JPS6092461A - Power metallurgical method of metallic compound - Google Patents

Power metallurgical method of metallic compound

Info

Publication number
JPS6092461A
JPS6092461A JP58200341A JP20034183A JPS6092461A JP S6092461 A JPS6092461 A JP S6092461A JP 58200341 A JP58200341 A JP 58200341A JP 20034183 A JP20034183 A JP 20034183A JP S6092461 A JPS6092461 A JP S6092461A
Authority
JP
Japan
Prior art keywords
powder
substrate
metal
sprayed
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58200341A
Other languages
Japanese (ja)
Other versions
JPS6155588B2 (en
Inventor
Suketsugu Enomoto
祐嗣 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58200341A priority Critical patent/JPS6092461A/en
Publication of JPS6092461A publication Critical patent/JPS6092461A/en
Publication of JPS6155588B2 publication Critical patent/JPS6155588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Abstract

PURPOSE:To form a metallic compd. material which is densely and finely crystallized by converting metallic powder together with a reactive gas to plasma by plasma spraying method and spraying thermally and depositing the metallic powder on a substrate then heating the substrate to melt and metallic powder by laser light and cooling quickly the molten powder. CONSTITUTION:Metallic powder (for example, titanium) is supplied through a powder supply port 2 and a reactive gas (for example, gaseous nitrogen) which combines with a metal is supplied through a carrier gas feed path 3 then a high voltage is impressed between a cathode 4a and an anode 4b to convert the carrier gas to plasma by arc discharge with a plasma spraying device 1. The metallic powder is then heated to melt and is sprayed and deposited on a substrate 5. High-output laser light 8 is focused by a lens 9 and is irradiated to the deposited metallic part to melt thoroughly the metallic powder by which the combination with the reactive gas is accelerated. The thermally sprayed part of the substrate 5 is cooled from the rear by the cooling water supplied to the jacket 10.

Description

【発明の詳細な説明】 本発明は、金属化合物の粉末冶金法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to powder metallurgy of metal compounds.

従来から知られているプラズマ溶射法は、金属粉末をキ
ャリアガスと共にアーク放電によってプラズマ化し、基
板上に溶射、堆積させるものであるが、このプラズマ溶
射法によって金属粉末を溶射した場合、その金属粉末の
中心部は未溶融のままで溶射堆積し、そのため溶射膜は
粒径の大きい金属粉末を含み、空孔が多いものとなる。
In the conventionally known plasma spraying method, metal powder is turned into plasma by arc discharge together with a carrier gas, and then sprayed and deposited on the substrate. The central part of the metal is deposited by thermal spraying while remaining unmolten, and the thermally sprayed film therefore contains metal powder with a large particle size and has many pores.

本発明は、上記金属粉末の溶融なレーザ加熱により一層
促進させると同時にその溶融金属をアーク放電により活
性化した反応性カスと接触させて所期の金属化合物材を
生成させるようにした粉末冶金法を提供しようとするも
のである。
The present invention provides a powder metallurgy method in which a desired metal compound material is produced by further accelerating the melting of the metal powder by laser heating and at the same time bringing the molten metal into contact with reactive scum activated by arc discharge. This is what we are trying to provide.

かかる目的を達成するため、本発明の粉末冶金法は、金
属粉末をキャリアガスと共にアーク放電によってプラズ
マ化し、基板」二に溶射、堆積させるプラズマ溶射法に
おいて、上記キャリアカスを溶射すべき金属と化合して
金属化合物材を生成する反応性ガスとし、上記金属粉末
の堆積部分に高出力レーザ光を照射して溶射膜を急速に
加熱溶融させながら、それを上記反応性ガスと化合させ
、ついでその部分を急冷して稠密で微細結晶化した金属
化合物材を生成させるものである。
In order to achieve this object, the powder metallurgy method of the present invention combines the carrier residue with the metal to be sprayed in a plasma spraying method in which metal powder is turned into plasma by arc discharge together with a carrier gas, and then sprayed and deposited on a substrate. The deposited part of the metal powder is irradiated with a high-power laser beam to rapidly heat and melt the sprayed film, and is combined with the reactive gas to form a metal compound material. The part is rapidly cooled to produce a dense, finely crystallized metal compound material.

以下に図面を参照して未発1jlの方法をさらに其体的
に説明する。
The method of unreleased 1jl will be further explained below with reference to the drawings.

