JPS6092446A - Magnetic body of metallic iron containing cobalt atom - Google Patents

Magnetic body of metallic iron containing cobalt atom

Info

Publication number
JPS6092446A
JPS6092446A JP58201247A JP20124783A JPS6092446A JP S6092446 A JPS6092446 A JP S6092446A JP 58201247 A JP58201247 A JP 58201247A JP 20124783 A JP20124783 A JP 20124783A JP S6092446 A JPS6092446 A JP S6092446A
Authority
JP
Japan
Prior art keywords
magnetic body
metallic iron
ratio
atoms
electron intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201247A
Other languages
Japanese (ja)
Inventor
Takayuki Toko
都甲 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58201247A priority Critical patent/JPS6092446A/en
Publication of JPS6092446A publication Critical patent/JPS6092446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetic body maintaining its high saturation magnetization and having improved corrosion resistance by specifying the Co atom content of the titled magnetic body and the ratio of electron intensity of Co2p to that of Fe2p measured by X-ray photoelectric spectrophotometry. CONSTITUTION:This magnetic body of metallic iron contains Co atoms by <=5% of the amount of Fe so that the ratio of the electron intensity of Co2p to that of Fe2p measured by X-ray photoelectric spectrophotometry is adjusted to 0.1- 0.5. Fine powder of alpha-Fe2O3, alpha-FeOOH or the like having <=about 1mum particle size is dispersed in an aqueous soln. contg. a Co salt, and an aqueous soln. of an alkali such as NaOH is added to the dispersion to deposit Co hydroxide on the surface of the powder. The resulting powder is reduced under heating in a reducing atmosphere of H2 or the like. Thus, said magnetic body is easily obtd.

Description

【発明の詳細な説明】 本発明は、金属鉄磁性体の磁気特性劣化防止に関する改
良であり、長期にわたって安定な磁気記録媒体を製造す
るのに有効な金属鉄磁性体を提供することを目自勺とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement in preventing deterioration of the magnetic properties of a metal ferromagnetic material, and aims to provide a metal ferromagnetic material that is effective for producing a magnetic recording medium that is stable over a long period of time. I'm going to do it.

磁気記録丹生用機器の小型軽薫化が進むにつれて、磁気
記録媒体では、高密度記録特性、高出力特性、高周波数
特性等の緒特性の向上が要求される口磁気記録媒体に対
する上記のような要求を満足させるための磁性材料の特
性は、高い保磁力Heと大きな飽和磁化I8とを有する
ことにある。この要求を満す磁性拐料として、金属鉄磁
性体がある。しかし、金属鉄磁性体は非常に活性である
ため、酸化、腐食しゃすく、鉄の酸化物のさびが生成し
、促進され易く、酸化、腐食によって上記KかかげたH
e、#sなどの特性が低下する欠点がある。このような
さび発生を抑制し耐食性を向上させるためKは、金属鉄
磁性体表面に2〜5μm厚みの鉄酸化物被膜を形成する
方法、金属鉄磁性体内部にCoを均一に添加する方法が
ある。しかし、前者の方法では、ち密な酸化被膜が形成
されないため、酸化被膜中を酸素イオンが拡散し、内部
のFe成分と反応して酸化物を形成するので、短期間に
おいて、eBが低下する問題があって、磁気特性の劣化
防止の有力な手段とは考えられない〇金属鉄磁性体内に
Coを均一に添加した場合、前者の方法で得られた金属
鉄磁性体に比べ、耐食性は20〜30%向上するが、充
分な耐食性を得るには、多量のCoを添加する必要があ
り、その結果−8が低下し、所望の高出力特性が得られ
にくい問題がある。
As magnetic recording equipment becomes smaller and lighter in size, magnetic recording media are required to have improved performance characteristics such as high density recording characteristics, high output characteristics, and high frequency characteristics. The characteristics of the magnetic material to satisfy the requirements are that it has a high coercive force He and a large saturation magnetization I8. A metal iron magnetic material is a magnetic material that satisfies this requirement. However, since metallic iron magnetic materials are very active, they easily generate and accelerate oxidation, corrosion, and iron oxide rust.
There is a drawback that characteristics such as e and #s deteriorate. In order to suppress the occurrence of rust and improve corrosion resistance, there are two methods for K: forming an iron oxide film with a thickness of 2 to 5 μm on the surface of the metal ferromagnetic material, and adding Co uniformly inside the metal ferromagnetic material. be. However, in the former method, a dense oxide film is not formed, so oxygen ions diffuse through the oxide film and react with the internal Fe component to form an oxide, resulting in a decrease in eB in a short period of time. Therefore, it is not considered to be an effective means of preventing deterioration of magnetic properties. If Co is added uniformly into a metal ferromagnetic body, the corrosion resistance is 20~20% higher than that of the metal ferromagnetic body obtained by the former method. However, in order to obtain sufficient corrosion resistance, it is necessary to add a large amount of Co, which results in a decrease in -8, making it difficult to obtain the desired high output characteristics.

