JPS6092631A - Dielectric isolation type semiconductor integrated circuit - Google Patents
Dielectric isolation type semiconductor integrated circuitInfo
- Publication number
- JPS6092631A JPS6092631A JP20137983A JP20137983A JPS6092631A JP S6092631 A JPS6092631 A JP S6092631A JP 20137983 A JP20137983 A JP 20137983A JP 20137983 A JP20137983 A JP 20137983A JP S6092631 A JPS6092631 A JP S6092631A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- polycrystalline semiconductor
- conduction type
- single crystal
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76297—Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Bipolar Transistors (AREA)
- Element Separation (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は誘電体分離形半導体集積回路の構造に関するも
ので、特に高集積密度かつ安定な高耐圧半導体集積回路
を実現せしめる構造を提供するiとにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a dielectrically separated semiconductor integrated circuit, and in particular provides a structure that realizes a high integration density and stable high breakdown voltage semiconductor integrated circuit.
半導体集積回路(以下、ICという)の素子間分離の構
造の1つとしての誘電体分離は、最も広く普及している
PN接合分離に比較して、+11素子間分離が双方向型
であること、 (Il+絶縁耐圧が高いこと、(冊基板
へのDC的寄生電流リークが発生しないこと%(IV5
アイランドの抵抗率選択の自由度が大きいこと、等、高
耐圧化の点で明確に優れておシ、従って、その大きな応
用分野の1つとして、高耐圧IC分野を指向している。Dielectric isolation, which is one of the element isolation structures of semiconductor integrated circuits (hereinafter referred to as IC), has a +11 element isolation that is bidirectional compared to the most widely used PN junction isolation. , (Il+ dielectric strength voltage is high, (DC parasitic current leakage to the board does not occur)% (IV5
It is clearly superior in terms of high breakdown voltage, such as having a large degree of freedom in selecting the resistivity of the island, and therefore, one of its major application fields is the high breakdown voltage IC field.
周知のように、高耐圧IC分野では、大振幅な電流もし
くは信号の処理を回路に要求されることが多い。例えば
家電製品に多数使用されている交流上−夕の制御用高耐
圧ICが前者の例であシ、ベル信号を処理する電話交換
機加入者回路用集積回路形アクセススイッチは後者の例
である。その種の用途においては、誘電体分離構造が使
用され、素子間分離が双方向型であることよシ、基板は
従来、フロートの状態にされるか、もしくはアース電位
に固定されるかであった。本発明は発明者らが誘電体分
離形高耐圧ICの実用化研究を行っているなかで見い出
した実験的知見に基づいて為されたものである。以下、
従来の構造で発生する問題の状況と、それを解決する本
発明の原理、実施例について、図面に基づき詳細を説明
する。As is well known, in the field of high-voltage ICs, circuits are often required to process large-amplitude currents or signals. For example, high-voltage ICs for AC/DC control, which are used in many home appliances, are an example of the former, and integrated circuit type access switches for subscriber circuits of telephone exchanges that process bell signals are an example of the latter. In such applications, dielectric isolation structures are used and the isolation between devices is bidirectional, and the substrate is traditionally either left floating or fixed at ground potential. Ta. The present invention was made based on experimental knowledge discovered by the inventors while conducting research on the practical application of dielectrically separated high voltage ICs. below,
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Problems occurring in conventional structures, principles and embodiments of the present invention for solving the problems will be explained in detail with reference to the drawings.
