JPS6091979A - Flow feed control of substrate and its device - Google Patents

Flow feed control of substrate and its device

Info

Publication number
JPS6091979A
JPS6091979A JP19907683A JP19907683A JPS6091979A JP S6091979 A JPS6091979 A JP S6091979A JP 19907683 A JP19907683 A JP 19907683A JP 19907683 A JP19907683 A JP 19907683A JP S6091979 A JPS6091979 A JP S6091979A
Authority
JP
Japan
Prior art keywords
substrate
gas
measuring device
dissolved oxygen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19907683A
Other languages
Japanese (ja)
Other versions
JPH0449995B2 (en
Inventor
Norio Shimizu
清水 範夫
Kenji Kato
加藤 健児
Yoji Otahara
緒田原 蓉二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19907683A priority Critical patent/JPS6091979A/en
Publication of JPS6091979A publication Critical patent/JPS6091979A/en
Publication of JPH0449995B2 publication Critical patent/JPH0449995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To improve production efficiency of yeast, by regulating properly a feed of a substrate during cultivation. CONSTITUTION:A seed mold is put in the culture tank 1, a substrate is fed from the substrate tank 7 by the pump M to the tank, datum from the measuring device 5 for oxygen partial pressure at the inlet, the measuring device 6 for an amount of gas at the inlet, the measuring device 11 for oxygen partial pressure of gas at the outlet, the measuring device 12 for partial pressure of carbonic acid gas, and the measuring device for an amount of exhaust gas are treated to calculate RQ, and a flow feed velocity of substrate (alpha value) is changed. Formation of by-product is detected, and when substrate flow is minimum or zero, the signal of dissolved oxygen sensor 9 is detected by the dissolved oxygen meter 10, alpha value is changed depending upon the change of it, to regulate the flow feed velocity of substrate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微生物の好気的tl’f養方法に係わり、とく
に酵母培養において基質流加JItを制御づ−る方法及
び装置に関す−るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for aerobic tl'f cultivation of microorganisms, and particularly to a method and apparatus for controlling substrate fed JIt in yeast culture. It is.

〔発明の背景」 食・飼流酵母、パン酵母などの酵母菌体の):1・産に
おいてはjl“f養【1弓こ」基質を少1注−リ゛−〕
供給する流加培養法がイー1わ、!l、ている。この培
養を効率よ〈実施するには流加した基質が完全に酵母に
消費され、かつエタノール等の副生成物が少ないことが
必須である。
[Background of the invention] For yeast cells such as food/fed yeast and baker's yeast): 1. In production, add a small amount of the substrate.
The fed-batch culture method that supplies it is E1! I'm there. In order to carry out this culture efficiently, it is essential that the fed substrate be completely consumed by the yeast and that by-products such as ethanol be small.

従来、Jif養中の菌体濃度や菌体の活性度を迅速に測
定する手段がないことから、ため定めたプログラムに従
いノ、し質をJff養槽1流加する方式が行われていた
。この方式では槽内の菌体活性に応した基質流加が不可
能であり、生産性は高くなかった。
Conventionally, since there is no means to quickly measure the bacterial cell concentration and bacterial activity in Jiff culture, a method has been used in which the cellulose is added to one Jff culture tank according to a predetermined program. In this method, it was impossible to feed the substrate in accordance with the bacterial cell activity in the tank, and the productivity was not high.

〔発明の目的〕[Purpose of the invention]

本発明は前記現状に鑑みてなされたもので、その目的と
するところは培養中の基質流加量を適正に制御すること
により、酵母の菌体生産効率の向上を可能にする方法及
び装置を提供するものである。
The present invention has been made in view of the above-mentioned current situation, and its purpose is to provide a method and apparatus for improving yeast cell production efficiency by appropriately controlling the amount of substrate fed during culture. This is what we provide.

〔発明の概要〕[Summary of the invention]

本発明の目的を達成するための基質流加方法はエタノー
ル等の副生成物の生成をRQの上昇により検知し、基質
流加量を減少させるか零にし、つぎに生成した副生成物
が酵母により資化されたのを溶存酸素濃度の上昇で検知
し、基質流加量を増加させることを特徴とする方法であ
る。
The substrate fed-batch method for achieving the purpose of the present invention detects the production of by-products such as ethanol by increasing RQ, reduces or eliminates the amount of substrate fed, and then the generated by-products are transferred to yeast. This method is characterized by detecting the assimilation by the increase in dissolved oxygen concentration and increasing the amount of substrate fed.

