JPS60141283A - Cultivation of yeast - Google Patents
Cultivation of yeastInfo
- Publication number
- JPS60141283A JPS60141283A JP24552983A JP24552983A JPS60141283A JP S60141283 A JPS60141283 A JP S60141283A JP 24552983 A JP24552983 A JP 24552983A JP 24552983 A JP24552983 A JP 24552983A JP S60141283 A JPS60141283 A JP S60141283A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- yeast
- substrate
- estimated
- yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は酵母の培養方法に関するものである。[Detailed description of the invention] The present invention relates to a method for culturing yeast.
一般に糖質を主炭素源とする酵母の通気培養においては
、例えばパン酵母の培養におけるように基質を連続的あ
るいは間歇的に供給する方法が行われている。基質の供
給方法については、従来の経験から、培養前に適当な供
給速度を設定しておき、それに基いて基質を供給してい
く方法がとられている。Generally, in the aerated culture of yeast using carbohydrates as the main carbon source, a method is used in which a substrate is supplied continuously or intermittently, as in the case of, for example, the culture of baker's yeast. As for the method of supplying the substrate, based on conventional experience, a method is used in which an appropriate supply rate is set before culturing, and the substrate is supplied based on that rate.
しかしながら、糖質を基質として酵母を培養する場合、
基質の供給量が過剰になると供給した糖分はエタノール
に変換される。これを好気的発酵と称する。そのため供
給した基質量に対する酵母菌体の生成収率(対糖収率)
が低下する。また、基質の供給量が不足すると酵母は基
質飢餓の状態になり、生産性が低下する。However, when culturing yeast using carbohydrates as a substrate,
When the amount of substrate supplied becomes excessive, the supplied sugar is converted to ethanol. This is called aerobic fermentation. Therefore, the production yield of yeast cells relative to the amount of substrate supplied (yield relative to sugar)
decreases. Furthermore, when the amount of substrate supplied is insufficient, yeast enters a state of substrate starvation and productivity decreases.
従って酵母の培養では、好気的発酵によるエタノールの
生成を抑制しつつ、基質供給量を過不足なく制御するこ
とが望ましい。Therefore, in culturing yeast, it is desirable to control the amount of substrate supplied to just the right amount while suppressing the production of ethanol by aerobic fermentation.
近年、排ガス中の酸素濃度と炭酸ガス濃度を測定し、消
費された酸素量に対する生成した社奔茫・ Jミ
した炭酸ガス量のモル比(呼吸商=RQ)を指標として
基質供給速度を制御する方法が提案された。In recent years, the concentration of oxygen and carbon dioxide in exhaust gas has been measured, and the rate of substrate supply has been controlled using the molar ratio of the amount of carbon dioxide produced to the amount of oxygen consumed (respiratory quotient = RQ) as an index. A method was proposed.
RQ、は単位菌体、単位時間あたりの炭酸ガス生成量(
Q co、)と酸素消費量(Qo、)の比をとることに
よりめられる値であるから、直接菌体量をめる必要がな
いという点が、オンライン計測制御を行う上で有利であ
る。しかしながら、炭酸ガス発生速度(100*) を
酸素消費速度(工0.)の絶対値は菌体量および菌体の
増殖速度によって大きく変動する。また、基質の要求量
も菌体量および菌体の増殖速度によって大きく変動する
。そのために、単なる基質添加のオン−オフ制御では、
菌体量の少ない場合には、基質の供給量に比べ′RQの
値が大きく振動し、菌体量が多くなれば基質の供給不足
を招くおそれがある。RQ is the amount of carbon dioxide produced per unit cell and unit time (
Since it is a value determined by taking the ratio of Q co, ) and oxygen consumption (Qo, ), there is no need to directly calculate the amount of bacterial cells, which is advantageous for online measurement control. However, the absolute values of the carbon dioxide gas generation rate (100*) and the oxygen consumption rate (0.0) vary greatly depending on the amount of bacterial cells and the growth rate of the bacterial cells. In addition, the amount of substrate required varies greatly depending on the amount of bacterial cells and the growth rate of the bacterial cells. For this reason, simple on-off control of substrate addition requires
When the amount of bacterial cells is small, the value of 'RQ fluctuates greatly compared to the amount of substrate supplied, and when the amount of bacterial cells increases, there is a risk of insufficient supply of substrate.
以上のようなことを防ぐためには、酵母の増殖速度およ
び菌体量に応じて基質の供給速度を上げてやることが望
ましいといえる。In order to prevent the above-mentioned problems, it is desirable to increase the substrate supply rate according to the growth rate and the amount of yeast cells.