第1図は、同一ペレット上の各部の半導体スイッチ(P
NPNスイッチ)の高温電圧印加試験(以下BT試験と
呼ぶ)時の13Tバイアス方向とPNPNスイッチの劣
化が発生した方向を対応させた実験結果を示した一覧宍
である。第1図で順方向とは、PNPNスイッチおける
アノードからカソードへの方向であシ、逆方向とはその
逆のことである。またここで云う劣化の発生とは、電流
10μAで測定した耐圧が下落したとの意味で別の調査
(電流−電圧特性の測定)から、ここで劣化はブレーク
オーバー電圧の下落ではなく、リーク電流が増加したも
のであることが判明している。第1図の実験結果で注目
されるべきは劣化の発生がBTバイアスの方向によらず
、順方向側で発生していることである。Figure 1 shows the semiconductor switches (P
This is a list showing experimental results in which the 13T bias direction during a high temperature voltage application test (hereinafter referred to as BT test) of a PNPN switch (NPN switch) corresponds to the direction in which deterioration of the PNPN switch occurs. In FIG. 1, the forward direction is the direction from the anode to the cathode in the PNPN switch, and the reverse direction is the opposite. Furthermore, the occurrence of deterioration referred to here means that the withstand voltage as measured at a current of 10 μA has decreased, and from another investigation (measuring the current-voltage characteristics), the deterioration here is not a decrease in breakover voltage, but rather a decrease in leakage current. It has been found that there has been an increase in What should be noted in the experimental results shown in FIG. 1 is that the deterioration occurs on the forward direction side, regardless of the direction of the BT bias.
BT試験における劣化についての今一つの実験的知見は
、第2図に示すようにPNPNスイッチの順方向側耐圧
の温度特性がBT試験により大幅に劣化していることで
ある。耐圧の温度特性と、N+埋込層との密接な関係は
、例えば「高耐圧加入者回路LSIの信頼性」(森正道
他電子通信学会技術研究報告R83−19)の第44頁
〜第45頁に記載されている通シであり、発明者らが行
った上記実験の温度特性の劣化の態様も極めて、上記文
献の記載の現象と類似してお5.N 埋込層と関連して
いるものと考えられる。Another experimental finding regarding the deterioration in the BT test is that the temperature characteristics of the forward breakdown voltage of the PNPN switch are significantly deteriorated by the BT test, as shown in FIG. The close relationship between the temperature characteristics of withstand voltage and the N+ buried layer is described, for example, in "Reliability of High Voltage Subscriber Circuit LSI" (Masamichi Mori et al., Institute of Electronics and Communication Engineers Technical Research Report R83-19), pages 44 to 45. The manner of deterioration of the temperature characteristics in the above experiment conducted by the inventors is also extremely similar to the phenomenon described in the above literature. N This is thought to be related to the buried layer.
第3図は、BT試験時の順方向バイアスおよび逆方向バ
イアスされたスイッチの状態を示したものである。IC
の構造は、多結晶半導体l中に5ins膜2で隔離され
た素子領域を多数有しておシ、各素子領域にはそれぞれ
PNPNスイッチ50゜60としてのサイリスクが形成
されている。まず順方向バイアスのスイッチ50におい
ては、BT試験時、7ノードAに最高電位が、カソード
Kには、最低電位もしくは、アース電位が印加され。FIG. 3 shows the states of the forward biased and reverse biased switches during the BT test. IC
The structure has a large number of element regions separated by 5-ins films 2 in a polycrystalline semiconductor l, and each element region is formed with a silicon risk as a PNPN switch 50° and 60°. First, in the forward bias switch 50, during the BT test, the highest potential is applied to the 7 node A, and the lowest potential or the ground potential is applied to the cathode K.
A−に間電圧はPゲー)−N−アイランド間の接合に図
中水したように空乏層3を発生し、そこにほとんど全て
が印加される。その状態ではN−アイランドの電位はt
lぼアノード電位(ペレット内は、分離5ins膜2中
の可動イオンはBT試験で図中の矢印の方向(Nアイラ
ンド側から多結晶半導体基板0111へ。但し、■イオ
ンのとき。Oイオンは逆方向)ヘトリフト(バイアスに
よシ移動すること)する。A depletion layer 3 is generated at the junction between the A- and N- islands as shown in the figure, and almost all of the voltage is applied there. In that state, the potential of N-island is t
1 anode potential (within the pellet, separated for 5 ins) The mobile ions in the membrane 2 are moved in the direction of the arrow in the figure (from the N island side to the polycrystalline semiconductor substrate 0111 in the BT test. However, when the ions are ■, the O ions are in the opposite direction) (direction) to lift (to move with a bias).