つぎに本発明方法を詳細に説明する。本制御方法を実施
するには、エタノールの生成及び消費を迅速に知る必要
があるが、現在のところ培養液中のエタノール濃度を直
接かつ迅速に測定する有効な手段がない。そこで、本発
明者らはエタノールの生成をRQで検知するとともに、
エタノールの酵母による消費により溶存酸素濃度が急激
に−に昇する現銀髪発見し、本発明の至ったものである
Next, the method of the present invention will be explained in detail. To implement this control method, it is necessary to quickly know the production and consumption of ethanol, but at present there is no effective means to directly and quickly measure the ethanol concentration in the culture solution. Therefore, the present inventors detected the production of ethanol using RQ, and
The present invention was based on the discovery that the dissolved oxygen concentration rapidly rises to - due to the consumption of ethanol by yeast.

糖を基質とした酵母培養において、RQ=1.0の場合
は良好な菌体増殖を示し、RQ>1.0の場合は炭酸ガ
スの生成量が多いことからエタノールの生成を示してい
る。そこで、RQ>1.0の場合はエタノールが生成し
たとして、基質流加を減少または停止する。一方、RQ
>1.Oの場合は基質不足か、生成したエタノールを酵
母が資化しているかどちらかであり、エタノールを酵母
が完全に消費したかどうかを判定できない。しかし、基
質流加を減少または停止させた状態で培養液中のエタノ
ールが酵母に完全に資化されると、酵母による酸素消質
量が減少するため、溶存酸素濃度が急激に上昇する。こ
の溶存酸素濃度の急激な上昇を検知することにより、エ
タノールの完全消費を推81すし、基質流加を増加させ
るのである。
In yeast culture using sugar as a substrate, RQ = 1.0 indicates good cell growth, and RQ > 1.0 indicates ethanol production since a large amount of carbon dioxide gas is produced. Therefore, if RQ>1.0, it is assumed that ethanol has been produced, and the substrate feeding is reduced or stopped. On the other hand, RQ
>1. In the case of O, either the substrate is insufficient or the yeast is assimilating the produced ethanol, and it cannot be determined whether the yeast has completely consumed the ethanol. However, when the ethanol in the culture solution is completely assimilated by the yeast while substrate feeding is reduced or stopped, the amount of oxygen quenched by the yeast decreases, resulting in a rapid increase in the dissolved oxygen concentration. By detecting this rapid increase in dissolved oxygen concentration, complete consumption of ethanol is predicted and the substrate feeding is increased.

実験例を第1図に示す。培養開始2.5時間で、RQが
1.0を越え、エタノールの生成が検知された。このと
き、エタノール濃度は9 g / Q以上に達しており
、阿糖収率は低下する傾向にあった。
An experimental example is shown in FIG. 2.5 hours after the start of culture, RQ exceeded 1.0 and ethanol production was detected. At this time, the ethanol concentration had reached 9 g/Q or more, and the acanthose yield tended to decrease.

そこで、3111間口から菌体量当りの、11i4質流
加速度(α値と称す)を零として基質流加を停止し、生
成したエタノールを酵母に資化させた。培養開始から5
時間目には、それまでほぼ4〜5m3/Qの範囲に制御
されていたl)O濃度が急速に」二昇し、エタノールの
資化が検知されたので、基質流加を再開した。基質流加
の停止時間中、対析f収皐は増加傾向にあり、基質流加
再開時に最大値0.53となった。
Therefore, the substrate feeding was stopped by setting the 11i4 mass flow acceleration (referred to as α value) per bacterial cell amount to zero from the 3111 frontage, and the produced ethanol was assimilated by the yeast. 5 from the start of culture
At the time, the O concentration, which had been controlled in the range of approximately 4 to 5 m3/Q, rose rapidly and assimilation of ethanol was detected, so substrate feeding was restarted. During the suspension time of substrate feeding, the analytical f yield tended to increase and reached a maximum value of 0.53 when substrate feeding was restarted.

本発明に用いら汎る基質としてグルコース、フラグ1〜
−ス、シュクロース及び工業用原料の糖蜜等がある。ま
た、副原料として通常の培養に用いられる硫安、尿素、
アンモニア水、リン酸−カリウム、酵母エキス、硫酸マ
グネシウム、硫酸第1鉄及び各種ビタミン、ミネラルナ
どがある。
As a general substrate used in the present invention, glucose, flag 1 to
-sugar, sucrose, and industrial raw material molasses. In addition, ammonium sulfate, urea, and
Examples include ammonia water, potassium phosphate, yeast extract, magnesium sulfate, ferrous sulfate, and various vitamins and minerals.

