JPS609244Y2 - Corrosion protection device for cylindrical tanks - Google Patents

Corrosion protection device for cylindrical tanks

Info

Publication number
JPS609244Y2
JPS609244Y2 JP2918182U JP2918182U JPS609244Y2 JP S609244 Y2 JPS609244 Y2 JP S609244Y2 JP 2918182 U JP2918182 U JP 2918182U JP 2918182 U JP2918182 U JP 2918182U JP S609244 Y2 JPS609244 Y2 JP S609244Y2
Authority
JP
Japan
Prior art keywords
tank
water
bottom plate
corrosion protection
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2918182U
Other languages
Japanese (ja)
Other versions
JPS58131955U (en
Inventor
義和 山桝
久登 阿部
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2918182U priority Critical patent/JPS609244Y2/en
Publication of JPS58131955U publication Critical patent/JPS58131955U/en
Application granted granted Critical
Publication of JPS609244Y2 publication Critical patent/JPS609244Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【考案の詳細な説明】 本考案は、石油等を貯蔵する円筒タンクの建造中に施行
されろ水張試験時の腐食を防止するための防食装置、特
に完全な防食効果があり、しかも防食用電極の取付、取
外しが簡便な円筒タンクの防食装置に関する。
[Detailed description of the invention] The present invention is an anticorrosion device for preventing corrosion during filtration tests carried out during the construction of cylindrical tanks for storing petroleum, etc. This invention relates to a corrosion protection device for a cylindrical tank that allows easy attachment and removal of electrodes.

タンクの建造法の一つである水張工法及び建造後の水張
試験時において、タンク溶接部に発生する張り氷による
孔食は溶接欠陥とみなされるため、水張時には防食対策
が極めて重要であり、このため従来より■水張水として
水道水を用いる。
During the water filling method, which is one of the tank construction methods, and during water filling tests after construction, pitting corrosion due to ice buildup that occurs in tank welds is considered a welding defect, so corrosion prevention measures are extremely important when filling with water. For this reason, tap water has traditionally been used as water for filling water.

■工業用水、あるいは湖、沼等の淡水を用いる。■Use industrial water or fresh water from lakes, swamps, etc.

■工業用水、あるいは海水に防食剤を添加したものを用
いる。
■Use industrial water or seawater with anticorrosive added.

■溶接部に防食塗料を塗布する等の種々の対策が実施さ
れている。
■Various measures have been taken, such as applying anti-corrosion paint to welded areas.

しかし前記対策の■は孔食の発生を完全ば防止できぬう
え、水の入手に制約を受ける。
However, the above-mentioned countermeasure (2) cannot completely prevent the occurrence of pitting corrosion, and is also subject to restrictions on the availability of water.

■は水中に含まれる各種不純物、バクテリヤ等により孔
食を発生するおそれがあり、■は防食剤の濃度管理を常
時行う煩わしさを伴ない、且つ防食効果の信頼性に難が
あり、さらに使用後の排水処理を誤まると公開発生の原
因となる。
■ There is a risk of pitting corrosion due to various impurities and bacteria contained in water, and ■ is accompanied by the trouble of constantly controlling the concentration of the anticorrosion agent, and the reliability of the anticorrosion effect is difficult, and furthermore, the use of If the wastewater is treated incorrectly afterwards, it may cause a public outbreak.

■は工事用治具等により防食塗膜を傷つけた場合、該部
分に局部的な孔食が発生し、一方破壊され難い堅固な塗
膜を塗布すると、水張後の塗膜の除去に手間どり、且つ
残存した塗膜の部分は溶接欠陥と1做され、また塗装工
事中、タンク内の換気に留意する必要がある等、総じて
何れの対策も孔食の発生を完全に防止できない。
■If the anti-corrosive coating is damaged by construction jigs, etc., localized pitting corrosion will occur in the affected area.On the other hand, if a hard coating that is difficult to break is applied, it will take time to remove the coating after applying water. Any part of the paint film that erodes and remains is considered a welding defect, and care must be taken to ventilate the tank during painting work.In general, no measure can completely prevent the occurrence of pitting corrosion.

