JPS6091774A - Zoom lens for solid-state image pickup camera - Google Patents
Zoom lens for solid-state image pickup cameraInfo
- Publication number
- JPS6091774A JPS6091774A JP58199764A JP19976483A JPS6091774A JP S6091774 A JPS6091774 A JP S6091774A JP 58199764 A JP58199764 A JP 58199764A JP 19976483 A JP19976483 A JP 19976483A JP S6091774 A JPS6091774 A JP S6091774A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- shift
- solid
- signal
- zoom lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は固体撮像素子を利用したカメラの解像度を高め
ることのできるズームレンズに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens that can improve the resolution of a camera using a solid-state image sensor.
’aaDなとの電荷転送素子をマ) IJクス配列され
た微小受光素子と組み合わせたいわゆる固体撮像素子を
利用したカメラにおいては、ど制限されてしまう。とこ
ろが、このような制限を超えて解像度を向上させる試み
として空間絵素ずらしの手法が知られている。例えば画
面水平方向での解像度を向上させるだめに、撮像素子光
電面における受光素子配列すなわち絵素配列の水平方向
ピッチの1/2ピッチ分だけ対物レンズによる像を横ず
らし移動させ、その移動の前後における画像信号出力を
合成して1画面を得る手法である。このような空間絵素
ずらしを行なうためには、対物レンズによる像と撮像素
子光電面との相対的移動のだめの構成が必要となるが、
従来方式では対物レンズ前面に光学クサビを出し入れさ
せたυ、あるいは同位置にガルバノミラ−などを配置し
てこれを振らせたりして行なっている。ところがこの方
式では対物レンズの焦点距離、すなわち像倍率によって
結像面での像移動量が異なってくることから、光学りサ
ビを対物レンズの焦点距離に応じて交換したり、あるい
はガルバノミラ−の振シ角を設定し直したりという煩雑
さが伴うことになる。In a camera using a so-called solid-state image pickup device combined with a charge transfer device such as ``AaD'' and a microscopic light-receiving device arranged in an IJ array, there are certain limitations. However, a method of spatial pixel shifting is known as an attempt to overcome these limitations and improve resolution. For example, in order to improve the resolution in the horizontal direction of the screen, the image formed by the objective lens is laterally shifted by 1/2 pitch of the horizontal pitch of the light-receiving element array on the photocathode of the image sensor, that is, the pixel array. This is a method to obtain one screen by combining the image signal outputs of. In order to perform such spatial pixel shifting, a configuration is required to allow relative movement between the image formed by the objective lens and the photocathode of the image sensor.
In the conventional method, an optical wedge is moved in and out of the front surface of the objective lens (υ), or a galvanometer mirror is placed at the same position and swung. However, in this method, the amount of image movement on the imaging plane differs depending on the focal length of the objective lens, that is, the image magnification, so it is necessary to replace the optical rust depending on the focal length of the objective lens, or change the vibration of the galvano mirror. This will involve the hassle of resetting the angle.
特に近来、対物レンズとして多用されているズームレン
ズを想定すると変倍のたびに絵素ずらし量を変えること
は構成の複雑さを招き、また信頼性の点からも不利であ
る。In particular, assuming a zoom lens, which has been frequently used as an objective lens in recent years, changing the amount of pixel shift each time the magnification is changed increases the complexity of the structure and is also disadvantageous in terms of reliability.
これに対し光学クサビなとの絵素ずらし素子を対物レン
ズと固体撮像素子との間に配置すると、変倍に伴う絵素
ずらし量の調整は不要となシ有利ではあるが、対物レン
ズと撮像素子との間に機械的スペースが必要になると共
に必然的に対物レンズのバックフォーカスの延長、後部
レンズの大口径化を招くことになり、カメラの軽量化、
コンパクト化の妨げになってしまう。On the other hand, if a pixel shifting element such as an optical wedge is placed between the objective lens and the solid-state image sensor, there is no need to adjust the amount of pixel shifting due to zooming. Mechanical space is required between the camera element and the back focus of the objective lens is inevitably extended, and the aperture of the rear lens becomes larger, which reduces the weight of the camera.
This will hinder compactness.
本発明は以上の事情に鑑みてなされたもので一固体撮像
カメラの高解像度化に有利なズームレンズを提供する。The present invention has been made in view of the above circumstances, and provides a zoom lens that is advantageous for increasing the resolution of solid-state imaging cameras.