本発明の粉末冶金法は、従来から知られているプラズマ
溶射技術を利用し、そのキャリアガスとして反応性ガス
を用いると共に、高出力レーザ光によって金属粉末の堆
積部分を照射するものであり、そのため第1図に示すよ
うな公知のプラズマ溶射装置1をそのまま利用すること
ができる。
The powder metallurgy method of the present invention utilizes a conventionally known plasma spraying technique, uses a reactive gas as a carrier gas, and irradiates the deposited area of metal powder with a high-power laser beam. A known plasma spraying apparatus 1 as shown in FIG. 1 can be used as is.

上記プラズマ溶射装置1は、金属粉末供給口2から溶射
すべき金属粉末を供給すると共に、キャリアガス送給路
3に反応性ガスを供給しながら、陰極4aと陽極4bと
の間に高電圧を印加してアーク放電によりキャリアカス
をプラズマ化し、それによって金属粉末を加熱溶融させ
、それを基板5上に溶射、堆積させるものである。この
ようなプラズマ溶射装置lにおいて、従来はキャリアガ
スとして金属粉末と反応しないものを用いるのが一般的
であるが、本発明においては、このキャリアガスとして
金属と積極的に反応する反応性ガスを用い1例えば金属
粉末としてチタンを用いた場合。
The plasma spraying apparatus 1 supplies metal powder to be sprayed from a metal powder supply port 2, and also applies a high voltage between a cathode 4a and an anode 4b while supplying a reactive gas to a carrier gas supply path 3. The carrier scum is turned into plasma by arc discharge, thereby heating and melting the metal powder, which is sprayed and deposited on the substrate 5. Conventionally, in such a plasma spraying apparatus, a carrier gas that does not react with the metal powder is generally used, but in the present invention, a reactive gas that actively reacts with the metal is used as the carrier gas. Use 1 For example, when titanium is used as the metal powder.

反応性ガスとして窒素ガスを用い、基板5に窒化チタン
の溶射lI8を生成させる。
Using nitrogen gas as a reactive gas, a sprayed titanium nitride lI8 is generated on the substrate 5.

なお、溶融状態にある金属粉末は上記反応性ガス雰囲気
におくことが必要である。このため、装置全体を圧力調
整可能な容器11内に置き1反応ガスの圧力を調整でき
るようにすることが望ましい。
Note that it is necessary to place the metal powder in a molten state in the above-mentioned reactive gas atmosphere. For this reason, it is desirable to place the entire apparatus in a pressure-adjustable container 11 so that the pressure of one reaction gas can be adjusted.

上記溶射膜@lによって溶射する場合、金属粉末の中心
部が未溶融のままで溶射堆積することになる。そこで、
金属粉末が堆積する部分に図示しないレーザ光源からの
高出力レーザ光8をレンズ8により集束して照射し、こ
れによって金属粉末を完全に溶融させる。
In the case of thermal spraying using the above-mentioned thermal spray film @l, the central part of the metal powder is deposited by thermal spraying while remaining unmelted. Therefore,
A high-power laser beam 8 from a laser light source (not shown) is focused and irradiated with a lens 8 onto the portion where the metal powder is deposited, thereby completely melting the metal powder.

このようにして金属粉末を完全に溶融させると、反応性
ガスとの化合が促進せしめられ、基板5上には金属化合
物材の溶射膜6が生成される。
When the metal powder is completely melted in this manner, its combination with the reactive gas is promoted, and a sprayed film 6 of the metal compound material is formed on the substrate 5.

この金属化合物材の溶射膜8をそのまま徐冷すると、結
晶が成長するが、それを急冷することにより、アモルフ
ァスまたは結晶粒が微細な状態で凝結し1機械的性質の
すぐれた金属化合物材の溶射膜が生成される。そのため
、溶射膜8を直ちに冷却するが、その冷却1段としては
、図示したように基板5の溶射部分をその背後から水冷
ジャケットlOに供給した冷却水により冷却したり、あ
るいは冷風を吹きつける等の方法を用いることができる
If the thermal sprayed coating 8 of the metal compound material is allowed to cool as it is, crystals will grow, but by rapidly cooling it, the amorphous or crystal grains will condense in a fine state. A film is produced. Therefore, the thermal sprayed film 8 is immediately cooled, and the first stage of cooling may include cooling the thermally sprayed portion of the substrate 5 with cooling water supplied from behind to the water cooling jacket 1O, as shown in the figure, or blowing cold air. The following method can be used.