本発明方法のJt’f養装置例を第2図に示t、J11
養4曹1内に種菌を入れ、基質タンク7より基質を基質
供給ポンプ8により供給する。この時、人1−1酸素分
圧測定器5、人ロガス址測定器6.出ロガスの酸素分圧
測定器11.炭酸ガス分圧測定器12、排ガス量測定器
13からのデータを制御用電子側算機4に入れてRQt
&算出し、こAしからα値を変更して基質流加速度を制
御し、その速度に応じて基質供給ポンプ8を稼働させる
。副生成物の生成が検知され、基質流加が微少、あるい
は零にな−ノている場合は、溶存酸素センサ9の信号を
溶存酸素計10で検知して電子n1W機4に送り、その
変化からα値を変えて基質流加速度を制御する。また培
養中は、菌体に酸素が充分に供給されるように、2mg
/Q以」:に維持する必要があるが、これは電子計算機
4に送られた溶存酸素濃度データから撹拌機2で回転数
、酸素分離機3に上り入(−1ガス酸素′a度と人1」
ガス凧を制御ずろことによりrl)存酸素濃度を・定値
に維持する7 〔発明の実施例〕 以l:、本発明の一実施例を其体的に説明するが、本発
明はこれによりなんら限定さAしるものではなし16 菌体;’Saccharomyces cerev、1
Sjae ()(ン酵母)培地;グルT1−ス500g
、尿A 53 、75 g、Na211P(1,−21
1,025g、MgSO4・7tl、0 0.5 g、
KCρ5.5g、クエン酸ナトリウム62.5 g 、
酵母エキス12.2g、ビタミン液25mQ及びミネラ
ル液25mQを水道水IQに加え、溶解し、pH5,0
に調整した。
An example of a Jt'f culturing device according to the method of the present invention is shown in FIG.
Inoculum is placed in a tank 1, and a substrate is supplied from a substrate tank 7 using a substrate supply pump 8. At this time, the person 1-1 oxygen partial pressure measuring device 5, the human log gas measuring device 6. Output log gas oxygen partial pressure measuring device 11. The data from the carbon dioxide gas partial pressure measuring device 12 and the exhaust gas amount measuring device 13 are input into the control electronic side calculator 4 and RQt
& is calculated, and from this point the α value is changed to control the substrate flow acceleration, and the substrate supply pump 8 is operated according to the speed. When the production of by-products is detected and the substrate feeding is very small or zero, the signal from the dissolved oxygen sensor 9 is detected by the dissolved oxygen meter 10 and sent to the electronic N1W machine 4, and the change is detected. The substrate flow acceleration is controlled by changing the α value from . Also, during culturing, 2 mg of
/Q': However, this is determined from the dissolved oxygen concentration data sent to the electronic computer 4, which determines the rotation speed of the stirrer 2 and the flow rate of the oxygen into the oxygen separator 3 (-1 gas oxygen 'a degree). Person 1”
By controlling the gas kite rl) Maintaining the existing oxygen concentration at a constant value 7 [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be explained in detail, but the present invention does not have any effect on this. Not limited to A 16 Bacterial body; 'Saccharomyces cerev, 1
Sjae (yeast) medium; glucose T1-su 500g
, urine A 53 , 75 g, Na211P(1,-21
1,025g, MgSO4・7tl, 0 0.5g,
KCρ5.5g, sodium citrate 62.5g,
Add 12.2 g of yeast extract, 25 mQ of vitamin liquid, and 25 mQ of mineral liquid to tap water IQ, dissolve, and adjust to pH 5.0.
Adjusted to.

但し、ビタミン液はビオチン0.04g、ビタミンB、
0.08g、ビタミンB62.0g、パン1〜テン酸カ
ルシウA+、、Og及びイノシ1−−ル20gを蒸留4
<tQに溶解して作成し、ミネラル液はCuSO4・5
 +1200.05、Zr+SO4・7412(] O
08g及びFeSO4,(N114 ) 2 ・611
200.3 gを蒸留水IQに溶解して作成した。
However, the vitamin liquid contains 0.04g of biotin, vitamin B,
Distilled 0.08 g, vitamin B 62.0 g, bread 1 to calcium thenate A+, Og and boar 1-- 20 g
<Made by dissolving in tQ, mineral liquid is CuSO4.5
+1200.05, Zr+SO4・7412(] O
08g and FeSO4, (N114) 2 ・611
It was prepared by dissolving 200.3 g in distilled water IQ.

j9養条件;50Q溶ジャーファーメンタ−を用い、温
度30℃、Pt(5,O2溶存酸素濃度を撹拌機回転数
、通気ガスの酸素分圧及び通気量により4〜6IIIg
/Q、の範囲に制御した。なお、通気ガスの酸素分圧は
エアーコンプレッサと酸素ボンベを用いて変化させた。
j9 Cultivation conditions: using a 50Q melting jar fermenter, temperature 30℃, Pt (5, O2 dissolved oxygen concentration depending on stirrer rotation speed, oxygen partial pressure of aeration gas and aeration amount)
/Q. Note that the oxygen partial pressure of the ventilation gas was changed using an air compressor and an oxygen cylinder.