本発明は、かかる事情に鑑みてなされたもので、金属鉄
磁性体の高いりを維持しかつ耐食性の改善された磁性体
を提供しようとするものである。
The present invention has been made in view of the above circumstances, and aims to provide a magnetic material that maintains the high rigidity of a metal iron magnetic material and has improved corrosion resistance.

すなわち、金属鉄磁性体にCo原子の含有量がFeに対
して5取駿チ以下でめ9.X線光電子分光度法によるC
o gP電子強度とFetp電子強度との比が0.1〜
0.7の範囲にあるようにs Coを含有させることに
よって、従来の金属鉄磁性体に比べ高いσSを維持しか
つ耐食性を改善したものである@本発明によればs C
o原子の含有量がFeに対してjffi1f1%以下と
少景しか含有されないため、金属鉄磁性体の高いりを維
持するとともに、Co原子を主体的に、金属鉄磁性体の
表面層に含有させるので、 Co、Fe、金属ないしは
、これらの酸化物によって緻密な酸化防止被膜が形成さ
れ、良好な耐食性を示す。
In other words, the content of Co atoms in the metallic iron magnetic material should be 5 or less with respect to Fe.9. C by X-ray photoelectron spectroscopy
o The ratio of gP electron intensity to Fetp electron intensity is 0.1 to
By containing s Co in the range of 0.7, it maintains a higher σS and has improved corrosion resistance compared to conventional metallic iron magnetic materials.@According to the present invention, s Co
Since the content of o atoms is only small, less than jffi1f1% of Fe, the high level of the metal ferromagnetic material is maintained, and Co atoms are mainly contained in the surface layer of the metal ferromagnetic material. Therefore, a dense anti-oxidation film is formed by Co, Fe, metals, or their oxides, and exhibits good corrosion resistance.

本発明による磁性体の表面層のCoとFeの組成は、通
常知られているようにXm光電子分光度法により容易に
知ることができ、このような良好な耐食性は、X線光■
、子分光度法によるCorp電子強度とFaxI) ’
Ftl子強度色強度が0.1以上とすることによって得
られ、この比が高くなるにつれ耐食性は向上する。しか
し、この比が0.7を越すときには、Co原子の含有量
がFeに対して5 M蔽%を越し、18が従来のものよ
り低下するので、0.7以内すなわち、 Co原子の含
有量が5重nt%以内で添加するのがよい。
The composition of Co and Fe in the surface layer of the magnetic material according to the present invention can be easily determined by Xm photoelectron spectroscopy, as is commonly known.
, Corp electron intensity by molecular spectrometry and FaxI)'
It is obtained by setting the Ftl color strength to 0.1 or more, and as this ratio increases, the corrosion resistance improves. However, when this ratio exceeds 0.7, the content of Co atoms exceeds 5 M% with respect to Fe, and 18 is lower than that of the conventional one. is preferably added within 5 weight nt%.

本発明による磁性体は、(1−FegOa 1 (1−
Fe00Hなどの粒径1μ以下の微細な酸化鉄あるいは
オキシ水酸化鉄粉末をコバルト塩を含む水溶液中に分散
させ、これにNaOHまたはKOHなどのアルカリ水溶
液を加えて前記酸化鉄あるいはオキシ水酸化鉄粉末の表
面に水酸化コバルトを析出させ、しかる後、水素中など
の還元雰囲気中で加熱還元することによって容易に製造
することができる。
The magnetic material according to the present invention is (1-FegOa 1 (1-
Fine iron oxide or iron oxyhydroxide powder such as Fe00H with a particle size of 1 μm or less is dispersed in an aqueous solution containing cobalt salt, and an aqueous alkaline solution such as NaOH or KOH is added to the iron oxide or iron oxyhydroxide powder. It can be easily produced by precipitating cobalt hydroxide on the surface of the compound and then reducing it by heating in a reducing atmosphere such as in hydrogen.

