... Nozzle, 4... Upper tube plate, 8... Lower tube plate, 9... Tube bundle, 10... External shroud, 12...
・Entrance window, 13... Exit window, 16... Rectifier plate,
16a... Distribution hole, 17... Solid plate, 18...
Vacancy, 19... Channel forming body, 22... Float plate, 23
...Float plate guide mechanism, 24...Guide rod, 25...Cylinder. Fig. 1 Fig. 2 Fig. 3 Low 5 Danger level High;

Claims (1)

【特許請求の範囲】 1、上下管板に取付けられた伝熱管束を内蔵する外部シ
ュラウドを外胴内に収納し、外部シュラウドと外胴との
間の空間内に長手方向且つ周方向に延びる流路形成体に
より該空間を外部シュラウド内へ流入する一次流体の並
列流路に分割すると共に、この並列流路の入口に孔明き
整流板を設けた熱交換器において、−次流体の流動抗力
により変位可能であって該孔明き整流板と協同して低流
量時に上記並列流路の内側流路の流路抵抗をその外側流
路の流路抵抗より大きくする浮子を該並列流路の入口に
設けたことを特徴とする熱交換器。 2、 前記浮子を前記内側流路の前記整流板下流側に設
けた特許請求の範囲第1項記載の熱交換器。 3、前記浮子を前記外側流路の前記整流板上流側に設け
た特許請求の範囲第1項記載の熱交換器。 4、 前記浮子を流量の速い繰返し変動に対しては応動
せしめず、流量の大幅変動に対してのみ変位せしめるダ
ンパーを介して該浮子を支持した特許請求の範囲第1項
、第2項又は第3項記載の熱交換器。
[Scope of Claims] 1. An external shroud containing a bundle of heat transfer tubes attached to the upper and lower tube plates is housed in the outer shell, and extends longitudinally and circumferentially within the space between the outer shroud and the outer shell. In a heat exchanger in which the space is divided into parallel flow paths for the primary fluid flowing into the external shroud by a flow path forming member, and a perforated baffle plate is provided at the inlet of the parallel flow paths, the flow resistance of the primary fluid is reduced. A float that is displaceable by the perforated rectifying plate and cooperates with the perforated baffle plate to make the flow resistance of the inner flow path of the parallel flow path larger than the flow resistance of the outer flow path at low flow rates is provided at the entrance of the parallel flow path. A heat exchanger characterized by being provided in. 2. The heat exchanger according to claim 1, wherein the float is provided on the downstream side of the baffle plate in the inner flow path. 3. The heat exchanger according to claim 1, wherein the float is provided on the upstream side of the baffle plate in the outer flow path. 4. Claims 1, 2, or 4, in which the float is supported via a damper that does not respond to rapid repeated fluctuations in flow rate and displaces the float only to large fluctuations in flow rate. Heat exchanger according to item 3.
JP20065083A 1983-10-26 1983-10-26 Heat exchanger Granted JPS6093299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20065083A JPS6093299A (en) 1983-10-26 1983-10-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20065083A JPS6093299A (en) 1983-10-26 1983-10-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS6093299A true JPS6093299A (en) 1985-05-25
JPH0472159B2 JPH0472159B2 (en) 1992-11-17

Family

ID=16427925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20065083A Granted JPS6093299A (en) 1983-10-26 1983-10-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6093299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094022A (en) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp Induction heating coil, and induction-heating cooker
WO2014188623A1 (en) * 2013-05-24 2014-11-27 株式会社テイエルブイ Tube heat exchanger
CN104380004A (en) * 2012-05-25 2015-02-25 蒂埃尔威有限公司 Hot water generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094022A (en) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp Induction heating coil, and induction-heating cooker
CN104380004A (en) * 2012-05-25 2015-02-25 蒂埃尔威有限公司 Hot water generator
EP2857774A4 (en) * 2012-05-25 2016-03-23 Tlv Co Ltd Hot water generator
JPWO2014188623A1 (en) * 2012-05-25 2017-02-23 株式会社テイエルブイ Tube heat exchanger
US9897342B2 (en) 2012-05-25 2018-02-20 Tlv Co., Ltd. Hot water generator
WO2014188623A1 (en) * 2013-05-24 2014-11-27 株式会社テイエルブイ Tube heat exchanger

Also Published As

Publication number Publication date
JPH0472159B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
JP5759899B2 (en) Power generation module assembly, reactor module, and reactor cooling method
FI86468B (en) MEDICAL PROJECTORS AND WASHERS FOERTILLSLUTNINGSOEPPNINGARNA FOERSEDD KRANVENTIL.
CN204784862U (en) Large -traffic two accuse constant temperature case
US3776456A (en) Direct fired water heater thermal compensating dip tube
JPS6093299A (en) Heat exchanger
JPH0549076B2 (en)
CN105736824A (en) Labyrinth type regulating valve
SK92095A3 (en) Automatic recirculation value
CN116929463A (en) River water resource self-regulating flow detection mechanism
US3227372A (en) Heating and cooling system and valve means therefor
RU2514328C1 (en) Throttle control device
CN105551548A (en) Nuclear power plant equipment cooling water system and water temperature adjusting method therefor
US3120854A (en) Automatic fluid pressure equalizing assembly
FI90124B (en) BLADE SHEET AVAILABLE WITHOUT FITTING AT THE FOEREBYGGA TRYCKSTOET VID SLUTFASEN AV SPAKENS STAENGNINGSROERELSESE
JPS5666644A (en) Controlling device for temperature of forced circulation type bath unit
JP6502326B2 (en) System for conditioning liquid in circuit
GB1578837A (en) Shutoff valve
DE2525157A1 (en) COOLANT CIRCULATING PUMP SUCTIONING FROM A SUMP FOR THE PRIMARY COOLING CIRCUIT OF LIQUID METAL COOLED NUCLEAR REACTORS
US2832371A (en) Flow control valve
FI83563B (en) BLACKNINGSVENTIL MED RETARDATOR AV AVSTAENGNINGSROERELSE.
JPS6171392A (en) Nuclear reactor
FI71190B (en) STAENGNINGS- / OEPPNINGS- OCH REGLERINGSANORDNING FOER VAERME / KYL- / VAERMEVAEXLINGSSYSTEM MED INLOPPS- OCH RETURLEDNINGAR PAOVENTILANORDNINGENS TILLFOERSELSIDA OCH FOERBRUKNINGSSIDA
US2252492A (en) Automatic feed water regulator for steam boilers
CN208504757U (en) A kind of press-bearing water tank pressure equaliser
SU693863A1 (en) Loop-passage with circulation of heat carrier