また、水張中に多量の鉄錆が発生し、排水時には鉄錆を
沈澱させる処理槽を必要とする。
In addition, a large amount of iron rust occurs during water filling, and a treatment tank is required to precipitate the iron rust when draining water.

なお船舶、あるいは海洋構造物等に亜鉛等を主材料とす
る犠牲電極を防食用として取付けているが、これらは全
て個々の犠牲陽極を直接船体、または構造物に溶接、あ
るいはボルト締めし陽極の寿命が尽きるまで恒久的に使
用するもので、タンク水張用として簡便に取付、取外し
を行うには極めて不便である。
Incidentally, sacrificial electrodes made mainly of zinc or the like are installed on ships or offshore structures for corrosion protection, but in all of these cases, individual sacrificial anodes are directly welded or bolted to the ship's hull or structure. It is used permanently until the end of its life, and it is extremely inconvenient to easily install and remove it for filling a tank with water.

本考案は、前述の不具合乃至は欠点を解消し、タンク水
張時の孔食の発生を完全に防止し、また水張用水の入手
に制約を受けず、さらに水張後の排水処理装置を不要と
し、しかも防食用電極の取付、取外しを容易に行い得る
等の種々の利点を有する円筒タンクの防食装置を提供す
るためになしたもので、複数個の棒状の犠牲陽極を直列
に且つ取外し可能に接続してなる犠牲電極ユニットを複
数組備え、各犠牲陽極ユニットをタンク底板上の略等間
隔に離隔する同心円に沿って開ループを形成せしめるよ
う前記底板上に適宜の高さに配置し、各犠牲電極ユニッ
トの両端をタンク内面に接続することにより、完全な防
食効果を発揮し、且つタンク水張時に容易に電極の取付
、取外しを行い得、しかも排水処理のために特別の考慮
を必要としない無公害の円筒タンクの防食装置に係わる
ものである。
The present invention eliminates the above-mentioned problems and shortcomings, completely prevents the occurrence of pitting corrosion when filling a tank with water, does not have any restrictions on the availability of water for filling the tank, and can also be used with wastewater treatment equipment after filling with water. This was done in order to provide a corrosion protection device for a cylindrical tank that eliminates the need for corrosion protection electrodes and has various advantages such as the ability to easily attach and remove corrosion protection electrodes. A plurality of sets of sacrificial electrode units that can be connected to each other are provided, and each sacrificial anode unit is arranged at an appropriate height on the bottom plate of the tank so as to form an open loop along concentric circles spaced apart at approximately equal intervals on the bottom plate of the tank. By connecting both ends of each sacrificial electrode unit to the inner surface of the tank, a complete anti-corrosion effect can be achieved, and the electrodes can be easily attached and removed when the tank is filled with water. Moreover, special consideration has been taken for wastewater treatment. This relates to a pollution-free corrosion protection device for cylindrical tanks that is not required.

以下本考案の実施例につき、図面にもとづいて説明する
Embodiments of the present invention will be described below based on the drawings.

第1図乃至第3図は、本考案の第1の実施例を示すもの
で、符号1はコーンルーフタンク、2は底板、3は側板
であり、底板2上に、該底板2より適宜の高さhに複数
個の犠牲陽極4を一組とし、各組の犠牲陽極4をそれぞ
れ直列に接続してつくった複数組の犠牲陽極ユニット5
を、底板の中心aの周りに略等間隔に画いた同心円に沿
い開ループを形成するよう底板2上に配設する。
1 to 3 show a first embodiment of the present invention, in which reference numeral 1 is a cone roof tank, 2 is a bottom plate, and 3 is a side plate. A plurality of sets of sacrificial anode units 5 are formed by connecting a plurality of sacrificial anodes 4 in series at a height h, and each set of sacrificial anodes 4 is connected in series.
are arranged on the bottom plate 2 so as to form an open loop along concentric circles drawn at approximately equal intervals around the center a of the bottom plate.