また逆方向バイアスのスイッチ60においても、N−ア
イランドの電位は、はぼカソード電位(ペレット内の最
高電位)と同じであシ、多結晶半導体基板がフロート(
浮遊状態)もしくは、アース電位に固定されている従来
の構造では、分離5i01膜2中の可動イオンは、BT
試験で、図中の矢印の方向(N−アイランド側から基板
側へ0■イオンのとき。)へドリフトする。Also, in the reverse bias switch 60, the potential of the N-island is the same as the cathode potential (the highest potential in the pellet), and the polycrystalline semiconductor substrate is floating (
In the conventional structure, which is fixed at ground potential (floating state) or fixed at ground potential, the mobile ions in the separation 5i01 membrane 2 are
In the test, the ion drifts in the direction of the arrow in the figure (from the N-island side to the substrate side when the 0■ ion is present).
上の説明から明らかな如く、分離8i0.膜2中の可動
イオンがドリフトする方向はBT試験時PNPNスイッ
チに印加するバイアスの方向の如何を問わず同一方向で
あシ、正電荷について云えばN−アイランド側から多結
晶半導体基板側ヘトリフトさせる方向である。そのドリ
フトによfiNアイランド(N+埋込層表面部)の結晶
表面に引き寄せられていた自由電子は、結晶内部へ追い
やられる。第4図は、その様態を示したものである。As is clear from the above description, the separation 8i0. The direction in which the mobile ions in the film 2 drift is the same regardless of the direction of the bias applied to the PNPN switch during the BT test, and in terms of positive charges, they drift from the N-island side to the polycrystalline semiconductor substrate side. It is the direction. Due to the drift, free electrons that have been attracted to the crystal surface of the fiN island (surface portion of the N+ buried layer) are driven into the interior of the crystal. FIG. 4 shows this aspect.
すなわち、N+埋込層の実効的濃度プロファイルが分離
Sin、膜中の可能イオンのドリフトで影響される様子
を示したものである。That is, it shows how the effective concentration profile of the N+ buried layer is affected by the drift of possible ions in the isolated Sin film.
BT試験で変動する、分離8 i 02−8 i界面の
表面電荷量は発明者らの一1ull定によれば1010
〜tollq−cIrL−2程度であシ、N+埋込層表
面濃度10110l6” 程度に十分影響を与える爺で
ある。N 埋込層表面濃度がl Q” cIrL−”
になっている理由は、N+埋込層にはアンチモン(sb
)、ヒ素(As )等拡散定数の小さな不純物が使用さ
れているがそれでも、分離Sin、膜の形成、多結晶半
導体の形成阻止PN接合の形成に加えられる熱処理で熱
拡散が生じ、N+埋込層がN−アイランド厚さを減少さ
せる量を抑えることと、N+埋込層表面部分と高耐圧阻
止PN接合からの引き出し配線との交叉点で電界集中が
発生し、ブレークオーバー電圧を低下させる現象を緩和
するために、ドーピング(添加)する不純物量に制限が
6D、そのために、上述したように比較的低い表面濃度
に抑えられている。The surface charge amount of the separated 8i 02-8i interface, which varies in the BT test, is 1010 according to the inventors'
~tollq-cIrL-2, which has a sufficient effect on the N+ buried layer surface concentration of 10110 l6''.