また、本発明による磁性体は、磁気記録媒体の記録素子
として有効であるが、この記録素子として使用する場合
は、通常1μ以下の粒径で軸比が2以下の針状のものが
、次望の電磁変換特性を得るために好適である。
Further, the magnetic material according to the present invention is effective as a recording element of a magnetic recording medium, but when used as this recording element, a needle-like material with a grain size of 1 μ or less and an axial ratio of 2 or less is usually used as follows. This is suitable for obtaining desired electromagnetic conversion characteristics.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 α−FelonのFeに対して、Co量が表1に示す仕
込量相当のコバルト塩を11の水溶液に溶解したあと、
α−Fo*O* 150 fを分散させ、これにNaO
Hあるいれ、KOII水溶液を加えて40〜90°で熟
成してα−Fezes表面にコバルト水酸化物被膜を形
成する0形成後よく水洗しで、Na、にイオンを除去し
たあと脱水する0次に、水素還元時に磁性体が形くずれ
したり、焼結ケ防止するために下記の操作を行う〇 ケイ酸塩をα−Fe露OmのFeに対して3チ添加した
11の水溶液に、FJII kの処理したα−Fe*O
sを分散させ、これにNaOHあるいはKOH水溶液を
加えてpH11以上にして、Siの水酸化物を前記の処
理したα−Fezes表面に沈着させたあと、よく水洗
して121)℃で乾燥する0乾燥後、これを石英ボート
に入れ、350〜500の温關に保ち、0.2〜0.5
17分の流量で水素を通気しながら管状炉で還元する◇
還元後、除冷したのちトルエン溶媒に10分間空気を吹
きこみfi演して風乾する。
Example 1 After dissolving a cobalt salt corresponding to the amount of Co shown in Table 1 in the aqueous solution of 11 for Fe of α-Felon,
α-Fo*O* 150 f is dispersed, and NaO
Add KOII aqueous solution and age at 40 to 90° to form a cobalt hydroxide film on the surface of α-Fezes. In order to prevent the magnetic material from deforming or sintering during hydrogen reduction, perform the following operations: FJII α-Fe*O treated with k
s is dispersed, and a NaOH or KOH aqueous solution is added to the solution to make the pH higher than 11, and the Si hydroxide is deposited on the surface of the α-Fezes treated above. After that, it is thoroughly washed with water and dried at 121) °C. After drying, put it in a quartz boat and keep it at a temperature of 350 to 500℃, and keep it at a temperature of 0.2 to 0.5
Reducing in a tube furnace while aerating hydrogen at a flow rate of 17 minutes◇
After reduction, the toluene solvent was slowly cooled, air was blown into the toluene solvent for 10 minutes, and the mixture was air-dried.

表1 コバルト塩の仕込量 比較例 1、5 wol/lの硫暇第1鉄水浴液のFeに対して
、Co換算で5重量%を含むように何1酸コバルトを添
加しためとNaO,H水溶液を用いてI)H12〜13
に調整して、温〃L50℃にかいて451/分の空気量
で通気酸化することにより得られたCo原子約5重it
チを均一に含イjする針状晶α−Feα)Ifを600
℃で焼成してα−Fee’sを形成する。次にケイ酸塩
をFeに対(7て3う添加し:I”c 11の水溶液に
α−1i”etOsを分散させ、Na(M[a)るいは
KO)l水浴液を加えてpI(11,II上にして、S
iの水酸化物を沈宥させためと、よく水洗し7て120
℃で乾燥する0これを石英ボートに入れ、350〜50
0の温度に保ち、0.2〜0.51/fJ−の流量で水
素を通気しながら還元する◇還元後除冷したのち、トル
エン溶媒に10分間空気を吹きこみながら浸漬して風乾
する。
Table 1 Comparative Examples 1 and 5 cobalt salt loading amounts How much cobalt oxide was added so as to contain 5% by weight in terms of Co to the Fe in the sulfur-free ferrous water bath solution of 5 wol/l, NaO, I) H12-13 using H aqueous solution
About 5 Co atoms were obtained by air oxidation at a temperature of 50°C and an air flow rate of 451/min.
Acicular crystals α-Feα) If containing uniformly 600
C. to form α-Fee's. Next, silicate was added to Fe (7 to 3 times), α-1i”etOs was dispersed in an aqueous solution of I”c 11, Na(M[a) or KO)l water bath solution was added, and pI (11, II on top, S
In order to settle the hydroxide of i, wash thoroughly with water and add 120
Dry at 0°C. Place this in a quartz boat and heat at 350-50°C.
0 temperature and reduce while passing hydrogen at a flow rate of 0.2 to 0.51/fJ- ◇ After the reduction, the sample is slowly cooled, and then immersed in a toluene solvent for 10 minutes while blowing air and air-dried.