水張水としては海水を用いる。犠牲陽極4(以下陽極と
称す)は、鉄より単なる金属、例えば亜鉛、あるいはア
ルミニウムを主材料とする、市販の長さ約1rrLの棒
状のものを使用し、各陽極4を約5.5−の太さのCV
コード6(ビニール被覆電線)及び図示しない圧着端子
を介して相互に接続し、各犠牲陽極ユニット5(以下ユ
ニットと称す)の開ループの両端に位置する陽極4を、
底板2上に仮付けした電極取付板7にナツト8を用いて
締付ける。
Seawater is used as the dipping water. As the sacrificial anodes 4 (hereinafter referred to as anodes), commercially available rod-shaped ones with a length of about 1rrL are used, and each anode 4 is made of a simple metal such as zinc or aluminum as the main material. CV of thickness
The anodes 4 located at both ends of the open loop of each sacrificial anode unit 5 (hereinafter referred to as unit) are connected to each other via a cord 6 (vinyl coated wire) and a crimp terminal (not shown).
Tighten the electrode mounting plate 7 temporarily attached to the bottom plate 2 using nuts 8.

また各陽極4の両端部を、約15cm角の非電導物質、
例えば塩化ビニール製の支持脚9により底板2上に支持
する。
In addition, both ends of each anode 4 are covered with a non-conductive material approximately 15 cm square.
It is supported on the bottom plate 2 by support legs 9 made of vinyl chloride, for example.

なおユニット5を構成する陽極4の数量は、通常最内側
に位置するものを、3乃至4本、最外側のものを約10
本で構成し、陽極4の総数は、タンクに水張りした場合
、タンクを構成する物質、即ち鉄の電位が最低腐食電位
を越えぬことを目安に決定する。
The number of anodes 4 constituting the unit 5 is usually 3 to 4 for the innermost one and about 10 for the outermost one.
The total number of anodes 4 is determined based on the fact that when the tank is filled with water, the potential of the material that makes up the tank, that is, iron, does not exceed the lowest corrosion potential.

以下必要とする陽極4の総数の求め方について述べる。The method for determining the total number of anodes 4 required will be described below.

陽極の接木抵抗Rは次式により求められる。The graft resistance R of the anode is determined by the following formula.

ここにρ :海水の比抵抗(一般に25Ωcm) L:陽極の長さくc77り D:陽極の直径(1) を示す。here ρ : Specific resistance of seawater (generally 25Ωcm) L: Anode length c77 D: Anode diameter (1) shows.

陽極からの発生電流■は陽極と鉄との有効電位差をΔE
(V)とすると、 により、また必要防食電流の総量I丁は次式により求め
られる。
The current generated from the anode is ΔE, which is the effective potential difference between the anode and iron.
(V), then the total amount of required corrosion protection current I can be determined by the following formula.

■ア=SXI、 式(3)ここ
にS:タンク内面の接木面積(y4)■N:鉄の必要防
食電流密度(mA/ ?y1″) を示し、INはミルスケール付鋼板の場合、80mA/
dとするのが適当である。
■A = SXI, Formula (3) where S: Grafting area on the inner surface of the tank (y4) ■N: Required corrosion protection current density for iron (mA/?y1''), IN is 80mA for steel plate with mill scale /
It is appropriate to set it to d.

このデータは、ミルスケール付鋼板に種々の防食電流密
度を与えて20日間海水中に浸漬し、鉄錆を発生させな
い最小の防食電位を調査した結果得られたもので、実験
結果を第6図に示す。
This data was obtained by applying various anti-corrosion current densities to a steel plate with mill scale and immersing it in seawater for 20 days to investigate the minimum anti-corrosion potential that does not cause iron rust.The experimental results are shown in Figure 6. Shown below.

第6図は亜鉛防食時の初期防食電流密度及び電位の変化
を示しており、横軸に時間を、縦軸上半部に電流密度(
mA/rrl)を、また縦軸下半部に飽和甘木電極(一
般にSCEと略記される)を基準電位として測定した各
部の電位を示し、図中にテスト時の種々の防食電流密度
(mA/d)の値を記しである。
Figure 6 shows the initial corrosion protection current density and potential changes during zinc corrosion protection, with time on the horizontal axis and current density (on the upper half of the vertical axis).
The lower half of the vertical axis shows the potential of each part measured using a saturated Amagi electrode (generally abbreviated as SCE) as a reference potential. The value of d) is shown below.