しかしながら、培養中の菌体量をオンラインで推定する
ことは、技術的に多くの問題があり、特に菌体濃度が高
くなってくると困難である。そのため種々のデータから
菌体量を推定するという方法が考えられる。一般に、微
生物の増殖量を推定する方法として、炭酸ガスの発生量
や酸素の消費量から計算する方法が行われているが、酵
母の場合、酸素呼吸による増殖の収率と、発酵による増
殖の収率が大きく違い、しかも通気攪拌条件下でも、糖
の供給量により呼吸と発酵が同時におこるので、単なる
炭酸ガス発生量や酸素消費量のみでは、菌体の増殖量を
推定することができない。そこで、オンラインでの菌体
量を迅速簡便かつ精度よく推定する方法について検討し
た結果、酵母の糖代謝の物質収支を考慮することにより
、酵母菌体の増殖収率をRQの函数として表わし、その
値を用い、流入基質量から酵母の増殖菌体量を推定する
方法を考案した。以下にその理論的根拠について述べる
。However, there are many technical problems in estimating the amount of bacterial cells in culture online, and it is particularly difficult when the bacterial cell concentration becomes high. Therefore, a method of estimating the amount of bacterial cells from various data can be considered. Generally, the method of estimating the growth rate of microorganisms is to calculate it from the amount of carbon dioxide gas generated and the amount of oxygen consumed, but in the case of yeast, the yield of growth due to oxygen respiration and the rate of growth due to fermentation Yields vary greatly, and even under aeration and agitation conditions, respiration and fermentation occur simultaneously depending on the amount of sugar supplied, so the amount of bacterial growth cannot be estimated by simply measuring the amount of carbon dioxide gas produced or the amount of oxygen consumed. Therefore, as a result of considering a method for estimating the amount of bacterial cells online, quickly, easily, and accurately, we found that by considering the mass balance of sugar metabolism in yeast, the growth yield of yeast cells can be expressed as a function of RQ, and the Using this value, we devised a method to estimate the amount of yeast cells proliferating from the amount of inflow substrate. The rationale for this is described below.
酵母をグルツースを炭素源として好気的に培養すると、
一般にパスツール効果に基き酸素により発酵が抑えられ
る。しかしながら、糖の摂取量が多くなると酸素が存在
しても発酵がおこる(この現象をクラブトリー効果と呼
び、この状態でおこるエタノール発酵を好気的発酵と称
する)。When yeast is cultivated aerobically using gluten as a carbon source,
Fermentation is generally suppressed by oxygen based on the Pasteur effect. However, when the amount of sugar intake increases, fermentation occurs even in the presence of oxygen (this phenomenon is called the Crabtree effect, and ethanol fermentation that occurs in this state is called aerobic fermentation).
酵母が酸素呼吸のみで増殖しているときの物質収支式は
次のように表わされる。The mass balance equation when yeast is growing only by oxygen respiration is expressed as follows.
C6)112011(クンレコース)+602→600
2+6糧0−1−!+8ATP・・・・・・ (1)マ
タ、エタノール発酵のみで増殖しているs合の物質収支
は次のように表わされる。C6) 112011 (Kunle course) +602 → 600
2+6 food 0-1-! +8ATP... (1) The mass balance of mata and the s-coat grown only by ethanol fermentation is expressed as follows.
’aHn06(?7カース)→2002+20H30H
,,OH+2ATP・・・・・・(2)ここで酸素呼吸
による002発生をQc O,(ox、 )、酸素消費
をQO2、発酵による0C12発生をQco、(Far
m )とすると、酸素呼吸のみの増殖の場合のRQの値
は次のようになる。'aHn06 (?7 curse) → 2002+20H30H
,,OH+2ATP...(2) Here, 002 generation due to oxygen respiration is Qc O, (ox, ), oxygen consumption is QO2, and 0C12 generation due to fermentation is Qco, (Far
m), the value of RQ in the case of growth with only oxygen respiration is as follows.
RQ = Qc o、 (ox、 )/ QO,= 1
発酵のみの増殖の場合のRQの値は次のようになる。RQ = Qco, (ox, )/QO, = 1
The value of RQ in the case of growth by fermentation only is as follows.
RQ= QQOt (Ferm )/Q(1,=CD
(Qo、=Oであるから)呼吸と発酵が同時におこって
いる場合のRQ値は次のようになる。RQ= QQOt (Ferm)/Q(1,=CD
(Since Qo, =O), the RQ value when respiration and fermentation occur simultaneously is as follows.
呼吸による収率をYOX、、発酵による収率をyy、r
、とすると+1)、(21式よりYF8r、コYox−
9
となる。Yield by respiration is YOX, yield by fermentation is yy, r
, then +1), (from equation 21, YF8r, koYox- 9 ).