このため本発明においては、ズームレンズの変倍操作に
左右されず、一定の絵素ずらし量が得られるようにズー
ムレンズのマスター系内の少なくとも1個のレンズを光
軸に対してシフトさせるように構成したものである。For this reason, in the present invention, at least one lens in the master system of the zoom lens is shifted with respect to the optical axis so that a constant pixel shift amount is obtained regardless of the zoom lens's magnification changing operation. It is composed of
以下、添付の図面を参照しつつ本発明の一実施例につい
て詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図は本発明の一実施例を示すもので、このズームレ
ンズはいわゆるズーム変倍部1とマスター部2とから成
る。なお3は結像面に配置された固体撮像素子を示す。FIG. 1 shows an embodiment of the present invention, and this zoom lens consists of a so-called zoom magnification variable section 1 and a master section 2. As shown in FIG. Note that 3 indicates a solid-state image sensor arranged on the imaging plane.
符号4はマスター部2内のレンズで空間絵素ずらしのた
めに光軸0に垂直な面内での変位、例えば図中矢印×方
向に移動可能に支持されたシフトレンズである。5は純
ニッケル、アルフェルなどの磁歪素子であシ、磁界がか
けられることによシ機械的な歪みが起生される。この磁
歪素子の一端部はシフトレンズ4に密着固定されている
ため、その歪み変形はシフトレンズ4に矢印×方向への
移動を与えることになり、これにより固体撮像素子3の
光電面上で像はレンズ4のシフト量に応じて横ズレする
ことになる。なお、レンズ4にシフト移動を与えるため
には他に電歪振動子、あるいはモータとカムの組み合わ
せにょシ回転を直線移動運1JhK変えて行なうことも
考えられる。Reference numeral 4 denotes a lens in the master section 2, which is a shift lens supported so as to be movable in a plane perpendicular to the optical axis 0, for example in the direction of the arrow x in the figure, for spatial picture element shifting. Reference numeral 5 is a magnetostrictive element made of pure nickel, Alfer, etc., and mechanical distortion is generated by applying a magnetic field. Since one end of this magnetostrictive element is closely fixed to the shift lens 4, its distortion and deformation causes the shift lens 4 to move in the direction of arrow will shift laterally depending on the amount of shift of the lens 4. In addition, in order to give a shift movement to the lens 4, it is also possible to use an electrostrictive vibrator or a combination of a motor and a cam to change the rotation by 1JhK in linear movement.
上述の絵素ずらしを行なうにあたって、例えば第1図中
の変倍部1中のレンズをシフトさせることも考えられる
が、この手法ではすでに述べたように、レンズのシフト
量と絵素ずらし量との関係が変倍に応じて変わることに
なるので、得策でない。この点マスター部2以降では変
倍によらずに結像面の各点に向かう光線の角度がそれぞ
れに決まっているので、変倍と無関係に一定量のレンズ
シフト量によシ一定量の絵素ずらしかできる。移動機構
上不利とは言えるが、もちろんマスター部2全体をシフ
トさせても同様な効果となる。In performing the above-mentioned pixel shifting, it is also possible to shift the lens in the variable magnification section 1 in FIG. This is not a good idea because the relationship between the two will change depending on the magnification. In this respect, in the master section 2 and later, the angle of the ray toward each point on the imaging plane is determined independently regardless of the magnification change, so a constant amount of image can be produced by a constant amount of lens shift regardless of the magnification change. I can only do it naturally. Of course, the same effect can be obtained by shifting the entire master section 2, although it can be said that this is disadvantageous in terms of the moving mechanism.
なお、図示したレンズ構成のズームレンズの場合、レン
ズ4をシフトさせることが有利である。というのは、レ
ンズ4であれば、例えば摩面を7μ程度シフトさせるの
に8μ程度のシフトで足りる。マスター部2内のレンズ
であっても他のレンズをシフトさせる場合には、必要と
される像面シフト量に対してレンズシフト量が大きくな
ってしまい、その移動機構部の構成上若干不利となる。Note that in the case of a zoom lens with the lens configuration shown, it is advantageous to shift the lens 4. This is because, in the case of lens 4, for example, a shift of about 8 μ is sufficient to shift the friction surface by about 7 μ. When shifting other lenses even if they are in the master section 2, the amount of lens shift becomes larger than the required amount of image plane shift, which is somewhat disadvantageous due to the structure of the moving mechanism section. Become.
もちろん、像面シフト量は撮像素子光電面における絵素
の配列ピッチあるいは絵素ずらし方向、画像信号のサン
プリング位置の設定によシ先ず決定されるが、これを満
足させるようにマスク一部内のどのレンズをどれだけシ
フトさせるかは光学設計によりめられることになる。Of course, the amount of image plane shift is first determined by the pixel array pitch or pixel shifting direction on the photocathode of the image sensor, and the setting of the sampling position of the image signal. The amount by which the lens is shifted depends on the optical design.