なおZrリッチプライマーを塗布した鋼板に対してはI
、 = 10mA/dとするのが好ましい。
For steel plates coated with Zr-rich primer, I
, = 10 mA/d.

陽極の本数は、式(2)、式(3)より次式で求まる。The number of anodes is determined by the following equation from equations (2) and (3).

従って水張時のタンクの接木面積を知ることにより陽極
4の総数が求まる。
Therefore, the total number of anodes 4 can be determined by knowing the grafted area of the tank when filled with water.

前述の要領により、すべてのユニット5を底板2上に取
付けたのち、水張りして防食効果の確認を行う。
After all the units 5 are mounted on the bottom plate 2 according to the above-mentioned procedure, the anticorrosion effect is confirmed by filling with water.

確認方法としては、タンク上部から基準電極(SCE)
を吊下げ、底板2及び水面直下の側板3の電位を高抵抗
の直流電圧計を用いて測定し、各部の電位が、鉄の腐食
電位−770mV(vsSCE )以下になっているこ
とを確認する。
To confirm, use the reference electrode (SCE) from the top of the tank.
, and measure the potential of the bottom plate 2 and side plate 3 just below the water surface using a high-resistance DC voltmeter, and confirm that the potential of each part is below the corrosion potential of iron -770 mV (vsSCE).

第7図に亜鉛防食した場合におけるタンク電位(vsS
CE )及び水位の変化の一例を示す。
Figure 7 shows the tank potential (vsS) in the case of zinc corrosion protection.
CE) and an example of changes in water level.

前述のごとく、必要かつ充分な容量の複数組のユニット
を底板上に同心円に沿って配設したので、電位分布の計
算が容易になり且つ分布が均一なので、防食作用が完全
である。
As mentioned above, since a plurality of units with necessary and sufficient capacity are arranged concentrically on the bottom plate, calculation of the potential distribution is easy and the distribution is uniform, so that the anti-corrosion effect is complete.

また陽極と陰極である底板との間に、域る間隔をもって
配置するので、陽極の全外周面を有効に利用するとかで
きる。
Further, since the anode and the bottom plate, which is the cathode, are arranged with a certain distance between them, the entire outer circumferential surface of the anode can be effectively utilized.

複数個の全長が約1mの棒状の電極を、−組のユニット
にまとめ、各ユニットの両端を底板に接地するだけでよ
く、また各電極間は、CVコード及び圧着端子を用いて
ナツトを締付けて接続、取外しできる構造を採用したの
で、タンク底板への電極の取付、取外し作業が短時間に
行い得、水張り終了後は他のタンクへ容易に再利用する
ことができる。
All you need to do is combine multiple rod-shaped electrodes with a total length of approximately 1 m into a set of units, and ground both ends of each unit to the bottom plate. Also, between each electrode, tighten a nut using a CV cord and crimp terminal. Since it has a structure that allows connection and removal, the electrodes can be attached and removed from the tank bottom plate in a short time, and after filling with water, they can be easily reused in other tanks.

また水張後のタンク溶接部の付着物の除去は、単に電動
ブラシによるパフ掛けを行うだけでよいので、短時間に
除去することができる。
Further, the deposits on the welded portion of the tank after filling with water can be removed in a short time by simply puffing with an electric brush.

さらに陽極の腐食生成物は、陽極を底板のみに取付けて
いるので、すべてタンク底板上に沈澱する。
Furthermore, since the anode is attached only to the bottom plate, all the corrosion products of the anode settle on the tank bottom plate.

従って水張水の大部分は清浄であり、直接に排水できる
Therefore, most of the water is clean and can be drained directly.

なお亜鉛電極を用いた場合は、水張水に溶解する亜鉛の
量は、実験では1.5my/ l程度であり、この値は
1排水基準ヨに期定されている5 mg/ l以下であ
るので、このまま排水することができ、排水が極めて容
易になる。
In addition, when a zinc electrode is used, the amount of zinc dissolved in water-filled water is approximately 1.5 my/l in experiments, and this value is below the 5 mg/l stipulated in the 1st wastewater standard. Therefore, the water can be drained as it is, making drainage extremely easy.