また、wS2図に示すように、管状の基板15上に溶射
膜を生成させる場合には、その管状基板15内に冷却水
を流通させることもできる。
Further, as shown in Fig. wS2, when a sprayed film is to be formed on a tubular substrate 15, cooling water can also be made to flow within the tubular substrate 15.

このような本発明の方法によれば、プラズマ溶射法によ
って溶射した金属粉末を高出力レーザ光によって照射し
、その金属粉末を中心部まで完全に溶融させるようにし
ているので、従来のプラズマ溶射法による溶射膜のよう
に、多くの気孔を含むようなことがなく、しかも粉末金
属が十分な溶融により反応性ガスと反応し易くなって1
両者の反応が十分に促進せしめられる。また、堆積した
金属化合物材の溶射膜の急冷によって、その金属化合物
の結晶が微細化またはアモルファス化され、機械的性質
のすぐれた金属化合物材の溶射膜を得ることができる。
According to the method of the present invention, the metal powder sprayed by the plasma spraying method is irradiated with a high-power laser beam to completely melt the metal powder to the center, which is different from the conventional plasma spraying method. It does not contain many pores like sprayed coatings do, and the powder metal melts sufficiently to easily react with reactive gases.
Both reactions are sufficiently promoted. Furthermore, by rapidly cooling the deposited sprayed film of the metal compound material, the crystals of the metal compound are made fine or amorphous, and a sprayed film of the metal compound material with excellent mechanical properties can be obtained.

さらに、上記粉末金属はアーク放電によってすでにある
程度溶融しているので、レーザ光のノくワー密度を格別
大きなものとする必要はなI/%。
Furthermore, since the powder metal has already been melted to some extent by arc discharge, there is no need to make the laser beam's powder density particularly high (I/%).

而して、窒化チタン等のように、従来は蒸着によって非
常に薄い膜しか形成できないものを1本発明の方法によ
れば、比較的厚u%溶射膜として得ることができる。
According to the method of the present invention, materials such as titanium nitride, which conventionally could only be formed as a very thin film by vapor deposition, can be obtained as a relatively thick thermal sprayed film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の異なる実施状態を示す説明
図である。 5・・基板、 6・・溶射膜、 8・・高出力レーザ光。
FIGS. 1 and 2 are explanatory diagrams showing different implementation states of the present invention. 5. Substrate, 6. Sprayed film, 8. High output laser beam.

Claims (1)

【特許請求の範囲】[Claims] 1、金属粉末をキャリアガスと共にアーク放電によって
プラズマ化し、基板上に溶射、堆積させるプラズマ溶用
法において、上記キャリアガスを溶射すべき金属と化合
して金属化合物材を生成する反応性ガスとし、」二記金
属粉末の堆積部分に高出力レーザ光を照射して溶射膜を
急速に加熱溶融させながら、それを上記反応性ガスと化
合させ、ついでその部分を急冷して稠密で微細結晶化し
た金属化合物材を生成させることを特徴とする金属化合
物の粉末冶金法。
1. In a plasma melting method in which metal powder is turned into plasma by arc discharge together with a carrier gas, and sprayed and deposited on a substrate, the carrier gas is used as a reactive gas that combines with the metal to be sprayed to produce a metal compound material, 2. High-power laser light is irradiated onto the deposited area of the metal powder to rapidly heat and melt the sprayed film, which is then combined with the above-mentioned reactive gas, and then the area is rapidly cooled to form a dense, finely crystallized metal. A powder metallurgy method for metal compounds characterized by producing a compound material.
JP58200341A 1983-10-26 1983-10-26 Power metallurgical method of metallic compound Granted JPS6092461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200341A JPS6092461A (en) 1983-10-26 1983-10-26 Power metallurgical method of metallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200341A JPS6092461A (en) 1983-10-26 1983-10-26 Power metallurgical method of metallic compound

Publications (2)

Publication Number Publication Date
JPS6092461A true JPS6092461A (en) 1985-05-24
JPS6155588B2 JPS6155588B2 (en) 1986-11-28