The reason for this is that the N+ buried layer contains antimony (sb
), arsenic (As), and other impurities with small diffusion constants are used, but even so, thermal diffusion occurs during the heat treatment applied to the formation of isolated Si, film, and formation of polycrystalline semiconductor formation-blocking PN junctions. The phenomenon of suppressing the amount by which the layer reduces the N- island thickness and reducing the breakover voltage due to electric field concentration occurring at the intersection between the surface portion of the N+ buried layer and the lead wire from the high voltage blocking PN junction. In order to alleviate this, there is a limit of 6D on the amount of impurities to be doped (added), and therefore the surface concentration is kept to a relatively low level as described above.
BT試験による劣化に対する技術的対策には二つの方法
がある。1つは、N 埋込層の表面濃度を表面電荷量の
変動が影響しないレベルまで高めることである。そのた
めには、Nバルク(単結晶)をよシ厚<シ、上述したN
埋込層表面部と引き出し配線との交叉点で起こるロー
カルブレークダウンを技術的に克服することが必要であ
る。There are two methods for technical countermeasures against deterioration caused by BT testing. One is to increase the surface concentration of the N 2 buried layer to a level where fluctuations in surface charge do not affect it. For this purpose, the N bulk (single crystal) must be made thicker than the above-mentioned N
It is necessary to technically overcome the local breakdown that occurs at the intersection between the buried layer surface and the lead wiring.
今、一つの方法は、劣化の原因が分@ 8 i 0.膜
中の可動イオンのNバルク(N−アイランド十N+埋込
層)表面を空乏(デプレッ7目ン)化する方向へのドリ
フトに起因している点に対する技術的対策である。分離
Sin、膜中の可動イオン量をプロセス上、低減もしく
は不活性化することも勿論有効な技術的対策ではあるが
、多結晶半導体基板の動作時(BT試験時も含む)の電
位を最高電位付近に高め、ペレット内のいかなるNバル
クともNバルク表面がデプレック璽ン化する方向のバイ
アスを分離Sin、膜に印加せしめなくすることでも上
記のBT劣化を克服することができる。Now, one method is to determine the cause of the deterioration. This is a technical countermeasure against the problem caused by the drift of mobile ions in the film in the direction of depleting (depleting) the surface of the N bulk (N− island + N+ buried layer). Of course, reducing or inactivating the amount of mobile ions in the separated Sin film during the process is an effective technical measure, but the potential during operation of the polycrystalline semiconductor substrate (including during BT testing) is the highest potential. The above-mentioned BT deterioration can also be overcome by increasing the bias voltage to the separation sinus film and not applying a bias in the direction of depleting the N bulk surface to any N bulk in the pellet.
本発明は、まさに徒者の点に着目して、BT劣化のない
誘電体分離形半導体集積回路を得たものである。The present invention focuses on the disadvantages of the novice and provides a dielectrically isolated semiconductor integrated circuit without BT deterioration.
以下、実施例に基づき本発明の原理と構造について説明
する。Hereinafter, the principle and structure of the present invention will be explained based on examples.
第5図は1本発明の実施例を示す断面図である。FIG. 5 is a sectional view showing an embodiment of the present invention.
すなわち、多結晶半導体基板11の主表面側に誘電体分
離膜i2(実施例の場合は、2〜3μmの8i0.膜)
で、電気的に絶縁分離されて形成さ・れた複数筒の第1
導電形(実施例の場合は、N形)単結晶半導体13(実
施例の場合は、抵抗率lO〜30Ω−儂、厚さ30〜6
0μmである)を形成する。That is, on the main surface side of the polycrystalline semiconductor substrate 11, a dielectric isolation film i2 (in the example, an 8i0. film of 2 to 3 μm) is provided.
The first of the plurality of cylinders is electrically insulated and separated.
Conductivity type (N type in the case of the example) single crystal semiconductor 13 (in the case of the example, resistivity 1O~30Ω-I, thickness 30~6
0 μm).
この単結晶半導体13の底面部および側面部には第1導
電形高濃度埋込層14が設けられている。A first conductivity type high concentration buried layer 14 is provided on the bottom and side surfaces of this single crystal semiconductor 13.