第4図及び第5図に第2の実施例を示す。A second embodiment is shown in FIGS. 4 and 5.

この例は、フローティングルーフタンク10への適用を
示すもので、底板2のほか、浮屋根11及びルーフドレ
ン12の防食を考慮する必要がある。
This example shows application to a floating roof tank 10, and it is necessary to consider corrosion protection of the floating roof 11 and roof drain 12 in addition to the bottom plate 2.

この場合は、浮屋根11の接木面積に略対応するユニッ
ト5′の一端をCVコード6′を用いて浮屋根11に接
続し、またルーフドレン12に対しては、陽極4の芯金
をワイヤ13にて接続する。
In this case, one end of the unit 5' corresponding to the grafting area of the floating roof 11 is connected to the floating roof 11 using the CV cord 6', and the core metal of the anode 4 is connected to the wire 13 for the roof drain 12. Connect at.

ユニットの構成及び取付要領は第1の実施例と変るとこ
ろはない。
The structure and installation procedure of the unit are the same as in the first embodiment.

なお本考案は、前述の実施例にのみ限定されるものでは
なく、本考案の要旨を逸脱しない範囲において、種々の
変更を加え得ることは勿論である。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes may be made without departing from the gist of the present invention.

本考案の円筒タンクの防食装置は、前述の構成を有する
ので、次の優れた効果を発揮する。
Since the anticorrosion device for a cylindrical tank of the present invention has the above-described configuration, it exhibits the following excellent effects.

(1)必要かつ充分な容量の犠牲陽極を、タンク底板に
均一に分布させて配置させたので、タンク溶接部及びタ
ンク内面を完全に防食するとかできる。
(1) Since the necessary and sufficient capacity of the sacrificial anode is uniformly distributed and arranged on the tank bottom plate, the tank welds and the tank inner surface can be completely protected from corrosion.

(1イ 犠牲陽極は、複数個を取外し可能に接続して
ユニットにまとめ、各ユニットの両端をタンク内面に接
続するので、犠牲陽極の取付、取外しが簡便、かつ容易
である。
(1) Since a plurality of sacrificial anodes are removably connected and assembled into a unit, and both ends of each unit are connected to the inner surface of the tank, attachment and detachment of the sacrificial anode is simple and easy.

Qii) 従来のように腐食防止剤を使用せず、また
タンク内面に鉄錆を生ずることがなく、さらに犠牲電極
の腐食生成物は底板に沈澱するので、水張水の大部分は
清浄であり、排水公害のおそれがなく、排水処理装置を
設置する必要がない。
Qii) Unlike conventional methods, corrosion inhibitors are not used and iron rust does not occur on the inner surface of the tank, and the corrosion products of the sacrificial electrode settle on the bottom plate, so most of the water filled with water is clean. , there is no risk of wastewater pollution, and there is no need to install wastewater treatment equipment.