Family

ID=16422673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200341A Granted JPS6092461A (en) 1983-10-26 1983-10-26 Power metallurgical method of metallic compound

Country Status (1)

Country Link
JP (1) JPS6092461A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221752A2 (en) * 1985-10-29 1987-05-13 Toyota Jidosha Kabushiki Kaisha High energy padding method utilizing coating containing copper
US4981716A (en) * 1988-05-06 1991-01-01 International Business Machines Corporation Method and device for providing an impact resistant surface on a metal substrate
EP0922786A2 (en) 1997-11-25 1999-06-16 Fuji Kihan Co., Ltd. Ceramic coated product, and method for forming the ceramic coated product
WO2003087422A1 (en) * 2002-04-12 2003-10-23 Sulzer Metco Ag Plasma injection method
KR100489596B1 (en) * 2002-10-15 2005-05-16 주식회사 아이엠티 Apparatus for plasma surface treatment of materials
CN102277552A (en) * 2010-06-09 2011-12-14 上海工程技术大学 Metal surface treatment method employing arc-plasma spraying-laser remelting
JP2012136782A (en) * 2012-04-16 2012-07-19 Tocalo Co Ltd Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221752A2 (en) * 1985-10-29 1987-05-13 Toyota Jidosha Kabushiki Kaisha High energy padding method utilizing coating containing copper
US4981716A (en) * 1988-05-06 1991-01-01 International Business Machines Corporation Method and device for providing an impact resistant surface on a metal substrate
EP0922786A2 (en) 1997-11-25 1999-06-16 Fuji Kihan Co., Ltd. Ceramic coated product, and method for forming the ceramic coated product
EP0922786A3 (en) * 1997-11-25 2001-04-25 Fuji Kihan Co., Ltd. Ceramic coated product, and method for forming the ceramic coated product
US6482467B2 (en) 1997-11-25 2002-11-19 Fuji Kihan Co., Ltd. Ceramic coated product, and method for forming the ceramic coated product
WO2003087422A1 (en) * 2002-04-12 2003-10-23 Sulzer Metco Ag Plasma injection method
US7678428B2 (en) 2002-04-12 2010-03-16 Sulzer Metco Ag Plasma spraying method
KR100489596B1 (en) * 2002-10-15 2005-05-16 주식회사 아이엠티 Apparatus for plasma surface treatment of materials
CN102277552A (en) * 2010-06-09 2011-12-14 上海工程技术大学 Metal surface treatment method employing arc-plasma spraying-laser remelting
JP2012136782A (en) * 2012-04-16 2012-07-19 Tocalo Co Ltd Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating

Also Published As

Publication number Publication date
JPS6155588B2 (en) 1986-11-28

Similar Documents

Publication Publication Date Title
US6479108B2 (en) Protective layer for quartz crucibles used for silicon crystallization
JPH02247370A (en) Apparatus and method for laser plasma-coating in molten state
JP3205352B2 (en) Silicon purification method and apparatus
JP2555045B2 (en) Thin film forming method and apparatus
US4958058A (en) Transverse flow laser spray nozzle
US11618087B2 (en) Additive manufacturing printhead with annular and refractory metal receptor tube
US5024368A (en) Stopping-off method for use with diffusion bonding
JPS6092461A (en) Power metallurgical method of metallic compound
US5168097A (en) Laser deposition process for forming an ultrafine-particle film
JP2005126795A (en) Method for forming amorphous film
JP2008534290A (en) Aluminum component with a partial or complete coating of the brazing surface and method of manufacturing the coating
JPS63227766A (en) Formation of superfine-grained film
US4048348A (en) Method of applying a fused silica coating to a substrate
WO1993002787A1 (en) Process for the production of ultra-fine powdered materials
JPS6369959A (en) Pore sealing treatment for thermally sprayed film
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
JPS60238472A (en) Laser thermal spraying method
JP2505375B2 (en) Method and apparatus for forming compound film
JPH0360732A (en) Method and device for producing fine powder and is utilization
JPH0139993B2 (en)
JP2913018B2 (en) Metal surface treatment method
JP2505376B2 (en) Film forming method and apparatus
JPH0270010A (en) Method and apparatus for manufacturing high purity metal powder
JPH0570921A (en) Production of film-shaped thermoelectric generating element
JPH04358056A (en) Metal thermal-spraying method