槽内圧は0.5 Kg/c…2【;に、排ガス炭酸ガス
濃度は20%以内に制御した。初発液量は15Qとし、
初発菌体濃度は50g/Q、菌体当りの)、(質流加速
度は0.3g7g・11にした。
The tank internal pressure was controlled at 0.5 Kg/c...2[; and the exhaust gas carbon dioxide concentration was controlled within 20%. The initial liquid volume is 15Q,
The initial bacterial cell concentration was 50 g/Q (per bacterial cell), and the mass flow acceleration was 0.3 g/7 g/11.

結果;6時間培養#r点で、エタノール濃度0[/Qと
し、最終対糖収率0,44どすることがてきた。このと
き、流加したクルコースの99.8%が消費され、菌体
濃度は6G、3HC/Qに達した。
Results: At point #r of the 6-hour culture, the ethanol concentration was set to 0/Q, and the final sugar yield was 0.44. At this time, 99.8% of the fed crucose was consumed and the bacterial cell concentration reached 6G, 3HC/Q.

〔発明の効果〕〔Effect of the invention〕

本発明は、最終的に副生成物を少なくするJ、(質流用
制御が可能になるため、最#苅糖収率を向」二させた菌
体tit養が達成できる効果があり、J(f1槽の生産
性を向上できる。
The present invention has the effect of achieving microbial cell tit cultivation that improves the maximum sugar yield by finally reducing the amount of by-products. The productivity of the f1 tank can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実験例を表わす図、第2図は本発明の
培養装置例の概略図である。 1・・・培養槽、2・・・撹拌機、3・・・酸素分離機
、4・・・制御用電子橿算機、5・・・酸素分圧測定機
、G・・入ロガス星測定器、7・・・基質タンク、8・
・・基質供給ポンプ、−9・・・溶存酸素センサ、10
・・・溶存酸素n1、■1・・酸素分圧測定器、12・
・・炭酸ガス分圧測定器、13・・・4Jliガスi 
atII定器、14,15,16゜17・・・導管。
FIG. 1 is a diagram showing an experimental example of the present invention, and FIG. 2 is a schematic diagram of an example of a culture apparatus of the present invention. 1...Culture tank, 2...Agitator, 3...Oxygen separator, 4...Electronic control computer, 5...Oxygen partial pressure measuring device, G...Incoming log gas star measurement vessel, 7...substrate tank, 8.
... Substrate supply pump, -9 ... Dissolved oxygen sensor, 10
...Dissolved oxygen n1, ■1...Oxygen partial pressure measuring device, 12.
・・Carbon dioxide gas partial pressure measuring device, 13...4Jli gas i
atII gauge, 14, 15, 16° 17... conduit.

Claims (1)

【特許請求の範囲】 J、酵母の好気的な培養に際し、培養槽へ基質を流加す
るにあたり、副生成物が生成した場合は基質流加量を下
げ、副生成物が酵母ににり資化された場合は基質流加量
を上げるj8芥方法において、副生成物の生成を呼吸商
(RQ)で、酵母による副生成物の資化を溶存酸化(1
−)O)濃度の上昇で検知することを特徴とする基質流
加制御方法。 2、入口ガス及び出口ガスの流速を測定し、出力の伝達
可能な機能を有する六〇及び出i」ガス流速a1り定装
置16、入Iコカス及び出口ガス中の酸素及び炭酸ガス
濃度又は分圧を測定し、出力の伝達口r能な機能を有す
る酸素、炭酸ガス分析装置、培養液中の溶存酸素濃度を
測定し、出力の伝達可能な機能を有する溶存酸素司度i
1+11定装置、人[1及び出口ガスの流速測定装量、
入口及び出口ガス中の酸素及び炭酸ガス分析装置及び溶
存酸素濃度測定装置からの入力信号を用いて演算し9.
その結果を出力信号として基質供給装置に出力する機能
を有する制御装置から成ることを特徴とする基質流加制
御装置。
[Claims] J. When aerobically cultivating yeast, if by-products are generated when feeding substrates into the culture tank, reduce the amount of substrate feeding and prevent the by-products from sticking to the yeast. In the case of assimilation, increase the amount of substrate fed.
-) O) A substrate feeding control method characterized by detecting an increase in concentration. 2. Measuring the flow rate of inlet gas and outlet gas, and measuring the oxygen and carbon dioxide concentration in the inlet and outlet gases. Oxygen and carbon dioxide analyzer with functions to measure pressure and transmit output; dissolved oxygen analyzer with functions to measure dissolved oxygen concentration in culture solution and transmit output
1+11 constant device, person [1 and outlet gas flow rate measurement equipment,
9. Calculate using input signals from the oxygen and carbon dioxide gas analyzer and dissolved oxygen concentration measuring device in the inlet and outlet gases.
A substrate fed-batch control device comprising a control device having a function of outputting the result as an output signal to a substrate supply device.
JP19907683A 1983-10-26 1983-10-26 Flow feed control of substrate and its device Granted JPS6091979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19907683A JPS6091979A (en) 1983-10-26 1983-10-26 Flow feed control of substrate and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19907683A JPS6091979A (en) 1983-10-26 1983-10-26 Flow feed control of substrate and its device