上記実施例および比較例によって得られた磁性体を原子
吸光度法によりCo原子とFe原子の含有片を測定し、
またX線光tlt子分光法で上記実施例および比較例に
よって得られた磁性体をlQmmの直径、高さQ、5m
mの円板に成型した試料の表面約2mtnまでの深さ内
のCoxp電子とF911P電子の強度比を測定した。
The magnetic materials obtained in the above Examples and Comparative Examples were measured for pieces containing Co atoms and Fe atoms by atomic absorption spectrometry,
In addition, the magnetic materials obtained in the above Examples and Comparative Examples were analyzed using X-ray TLT molecular spectroscopy with a diameter of 1Q mm, a height of Q, and a height of 5 m.
The intensity ratio of Coxp electrons and F911P electrons within a depth of about 2 mtn from the surface of a sample molded into a disk of m was measured.

耐食性は、製造直後の#Sと製造後1週間、80%RH
60℃で保存後のσ8を測定し、製造直後の118から
の劣化率をめ九〇 上記結果から均一にCo原子を含有する比較例のものは
、良好な耐食性を有するもののd8が低いのに比べ、本
発明による実施列1の試料2〜4のものは、高いIFB
を維持するとともに、良好な耐穴性を示すことが明らか
である。
Corrosion resistance is #S immediately after manufacture and 80%RH for one week after manufacture.
The σ8 after storage at 60°C was measured, and the deterioration rate from 118 immediately after production was calculated.90 From the above results, the comparative example containing Co atoms uniformly had good corrosion resistance but had a low d8. In comparison, samples 2 to 4 of implementation row 1 according to the present invention have high IFB
It is clear that the material maintains good puncture resistance and exhibits good puncture resistance.

出願人 日立マクセル株式会社 代表者 永 井 厚Applicant: Hitachi Maxell, Ltd. Representative Atsushi Nagai

Claims (1)

【特許請求の範囲】[Claims] Co原子の含有量がFeに対して5%以下であり、X線
光電子分光度法によるCo2p電子強度とFe2p電子
強度との比が0.1〜0.5の範囲にあるように、Co
原子を含有した金属鉄磁性体◎
The content of Co atoms is 5% or less with respect to Fe, and the ratio of Co2p electron intensity to Fe2p electron intensity by X-ray photoelectron spectroscopy is in the range of 0.1 to 0.5.
Metallic iron magnetic material containing atoms◎
JP58201247A 1983-10-26 1983-10-26 Magnetic body of metallic iron containing cobalt atom Pending JPS6092446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201247A JPS6092446A (en) 1983-10-26 1983-10-26 Magnetic body of metallic iron containing cobalt atom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201247A JPS6092446A (en) 1983-10-26 1983-10-26 Magnetic body of metallic iron containing cobalt atom

Publications (1)

Publication Number Publication Date
JPS6092446A true JPS6092446A (en) 1985-05-24

Family

ID=16437772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201247A Pending JPS6092446A (en) 1983-10-26 1983-10-26 Magnetic body of metallic iron containing cobalt atom

Country Status (1)

Country Link
JP (1) JPS6092446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262490A (en) * 2006-03-28 2007-10-11 Jfe Chemical Corp Magnetite-iron-cobalt composite powder for powder magnetic core, method for manufacturing the same, and powder magnetic core using the same
CN109806896A (en) * 2019-01-31 2019-05-28 鲍君杰 A kind of preparation method of the composite phosphorized iron of cladded type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262490A (en) * 2006-03-28 2007-10-11 Jfe Chemical Corp Magnetite-iron-cobalt composite powder for powder magnetic core, method for manufacturing the same, and powder magnetic core using the same
JP4568691B2 (en) * 2006-03-28 2010-10-27 Jfeケミカル株式会社 Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
CN109806896A (en) * 2019-01-31 2019-05-28 鲍君杰 A kind of preparation method of the composite phosphorized iron of cladded type

Similar Documents

Publication Publication Date Title
JPS6092446A (en) Magnetic body of metallic iron containing cobalt atom
JPS60221325A (en) Iron nitride-based ferromagnetic powder excellent in corrosion resistance and its manufacture
JP5280661B2 (en) Method for producing metal magnetic powder
JPS6411577B2 (en)
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS6118323B2 (en)
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2704540B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS59107503A (en) Method of manufacturing magnetic powders with iron as main constituent for magnetic recording
JPH03250702A (en) Manufacture of metallic magnetic powder
JPS6346961B2 (en)
JPH02205601A (en) Ferromagnetic metal powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS63242930A (en) Production of fusiform magnetic metal particle powder composed mainly of iron
JPH02255538A (en) Production of ferromagnetic iron oxide powder for magnetic recording
JPH0651574B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPS644329B2 (en)
JPS5919166B2 (en) Manufacturing method of metal magnetic powder
JPS585241B2 (en) Method for manufacturing metallic iron or alloy magnetic powder mainly composed of iron
JPS5919165B2 (en) Manufacturing method of metal magnetic powder
JPS60127241A (en) Magnetic iron oxide powder