実施例においては、この第1導電形高濃度埋込層14の
形成には、アンチモン(sb)もしくはヒ素(As)等
N形で拡散定数の小さな不純物が使用された。ドーピン
グ(添加)濃度は、7X10”〜5X1016cIrL
−3 程度である。主表面には、表面絶縁膜15が被覆
され、この表面絶縁膜15をマスクにした選択拡散法に
よシ第2導電形拡散層168゜16b、および第1導電
形拡散層17が形成されている。実施例においては、拡
散層16aおよび16bの形成には、ボロンを゛不純物
として、深さ2〜10μmに拡散して偏成した。、また
、拡散層17の形成には、リンを不純物として、深さ0
.5〜3μmに拡散して形成した。金属配線18aおよ
び18bによシ所定の電気的接続を行ない完成している
。In the embodiment, an N-type impurity having a small diffusion constant, such as antimony (sb) or arsenic (As), was used to form the first conductivity type high concentration buried layer 14. Doping concentration is 7X10"~5X1016cIrL
It is about -3. The main surface is covered with a surface insulating film 15, and a second conductivity type diffusion layer 168° 16b and a first conductivity type diffusion layer 17 are formed by a selective diffusion method using the surface insulating film 15 as a mask. There is. In the embodiment, the diffusion layers 16a and 16b were formed by diffusing and polarizing boron as an impurity to a depth of 2 to 10 μm. , In addition, in forming the diffusion layer 17, phosphorus is used as an impurity to form the diffusion layer 17 at a depth of 0.
.. It was formed by spreading to 5 to 3 μm. Predetermined electrical connections are made using metal wirings 18a and 18b to complete the process.
本実施例の場合、金属配線18a、および18bには厚
さ1〜3μmのアルミニウム薄膜を加工したものを使用
している。また、金属配線18a、18b゛1 。TM
Kカ、工emい、511Cu−f!l。1.。、7〜2
5μmの5i02膜を使用している。金属配線18aお
よび18bは、それぞれ第5図に示したよりにダイオー
ドのアノードおよびカソードにオーミック接続されてい
る。また金属配線18aは回路動作時ペレットの中(回
路の中と云ってもよい)で最高電位なる機会のある配線
に接続されている。In the case of this embodiment, processed aluminum thin films with a thickness of 1 to 3 μm are used for the metal wirings 18a and 18b. Further, metal wirings 18a and 18b'1. TM
Kka, work em, 511Cu-f! l. 1. . , 7-2
A 5 μm 5i02 film is used. Metal lines 18a and 18b are ohmically connected to the anode and cathode of the diode, respectively, as shown in FIG. Further, the metal wiring 18a is connected to a wiring that has a chance of reaching the highest potential within the pellet (or may be called inside the circuit) during circuit operation.
さらに金属配線18bは、多結晶半導体基板11へ拡散
層16bを介してオーミック接続されている0
第5図に示したダイオードについてさらに説明するなら
ば、このダイオ−、ドは、他の高耐圧回路素子と同じく
、高耐圧設計でなければならない。Furthermore, the metal wiring 18b is ohmically connected to the polycrystalline semiconductor substrate 11 via the diffusion layer 16b.To further explain the diode shown in FIG. Like the element, it must be designed with high voltage resistance.
但し、流す電流は極めて小さいので最小サイズのもので
よい。However, since the current to flow is extremely small, the smallest size may be sufficient.