(V) 第(1)項と同じ理由により、水張水に海水
を利用することに上り水張水の入手に制約を受けること
がない。
(V) For the same reason as in paragraph (1), there are no restrictions on the use of seawater for water filling and the availability of water for water filling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例である防食装置の配置要領を示
す説明図、第2図は第1図における■−■方向からの切
断平面図、第3図は第1図の防食装置の犠牲電極ユニッ
トの一部を展開した拡大側面図、第4図は本考案の第2
の実施例である防食装置の配置要領を示す説明図、第5
図は第4図における■−■方向からの切断平面図、第6
図はミルスケール付鋼板における亜鉛電極防食の初期防
食電流密度及び電位の変化を示す図表、第7図は亜鉛防
食を施したタンク底部の平均電位の変化を示す図表であ
る。 図中、2は底板、4は犠牲陽極、5,5′は犠牲電極ユ
ニット、6,6′はCVコードを示す。
Fig. 1 is an explanatory diagram showing the layout of the corrosion protection device according to the embodiment of the present invention, Fig. 2 is a cutaway plan view taken from the direction ■-■ in Fig. FIG. 4 is an enlarged side view showing a part of the sacrificial electrode unit.
Explanatory diagram showing the layout of the corrosion protection device according to the embodiment, No. 5
The figure is a cutaway plan view from the ■-■ direction in Figure 4, and the
The figure is a chart showing changes in the initial corrosion protection current density and potential of zinc electrode corrosion protection on a steel plate with a mill scale, and FIG. 7 is a chart showing changes in the average potential at the bottom of a tank subjected to zinc corrosion protection. In the figure, 2 is a bottom plate, 4 is a sacrificial anode, 5 and 5' are sacrificial electrode units, and 6 and 6' are CV cords.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数個の棒状の犠牲陽極を直列に且つ取外し可能に接続
してなる犠牲電極ユニットを複数組備え、各犠牲陽極ユ
ニットをタンク底板上の略等間隔に離隔する同心円に沿
って開ループを形成せしめるよう前記底板上に適宜の高
さに配設し、各犠牲電極ユニットの両端をタンク内面に
接続したことを特徴とする円筒タンクの防食装置。
A plurality of sets of sacrificial electrode units are provided in which a plurality of rod-shaped sacrificial anodes are removably connected in series, and each sacrificial anode unit is formed into an open loop along concentric circles spaced at approximately equal intervals on the tank bottom plate. A corrosion protection device for a cylindrical tank, characterized in that the sacrificial electrode units are arranged at an appropriate height on the bottom plate, and both ends of each sacrificial electrode unit are connected to the inner surface of the tank.
JP2918182U 1982-03-02 1982-03-02 Corrosion protection device for cylindrical tanks Expired JPS609244Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2918182U JPS609244Y2 (en) 1982-03-02 1982-03-02 Corrosion protection device for cylindrical tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2918182U JPS609244Y2 (en) 1982-03-02 1982-03-02 Corrosion protection device for cylindrical tanks

Publications (2)

Publication Number Publication Date
JPS58131955U JPS58131955U (en) 1983-09-06
JPS609244Y2 true JPS609244Y2 (en) 1985-04-02

Family

ID=30040989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2918182U Expired JPS609244Y2 (en) 1982-03-02 1982-03-02 Corrosion protection device for cylindrical tanks

Country Status (1)

Country Link
JP (1) JPS609244Y2 (en)

Also Published As

Publication number Publication date
JPS58131955U (en) 1983-09-06

Similar Documents

Publication Publication Date Title
US4415293A (en) Offshore platform free of marine growth and method of reducing platform loading and overturn
TW512187B (en) Method and system of preventing fouling and corrosion of biomedical devices and structures
JPS6334192B2 (en)
US2444174A (en) Galvanic coating process
US5344531A (en) Prevention method of aquatic attaching fouling organisms and its apparatus
AU613824B2 (en) Metal mesh and production thereof
US2743227A (en) Protection of metallic structures
JPS609244Y2 (en) Corrosion protection device for cylindrical tanks
GB2194962A (en) Cathodic protection of metal surfaces
US2826543A (en) Mounting means for cathodic protection anodes
KR101016590B1 (en) A cryogenic tank testing method including cathodic protection
US11091841B2 (en) Autonomous impressed current cathodic protection device on metal surfaces with a spiral magnesium anode
US2404031A (en) Corrosion preventing electrode
KR20130046874A (en) Hybrid type cathode protection system and method using iccp type and sacrificial anode type cathode protection technologies for marine concrete structure
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
JP2002060983A (en) Electrolytic protection device
US3410771A (en) Treatment of lead alloy anodes
JPH0351335Y2 (en)
JPS6318667B2 (en)
JPH0454752B2 (en)
Wells Cathodic Protection of Steel Water Tanks
JP4605913B2 (en) Electric antifouling device and electric antifouling method
JPH02156095A (en) Method and device for anticorrosion
Oliver The use of graphite anodes for cathodic protection of the bottoms of inactivated ships
JPS5942130B2 (en) Installation method for bottom-mounted offshore structures