ここで、呼吸と発酵が同時におこっている場合の菌体の
増殖収率をYとすると
となる。一般にYox、’: 0.5とされているので
、これを(3)式に代入すると、
となる。Here, let Y be the growth yield of bacterial cells when respiration and fermentation occur simultaneously. Generally, Yox,': 0.5, so substituting this into equation (3) yields the following.
この値に基いて菌体濃度を推定すると次のようになる。Estimating the bacterial cell concentration based on this value is as follows.
X=Xo十戸(’、’””” (FSi−(v+av)
S)/。385RQ−2
(v−)av) ) at・・・・・・・・・・・・(
5)ここでXは時間tにおける菌体濃度〔り//)、x
Oは初発菌体濃度〔り/l〕、アは基質添加の流量(1
/ hr)、sRは添加液の基準濃度C9/l”)、S
は槽内の残存基質濃度〔シ/l)、vは最初の培養液量
[j?)、aVはt時間における液量の増加屑1’)を
表わす。X=Xo ten houses (','””” (FSi-(v+av)
S)/. 385RQ-2 (v-)av) ) at・・・・・・・・・・・・(
5) Here, X is the bacterial cell concentration at time t, x
O is the initial bacterial concentration [l/l], and A is the flow rate of substrate addition (1
/ hr), sR is the standard concentration of the additive solution C9/l”), S
is the residual substrate concentration in the tank [sh/l], and v is the initial culture solution volume [j? ), aV represents the increase in liquid volume 1') at time t.
(lV=F(it となる。(lV=F(it becomes.
実際の培養系においては、排ガス中の炭酸ガス濃度およ
び酸素濃度を測定し、その値からRQの値を計算し、そ
れが1の近辺(例えば1.0〜1.5、好ましくは1.
05〜1.10の範囲になるように、基質の添加量を制
御する。さらにRQの値と添加液の流量から(5)式に
基いて菌体濃度を計算し、その値に基き、添加液の流量
を変化させることができる。以上のことは、計算機によ
り培養の計測制御を行うことにより、容易に実行可能で
あり、計算も簡単であるという利点を有する。In an actual culture system, the carbon dioxide concentration and oxygen concentration in the exhaust gas are measured, the RQ value is calculated from the measured values, and the RQ value is approximately 1 (for example, 1.0 to 1.5, preferably 1.
The amount of substrate added is controlled to be in the range of 0.05 to 1.10. Furthermore, the bacterial cell concentration can be calculated based on equation (5) from the value of RQ and the flow rate of the additive liquid, and the flow rate of the additive liquid can be changed based on the calculated value. The above has the advantage that it can be easily carried out by controlling culture measurement using a computer, and calculations are also simple.
第1図は本発明の方法に従った酵母の培養の制御方法を
示すフレーチヤードである。図中■は鳴およびCO2濃
度値入力の工程を、■はRQ、の値の計算、■は収率Y
の値を計算、■は菌体量Xの値を計算する過程をそれぞ
れ示し、■はポンプ停止の工程を、■はポンプ作動時間
を決定(t=kx)の過程を、■はポンプ作動の工程を
示す。FIG. 1 is a frame diagram showing a method for controlling yeast culture according to the method of the present invention. In the figure, ■ indicates the process of inputting the ring and CO2 concentration values, ■ indicates the calculation of the value of RQ, and ■ indicates the yield Y.
■ indicates the process of calculating the value of the bacterial mass X, ■ indicates the process of stopping the pump, ■ indicates the process of determining the pump operating time (t = kx), Show the process.
以下実際の培養例を説明する。An actual culture example will be explained below.
実施例1
菌体としてパン酵母(Saccharomyces c
erevl、s:Iae。Example 1 Baker's yeast (Saccharomyces c.
erevl,s:Iae.
■To 2044 )を用い、培地としてグルコース(
最初の仕込R) 10 c’/l+硫酸アンモニウム2
9/l!、リン酸カリウム19/l、硫酸マグネシウム
0.59/l!、塩化ナトリウム0.1f7/J、塩化
カルシウム・2水塩0.1り/lに各種ビタミン。■To 2044) was used, and glucose (To 2044) was used as the medium.
Initial charge R) 10 c'/l + ammonium sulfate 2
9/l! , potassium phosphate 19/l, magnesium sulfate 0.59/l! , sodium chloride 0.1f7/J, calcium chloride dihydrate 0.1l/l, and various vitamins.
金属塩を溶解したものを用いた。A solution containing a metal salt was used.