次に本発明の効果について説明すると、大伽幅信号を導
通せしめる配線(すなわち最高電位になる機会の配線)
の1部を高耐圧阻止能力を有するダイオードを介して、
多結晶半導体基板11へ接続せしめているために、多結
晶半導体基板11が回路動作中(BT試験時を含む)、
はぼ最高電位にされておシ、ベレット内のいかなる第1
導電形単結晶半導体130表面にもデプレツン百ン(空
乏)化を発生しない。そのために1回路動作を安定にす
ることができ、第1導電形高濃度埋込層の不純物濃度も
無理して高める必要もなくなシ高密度集積化がその分や
シ易くなシ、本発明の効果は明らかである。Next, to explain the effects of the present invention, the wiring that makes the wide signal conductive (that is, the wiring that has the opportunity to reach the highest potential)
Through a diode with high voltage blocking ability,
Since it is connected to the polycrystalline semiconductor substrate 11, the polycrystalline semiconductor substrate 11 is in circuit operation (including during BT testing),
When the bullet is at its highest potential, any first
Depletion does not occur on the surface of the conductive single crystal semiconductor 130 either. Therefore, the operation of one circuit can be stabilized, there is no need to forcibly increase the impurity concentration of the first conductivity type high-concentration buried layer, and high-density integration is made easier. The effect is obvious.
最後に本発明の主旨からして、第1導電形単結晶半導体
13を実施例のようにN形に限る必要はなく、P形でも
実施可能である。その場合は、第5図のダイオードの電
流方向が逆になシ、金属配線isaは、回路動作中最低
電位になる機会のある配線と接続され、回路動作中、多
結晶半導体基板は最低電位に保持されることになる。Finally, in view of the gist of the present invention, the first conductivity type single crystal semiconductor 13 need not be limited to N type as in the embodiments, but may also be implemented as P type. In that case, the current direction of the diode shown in Figure 5 must be reversed, and the metal wiring isa is connected to the wiring that has a chance of being at the lowest potential during circuit operation, and the polycrystalline semiconductor substrate is at the lowest potential during circuit operation. will be retained.
第1図は、同一ペレット上の各部のスイッチのBTバイ
アス方向と劣化発生の方向を対応させた実験結果を示す
一覧表である。第2図は、BT試験前後の耐圧の温度依
存性を示す実験データである。第3図は、BT試験時の
順方向および逆方向バイアス時の従来の半導体集積回路
の状態を示した断面図である。第4図は、N+埋埋込層
用Nプロファイル分離8i0.膜中の可動イオンのドリ
フトで影響される様子を示す説明図である。第5図は本
発明の一実施例を示す断面図である。
11・・・・・・多結晶半導体基板、12・・・・・・
誘電体分離薄膜、13・・・・・・第1導電形単結晶半
導体、14・・・・・・第1導電形高濃度埋込層、15
・・・・・・表面絶縁膜、16a、16b・・・・・・
第2導電形拡散層、17・・・・・・第1導電形拡散層
、18a、i8b・・・・・・金属配線。
率1 図
θ 、fQ 1(k) /67) 200羞准〔・C〕FIG. 1 is a table showing experimental results in which the BT bias direction of the switches of each part on the same pellet corresponds to the direction of occurrence of deterioration. FIG. 2 shows experimental data showing the temperature dependence of breakdown voltage before and after the BT test. FIG. 3 is a cross-sectional view showing the state of a conventional semiconductor integrated circuit during forward and reverse bias during a BT test. FIG. 4 shows N profile separation 8i0. for N+ buried layer. FIG. 3 is an explanatory diagram showing how the film is affected by the drift of mobile ions in the film. FIG. 5 is a sectional view showing an embodiment of the present invention. 11... Polycrystalline semiconductor substrate, 12...
Dielectric isolation thin film, 13...first conductivity type single crystal semiconductor, 14...first conductivity type high concentration buried layer, 15
...Surface insulating film, 16a, 16b...