第2図はレンズシフトのだめのシステム構成を示す。第
2図において10はクロックパルス発生部で、シフトレ
ンズ11をシフトささせるだめのシフト駆動部12、固
体撮像素子13を駆動するためのスキャン駆動部14、
フレームメモリ!5の動作制御を行なうメモリコントロ
ール部16へとクロックパルスを与える。上述の各駆動
部12.14あるいは、メモリコントロール部16の作
動は予め相互の同期をとっておく必要があシ、クロック
パルスのもとにそれぞれの作動タイミングが調定されて
い、る。また11は固体撮像素子13からの画像信号を
増幅するアンプ、181dADコンバータ、19はDA
コンパ−タテアル。FIG. 2 shows the system configuration of the lens shift stopper. In FIG. 2, reference numeral 10 denotes a clock pulse generation section, a shift drive section 12 for shifting the shift lens 11, a scan drive section 14 for driving the solid-state image sensor 13,
Frame memory! A clock pulse is applied to the memory control unit 16 which controls the operation of the memory controller 5. The operations of each of the above-mentioned drive sections 12, 14 or memory control section 16 must be mutually synchronized in advance, and their respective operation timings are adjusted based on clock pulses. Further, 11 is an amplifier that amplifies the image signal from the solid-state image sensor 13, a 181 dAD converter, and 19 is a DA converter.
Compartateal.
以上のシステム構成によれば、レンズ11のシフトの前
後において、そのタイミングに応じて撮像素子13から
得られた画像信号は増幅されAD変換された後、フレー
ムメモリ15内にストアされる。メモリコントロール1
6はレンズシフトの前後において、その画像信号が整っ
た形態でフレームメモリ15にストアされるようにアド
レス制御も行なう。According to the above system configuration, before and after the lens 11 is shifted, the image signal obtained from the image sensor 13 according to the timing is amplified and AD converted, and then stored in the frame memory 15. Memory control 1
6 also performs address control so that the image signal is stored in the frame memory 15 in an organized form before and after the lens shift.
すなわち、レンズシフト前の画像信号をメモリ15内に
ストアする際にアドレスを1個おきにとげしておき、シ
フト後の画像信号は1個おきにとばされたアドレスに1
き込まれるようになる。こうして合成1画面分の信号が
フレームメモリ15にメモリされると、コントロール1
6により読出し信号が与えられ、フレームメモリ15内
で合成された高解像度1画面信号はDA変換され出力さ
れることになる。That is, when storing the image signal before the lens shift in the memory 15, every other address is skipped, and the image signal after the shift is stored at every other skipped address.
Becomes absorbed in it. When the signals for one composite screen are stored in the frame memory 15 in this way, the control 1
A readout signal is given by 6, and the high-resolution one-screen signal synthesized within the frame memory 15 is DA-converted and output.
なお、本発明の絵素ずらし手法はステイル画面のみなら
ず、ムービー映像の撮像についても有効である。この場
合にはレンズをシフト移動させる例えば磁歪A5子を高
周波駆動させて用いればよいことになる。また絵素ずら
し動作の前後で画像信号をサンプリングするのみならず
、絵素ずらしlサイクル中に3回以上サンプリングして
もよい。Note that the picture element shifting method of the present invention is effective not only for still images but also for capturing movie images. In this case, for example, a magnetostrictive A5 element may be driven at high frequency to shift the lens. Furthermore, the image signal may be sampled not only before and after the pixel shifting operation, but also three or more times during one pixel shifting cycle.
以上に述べてきたように、本発明によれば空間絵素ずら
し手法を実現するにあたシ、ズームレンズのマスター部
のレンズのシフトによシこれを達成したので、変倍に影
響されない絵素ずらしか可能となると共に、軽量コンパ
クト性の点でも非常に肩側である。As described above, according to the present invention, the spatial picture element shifting method is achieved by shifting the lens in the master section of the zoom lens, so that images that are not affected by zooming can be realized. Not only is it possible to do it without a scratch, but it is also very lightweight and compact.
第1図は本発明の一実施例を示す光学系構成図である。
第2図は本発明に適用される制御系システム構成の一例
を示すブロック図である。
1・・・・・・変倍部 2・旧・・マスター部3・・・
・・・固体撮像素子 4・・・・・・シフトレンズ5・
・・・・・磁歪素子
10・・・クロックパルス発生部
12・・・シフト駆動部
14・・・スキャン駆動部
15・・・フレームメモリ
16・・・メモリコントロール部
出 願人 富士写真光機株式会社FIG. 1 is a block diagram of an optical system showing an embodiment of the present invention. FIG. 2 is a block diagram showing an example of a control system configuration applied to the present invention. 1... variable magnification section 2. old... master section 3...
...Solid-state image sensor 4...Shift lens 5.