培養条件は、14j’容ジヤー7アーメンターを用い、
温度30℃、pm5.oに制御した。排ガスの分析値か
らRQを計算し、この値が1.05以下となったとき基
質添加ポンプを作動させ、1.10以下となったとき停
止させた。またRQの値と基質の添加速度から菌体量を
計算し、それに比例して基質の添加速度(ポンプの・作
動時間)を上昇させた。The culture conditions were as follows: using a 14j' jar 7 armer;
Temperature 30°C, pm5. It was controlled to o. RQ was calculated from the analysis value of the exhaust gas, and when this value was 1.05 or less, the substrate addition pump was activated, and when it was 1.10 or less, it was stopped. In addition, the amount of bacterial cells was calculated from the RQ value and the substrate addition rate, and the substrate addition rate (pump operation time) was increased in proportion to it.
結果は培養110時間で菌体濃度479/l。The result was a bacterial cell concentration of 479/l after 110 hours of culture.
菌体収率は(L48(g菌体/gグルコース〕であった
0
培養途中で培養液を採取し、濁度法により菌体重量を測
定したところ、RQ値に基いて推定した値とよく一致し
た。The bacterial cell yield was (L48 (g bacterial cells/g glucose).0 When the culture solution was collected during the culture and the bacterial weight was measured by the turbidity method, it was found to be similar to the value estimated based on the RQ value. Agreed.
以上の培養において、計測、制御等はパーソナルコンピ
ューターを用いて行った。In the above culture, measurements, controls, etc. were performed using a personal computer.
第1図は本発明の方法の工程を説明する図である。
特許出願人 東洋曹達工業株式会社
図面の浄書(内容に変更なし)
第11ゾ
特開昭GO−141283(4)
手続補正書(方式)
%式%
1事件の表示
昭和58年特許願第245529号
2発明の名称
酵母の培養方法
ろ補正をする者
事件との関係 特許出願人
住所〒746 山口県新南陽市大字富田II 560番
地東洋曹達工業株式会社 特許情報部
電話番号(585)3311
6補正の対象
(1)明細書全文
(2)図面全文
7補正の内容
別紙の通り(内容に変更なく、明細書についてはタイプ
浄書を、図面については製図用黒インクによる図面をそ
れぞれ提出するもの)68添付書類の目録
(1)浄書明細書 1通
(2)浄書図面 1通FIG. 1 is a diagram explaining the steps of the method of the present invention. Patent applicant: Toyo Soda Kogyo Co., Ltd. Engraving of drawings (no change in content) No. 11 JP-A-Sho GO-141283 (4) Procedural amendment (method) % formula % 1 Indication of case Patent Application No. 245529 of 1982 2 Name of the invention Yeast cultivation method Relationship with the case concerning the person making the amendments Patent applicant address 560 Oaza Tomita II, Shinnanyo City, Yamaguchi Prefecture 746 Toyo Soda Kogyo Co., Ltd. Patent Information Department Telephone number (585) 3311 6 Amendments Target (1) Full text of the specification (2) Full text of the drawings 7 Contents of amendments As shown in the attached sheet (no changes to the content, type engravings are to be submitted for the specification, and drawings in black drafting ink are to be submitted for the drawings) 68 Attachment List of documents (1) 1 copy of engraving specification (2) 1 copy of engraving drawings
Claims (2)
いて、呼吸商の値から菌体収率を推定し、推定した収率
と基質の流加量から酵母菌体量を推定し、菌体量及びそ
の変化に応じて培養基質の流加を行うことを特徴とする
酵母の培養方法。(1) In the method of culturing yeast while feeding a culture substrate, the bacterial yield is estimated from the value of the respiratory quotient, the amount of yeast cells is estimated from the estimated yield and the feeding amount of the substrate, and the bacterial cell yield is estimated from the value of the respiratory quotient. A method for culturing yeast, characterized by feeding a culture substrate according to the body mass and changes thereof.