Second conductivity type diffusion layer, 17...First conductivity type diffusion layer, 18a, i8b...Metal wiring. Rate 1 Figure θ, fQ 1(k) /67) 200 Shyness [・C]
Claims (1)
縁分離されて形成された複数筒の第1導電形単結晶半導
体領域を有し、各半導体領域に形成された各回路構成素
子を金属配線で接続した誘電体分離形半導体集積回路に
おいて、大振幅信号を導通せしめる配線をダイオードを
介して前記多結晶半導体基板へ接続したことを特徴とす
る誘電体分離形半導体集積回路。A polycrystalline semiconductor substrate has a plurality of first conductivity type single crystal semiconductor regions electrically insulated and separated by a dielectric thin film on the main surface side thereof, and each circuit component formed in each semiconductor region. 1. A dielectrically isolated semiconductor integrated circuit connected by metal wiring, characterized in that a wiring for conducting a large amplitude signal is connected to the polycrystalline semiconductor substrate via a diode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20137983A JPS6092631A (en) | 1983-10-27 | 1983-10-27 | Dielectric isolation type semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20137983A JPS6092631A (en) | 1983-10-27 | 1983-10-27 | Dielectric isolation type semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6092631A true JPS6092631A (en) | 1985-05-24 |
Family
ID=16440096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20137983A Pending JPS6092631A (en) | 1983-10-27 | 1983-10-27 | Dielectric isolation type semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6092631A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632350A (en) * | 1986-06-20 | 1988-01-07 | Fujitsu Ltd | Manufacture of semiconductor device |
EP0596414A2 (en) * | 1992-11-06 | 1994-05-11 | Hitachi, Ltd. | Semiconductor integrated circuit device comprising a dielectric isolation structure |
-
1983
- 1983-10-27 JP JP20137983A patent/JPS6092631A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632350A (en) * | 1986-06-20 | 1988-01-07 | Fujitsu Ltd | Manufacture of semiconductor device |
EP0596414A2 (en) * | 1992-11-06 | 1994-05-11 | Hitachi, Ltd. | Semiconductor integrated circuit device comprising a dielectric isolation structure |
EP0596414A3 (en) * | 1992-11-06 | 1997-10-15 | Hitachi Ltd | Semiconductor integrated circuit device comprising a dielectric isolation structure. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6229180B1 (en) | MOS type semiconductor apparatus | |
US3555374A (en) | Field effect semiconductor device having a protective diode | |
US5248892A (en) | Semiconductor device provided with a protection circuit | |
US6921931B2 (en) | Electrostatic discharge protection element | |
US3999212A (en) | Field effect semiconductor device having a protective diode | |
US4631562A (en) | Zener diode structure | |
US2795742A (en) | Semiconductive translating devices utilizing selected natural grain boundaries | |
CN104183578A (en) | Semiconductor Component with Integrated Crack Sensor and Method for Detecting a Crack in a Semiconductor Component | |
US4829344A (en) | Electronic semiconductor device for protecting integrated circuits against electrostatic discharges | |
CN109698231B (en) | Semiconductor device and method of manufacture | |
US6914270B2 (en) | IGBT with PN insulation and production method | |
US2994811A (en) | Electrostatic field-effect transistor having insulated electrode controlling field in depletion region of reverse-biased junction | |
US4651178A (en) | Dual inverse zener diode with buried junctions | |
US3564355A (en) | Semiconductor device employing a p-n junction between induced p- and n- regions | |
JPS61220371A (en) | Mos type integrated circuit device on insulating substrate | |
JPS6092631A (en) | Dielectric isolation type semiconductor integrated circuit | |
US6208011B1 (en) | Voltage-controlled power semiconductor device | |
US5608236A (en) | Semiconductor device | |
US3649885A (en) | Tetrode mosfet with gate safety diode within island zone | |
US9698139B1 (en) | Integrated circuits with electrostatic discharge protection | |
US11201144B2 (en) | Electrostatic discharge handling for sense IGBT using Zener diode | |
KR102539366B1 (en) | Electrostatic discharge handling for sense igbt using zener diode | |
US20230261040A1 (en) | Semiconductor device including substrate layer with floating base region and gate driver circuit | |
US20230395590A1 (en) | Integrated circuit structures with conductive pathway through resistive semiconductor material | |
JPS59110132A (en) | Semiconductor integrated circuit device having dielectric isolation structure |