Publications (2)

Publication Number Publication Date
JPS6091979A true JPS6091979A (en) 1985-05-23
JPH0449995B2 JPH0449995B2 (en) 1992-08-13

Family

ID=16401703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19907683A Granted JPS6091979A (en) 1983-10-26 1983-10-26 Flow feed control of substrate and its device

Country Status (1)

Country Link
JP (1) JPS6091979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891310A (en) * 1985-03-25 1990-01-02 Hitachi, Ltd. Method of controlling culture
JPH0249582A (en) * 1988-05-20 1990-02-19 Kanegafuchi Chem Ind Co Ltd Culture process to activate lipase activity in microbial cell
JPH07106141B2 (en) * 1985-08-15 1995-11-15 アムジエン Media and methods for enhancing expression of foreign gene products from yeast cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891310A (en) * 1985-03-25 1990-01-02 Hitachi, Ltd. Method of controlling culture
JPH07106141B2 (en) * 1985-08-15 1995-11-15 アムジエン Media and methods for enhancing expression of foreign gene products from yeast cells
JPH0249582A (en) * 1988-05-20 1990-02-19 Kanegafuchi Chem Ind Co Ltd Culture process to activate lipase activity in microbial cell
JPH0755149B2 (en) * 1988-05-20 1995-06-14 鐘淵化学工業株式会社 Culture method for increasing lipase activity in cells

Also Published As

Publication number Publication date
JPH0449995B2 (en) 1992-08-13

Similar Documents

Publication Publication Date Title
Chen et al. Carbon dioxide inhibition of yeast growth in biomass production
US5912113A (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
Bauer et al. Maximal exponential growth rate and yield of E. coli obtainable in a bench‐scale fermentor
US4064015A (en) Control of biosynthesis in submerged culture
CN102296102B (en) Control method for gluconate production by microbiological method
EP0052890B1 (en) Process and apparatus for controlling cultivation of microorganisms
JPS61219379A (en) Method of controlling culture and device therefor
CN102533889B (en) Method for continuously fermenting lysine
US3384553A (en) Method and equipment for aerobic fermentation on liquid culture mediums
JPS6091979A (en) Flow feed control of substrate and its device
JPS5878584A (en) Flow addition controlling method of cultivation substrate and apparatus
CN116540533A (en) Digital twin technology-based fermentation dissolved oxygen concentration optimization control method
CN104250617A (en) Microalga breeding method
Milner et al. Oxygen transfer conditions in the production of alpha-amylase by Bacillus amyloliquefaciens
JPH06261741A (en) Method of multiplying microorganism
CN114507609B (en) Method for improving yield of phospholipase C protein
CN1041534C (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of microorganism
JP2932791B2 (en) Method and apparatus for controlling carbon source concentration in microbial aerobic culture
US3118821A (en) Citric acid production
JPS61104782A (en) Control of cultivation of microorganism
CN103509883A (en) Novel feeding regulation and control process applicable to multiple microorganism fermentation
JPS60141283A (en) Cultivation of yeast
JPS61173772A (en) Apparatus for controlling flow addition of cultivation substrate
Hensirisak Jr Scale-up the use of a microbubble dispersion to increase oxygen transfer in aerobic fermentation of Baker's yeast
John et al. Co-immobilized aerobic/anaerobic mixed cultures in stirred tank and gaslift loop reactors