...Magnetostrictive element 10...Clock pulse generation section 12...Shift drive section 14...Scan drive section 15...Frame memory 16...Memory control section Applicant: Fuji Photo Co., Ltd. company
Claims (1)
上に被写体像を結像させる固体撮像カメラ用ズームレン
ズにおいて、前記マスク−系を構成する少なくとも1個
のレンズを前記固体撮像素子の駆動に同期して光軸に垂
直な方向にシフトさせることにより、前記光電面上にお
ける被写体結像位置を変位させることを特徴とする固体
撮像カメラ用ズームレンズ。In a zoom lens for a solid-state imaging camera that has a variable magnification system and a master system and forms a subject image on the photocathode of a solid-state imaging device, at least one lens constituting the mask system is attached to the solid-state imaging device. A zoom lens for a solid-state imaging camera, characterized in that a subject imaging position on the photocathode is displaced by shifting in a direction perpendicular to the optical axis in synchronization with driving.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58199764A JPS6091774A (en) | 1983-10-25 | 1983-10-25 | Zoom lens for solid-state image pickup camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58199764A JPS6091774A (en) | 1983-10-25 | 1983-10-25 | Zoom lens for solid-state image pickup camera |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6091774A true JPS6091774A (en) | 1985-05-23 |
JPH046308B2 JPH046308B2 (en) | 1992-02-05 |
Family
ID=16413225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58199764A Granted JPS6091774A (en) | 1983-10-25 | 1983-10-25 | Zoom lens for solid-state image pickup camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6091774A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63115126A (en) * | 1986-11-04 | 1988-05-19 | Canon Inc | Photographic lens with vibration-proof function |
JPS63118708A (en) * | 1986-11-06 | 1988-05-23 | Canon Inc | Optical system equipped with moving optical element |
JPH03141338A (en) * | 1989-10-27 | 1991-06-17 | Canon Inc | Projection type display device |
US5721641A (en) * | 1994-07-18 | 1998-02-24 | Nikon Corporation | Zoom lens capable of correcting image position movement |
US5920342A (en) * | 1994-09-16 | 1999-07-06 | Kabushiki Kaisha Toshiba | Image input apparatus for capturing images of multiple resolutions |
US7042509B2 (en) | 1996-12-27 | 2006-05-09 | Canon Kabushiki Kaisha | Image sensing apparatus and method of capable of merging function for obtaining high-precision image by synthesizing images and image stabilization function |
-
1983
- 1983-10-25 JP JP58199764A patent/JPS6091774A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63115126A (en) * | 1986-11-04 | 1988-05-19 | Canon Inc | Photographic lens with vibration-proof function |
JPS63118708A (en) * | 1986-11-06 | 1988-05-23 | Canon Inc | Optical system equipped with moving optical element |
JPH03141338A (en) * | 1989-10-27 | 1991-06-17 | Canon Inc | Projection type display device |
US5721641A (en) * | 1994-07-18 | 1998-02-24 | Nikon Corporation | Zoom lens capable of correcting image position movement |
US5920342A (en) * | 1994-09-16 | 1999-07-06 | Kabushiki Kaisha Toshiba | Image input apparatus for capturing images of multiple resolutions |
US7042509B2 (en) | 1996-12-27 | 2006-05-09 | Canon Kabushiki Kaisha | Image sensing apparatus and method of capable of merging function for obtaining high-precision image by synthesizing images and image stabilization function |
Also Published As
Publication number | Publication date |
---|---|
JPH046308B2 (en) | 1992-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5774179A (en) | Method and system for fast microscanning | |
US7450154B2 (en) | Digital camera performing pixel shift based on electronic zoom | |
US5063450A (en) | Method and apparatus for preventing aliasing in an electronic still camera | |
US5416557A (en) | Camera apparatus having drift detecting unit | |
US5798875A (en) | Apparatus for dithering | |
JP2002040584A (en) | High-speed image pickup camera | |
JPS6091774A (en) | Zoom lens for solid-state image pickup camera | |
JP2931809B1 (en) | Imaging device | |
JPH0444870B2 (en) | ||
JP3099893B2 (en) | Video camera | |
JPH0377483A (en) | Picture blur preventing camera | |
JPS60125079A (en) | Electronic still camera | |
JP3384237B2 (en) | Line sensor camera | |
JPS5864875A (en) | Image pickup device | |
JPS5915376A (en) | Image pickup mechanism | |
JP3162644B2 (en) | Solid-state imaging device | |
JPH0678189A (en) | Image picture device | |
JPS61251380A (en) | Image input device | |
JPH07236095A (en) | Image pickup device | |
KR101819977B1 (en) | Dual Lens Multiscale Imaging System | |
JPH0326072A (en) | Image pickup device | |
US4994919A (en) | Camera for recording television, photographic or cinematographic images, including an automatic focus-setting device | |
KR100259158B1 (en) | High quality image input device using parallel light | |
JPH07222067A (en) | Image input device | |
JP2845614B2 (en) | Video camera |