より少なくなる様に、かつ菌体量の推定値が大きくなる
に従い流加基質の量がより多くなる様に制御する、特許
請求の範囲第1項記載の培養方法。(2) Control the amount of fed-batch substrate so that it becomes smaller while the estimated value of bacterial mass is small, and so that the amount of fed-batch substrate increases as the estimated value of bacterial mass increases. , the culture method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24552983A JPS60141283A (en) | 1983-12-28 | 1983-12-28 | Cultivation of yeast |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24552983A JPS60141283A (en) | 1983-12-28 | 1983-12-28 | Cultivation of yeast |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60141283A true JPS60141283A (en) | 1985-07-26 |
JPH0368670B2 JPH0368670B2 (en) | 1991-10-29 |
Family
ID=17135040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24552983A Granted JPS60141283A (en) | 1983-12-28 | 1983-12-28 | Cultivation of yeast |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60141283A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01165368A (en) * | 1987-11-09 | 1989-06-29 | Eastman Kodak Co | Fermentation method of controlled proliferation speed |
JPH0249582A (en) * | 1988-05-20 | 1990-02-19 | Kanegafuchi Chem Ind Co Ltd | Culture process to activate lipase activity in microbial cell |
JPH07106141B2 (en) * | 1985-08-15 | 1995-11-15 | アムジエン | Media and methods for enhancing expression of foreign gene products from yeast cells |
WO2002074933A1 (en) * | 2001-03-19 | 2002-09-26 | Sapporo Breweries Limited | Ribonucleic acid-enriched brewer's yeast cells and process for producing the same |
-
1983
- 1983-12-28 JP JP24552983A patent/JPS60141283A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07106141B2 (en) * | 1985-08-15 | 1995-11-15 | アムジエン | Media and methods for enhancing expression of foreign gene products from yeast cells |
JPH01165368A (en) * | 1987-11-09 | 1989-06-29 | Eastman Kodak Co | Fermentation method of controlled proliferation speed |
JPH0249582A (en) * | 1988-05-20 | 1990-02-19 | Kanegafuchi Chem Ind Co Ltd | Culture process to activate lipase activity in microbial cell |
JPH0755149B2 (en) * | 1988-05-20 | 1995-06-14 | 鐘淵化学工業株式会社 | Culture method for increasing lipase activity in cells |
WO2002074933A1 (en) * | 2001-03-19 | 2002-09-26 | Sapporo Breweries Limited | Ribonucleic acid-enriched brewer's yeast cells and process for producing the same |
US7135327B2 (en) | 2001-03-19 | 2006-11-14 | Sapporo Breweries Limited | Ribonucleic acid-enriched brewer's yeast cells and process for producing the same |
KR100855516B1 (en) * | 2001-03-19 | 2008-09-02 | 삿뽀로 홀딩스 가부시키가이샤 | Process for producing ribonucleic acid-enriched brewer's yeast cells |
CN100465265C (en) * | 2001-03-19 | 2009-03-04 | 札幌啤酒株式会社 | Ribonucleic acid-enriched brewer's yeast cells and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0368670B2 (en) | 1991-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeng et al. | A kinetic model for substrate and energy consumption of microbial growth under substrate‐sufficient conditions | |
Stouthamer et al. | Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes | |
Hempfling et al. | Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture | |
WO2004074495A1 (en) | Highly efficient hydrogen production method using microorganism | |
Von Stockar et al. | Large-scale calorimetry and biotechnology | |
Goodwin | Synchronization of Escherichia coli in a chemostat by periodic phosphate feeding | |
Hooijmans et al. | Determination of growth and coupled nitrification/denitrification by immobilized Thiosphaera pantotropha using measurement and modeling of oxygen profiles | |
JPS60141283A (en) | Cultivation of yeast | |
Eyer et al. | On‐line estimation of viable cells in a hybridoma culture at various DO levels using ATP balancing and redox potential measurement | |
Perez et al. | Carbon dioxide assimilation by Thiobacillus novellus under nutrient-limited mixotrophic conditions | |
Pedersen et al. | A novel technique based on 85Kr for quantification of gas—liquid mass transfer in bioreactors | |
Shibai et al. | Effects of oxygen and carbon dioxide on inosine fermentation | |
JPS5878584A (en) | Flow addition controlling method of cultivation substrate and apparatus | |
Miura et al. | Assimilation of liquid hydrocarbon by microorganisms. II. Growth kinetics | |
JPS6091979A (en) | Flow feed control of substrate and its device | |
US3816252A (en) | Process for the production of micro-organisms | |
CN103509883A (en) | Novel feeding regulation and control process applicable to multiple microorganism fermentation | |
WO2024122559A1 (en) | Cultivation behavior prediction method | |
Käppeli et al. | On the methodology of oxygen transfer coefficient measurments | |
Hoogerheide | Studies on the energy metabolism during the respiratory process by baker's yeast | |
O'BRIEN | Continuous monitoring of the biochemical oxygen demand of some organic wastes | |
Skotnicki et al. | Pathways of energy metabolism required for phenotypic expression of nif+ Kp genes in Escherichia coli | |
JPS6049792A (en) | Feeding culture of microorganism | |
JPH0333313B2 (en) | ||
Solomon et al. | Analysis of the growth of Trichosporon cutaneum on glucose: yield and maintenance requirements |