JPS5864875A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS5864875A
JPS5864875A JP56163943A JP16394381A JPS5864875A JP S5864875 A JPS5864875 A JP S5864875A JP 56163943 A JP56163943 A JP 56163943A JP 16394381 A JP16394381 A JP 16394381A JP S5864875 A JPS5864875 A JP S5864875A
Authority
JP
Japan
Prior art keywords
information
resolution
electro
image
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56163943A
Other languages
Japanese (ja)
Inventor
Yuji Watanabe
祐司 渡辺
Masami Himuro
氷室 昌美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56163943A priority Critical patent/JPS5864875A/en
Publication of JPS5864875A publication Critical patent/JPS5864875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene

Abstract

PURPOSE:To obtain information about an objective to be photographed with high accuracy, by moving the information between unit elements of a solid-state image pickup element to the location of the unit element through the use of an electrooptic element. CONSTITUTION:An objective 1 is formed on a CCD5 through an electrooptic element 4 made of LiNbO3 and lenses 2 and 3. In scanning the image forming plane by one field, (1, 1) on X and Y axes is taken as the start point for the scanning, in synchronizing with signals phiH and phiV from a synchronizing panel 9 without applying a voltage to the element 4 at first. A voltage VH is applied to the element 4 at the 1/4 period, the optical axis is deflected horizontally and the optical information of the objective 1 is moved to the position (2, 1). Similarly, at the 2/4 period, voltages VH, VV are applied to the element 4, the image is moved to the position (2, 2), at the 3/4 period, the voltages VH, VV are applied to the element 4, the image is moved to the position (1, 2) and the operation is completed at the final period of obtain double resolution of the CCD5 both longitudinally and laterally.

Description

【発明の詳細な説明】 この発明は撮sat、49にCCD等の固体撮像素子を
応用した機器部に用いて好適な撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device suitable for use in a device section in which a solid-state imaging device such as a CCD is applied to a saturation sensor 49.

最近COD等の固体撮像素子の応用分野は広く。Recently, solid-state imaging devices such as COD have been applied to a wide range of fields.

例えばCCDと記鍮媒体を組合わせ、CCDKより光学
的像な電気的映像信号に変換し、この映像信号な記―媒
体である回転磁気シートに記鎌し、この回転磁気シート
に紀鎌された映像信号により静止画像を得るようKした
電子スチルカメラが提案されている。
For example, by combining a CCD and a recording medium, the CCDK converts it into an electrical image signal that is an optical image, records this video signal on a rotating magnetic sheet that is a recording medium, and records it on this rotating magnetic sheet. An electronic still camera has been proposed in which a still image is obtained using a video signal.

ところが、このよ5に電子スチルカメラ等にCCDを用
いた場合CODの素子数が少ない為その静止画像の解像
度は悪い。また普通のネガフィルムを使った写真の解像
度に対して、映像信号による静止画像は一般に解像度が
悪いと云5印象がある。
However, when a CCD is used in an electronic still camera or the like, the resolution of the still image is poor because the number of COD elements is small. Furthermore, I have the impression that still images based on video signals generally have lower resolution than photographs made using ordinary negative film.

そこで従来複数個のCCD基板を使って絵素な補間丁今
等実質的にCODの素子数を多くする方法等があるが、
このような従来法の場合生産性が悪く、またコスト的に
も高価になる等積々の不都合があった。
Therefore, conventionally, there is a method of interpolating picture elements using multiple CCD boards, which essentially increases the number of COD elements.
Such conventional methods have a number of disadvantages, such as poor productivity and high costs.

この発明は斯る点に鑑み、固体撮像素子を構成する単素
子の数が少くとも高解像度の画像を得ることができる撮
像装置を提供するものである。
In view of the above, the present invention provides an imaging device that can obtain high-resolution images using at least the number of single elements constituting the solid-state imaging device.

以下、この発明を第1図乃至第3図に基づいて説明する
The present invention will be explained below based on FIGS. 1 to 3.

先ず、本発明の基本原理を例えば固体撮像素子としてC
CDを用いた場合を例にとり、第1図1参照し乍ら説明
する。第1図はCODを構成する単素子(絵素)の配列
状態を例示的に示すもので、○印の位置に単素子が夫々
配列されているものとする。従って仁の場合の解像度は
X軸方向に3、Y軸方向に2である。そして若しx印の
位置にも単素子があるとすると、CODとしては24個
の単素子が必要となる。そこでこの発明ではCCDK供
給される光ビーム又はCCD自体t’フィールドととに
所定距離(最大隣接素子間距離)移動させて、x印の位
置にある情報すなわち素子間情報をも得るようkなし、
この場合6個の単素子から成るCODから実質的に24
11の単素子から成るCCDと岡等の解像度が得られる
よ5にする。
First, the basic principle of the present invention will be explained using C as a solid-state image sensor, for example.
Taking the case of using a CD as an example, explanation will be given with reference to FIG. 1. FIG. 1 exemplarily shows the arrangement of single elements (picture elements) constituting the COD, and it is assumed that the single elements are arranged at the positions marked with ◯. Therefore, the resolution in the case of 3 is 3 in the X-axis direction and 2 in the Y-axis direction. If there is also a single element at the position marked x, 24 single elements will be required as the COD. Therefore, in this invention, the light beam supplied to the CCDK or the CCD itself is moved a predetermined distance (maximum distance between adjacent elements) to the t' field to obtain information at the position of the x mark, that is, inter-element information.
In this case, from a COD consisting of 6 single elements, substantially 24
It is set to 5 so that a CCD consisting of 11 single elements and the resolution of Oka et al. can be obtained.

いま、第1図において、CCDK供給される光ビーム又
はCCD自体を水平方向へ2回(すなわち、X軸の1.
2の位置)へ少しずつ動かし、tた垂直方向へも2回(
すなわち、Y軸の1.2の位置)へ少しずつ動かすもの
とすると、1個の単嵩子膳り合計4備の位置情報を取り
出すことができる。従って、この場合X軸方向、Y軸方
向共に3倍の解像度となり、X軸方向の解像度は6.Y
軸方向の解像度は4となる。
Now, in FIG. 1, the light beam supplied to the CCDK or the CCD itself is moved twice in the horizontal direction (i.e., 1.
2 position) little by little, and twice in the vertical direction (
In other words, if the robot is moved little by little to a position of 1.2 on the Y axis, position information for a total of 4 pieces of one single-sized rice bowl can be retrieved. Therefore, in this case, the resolution in both the X-axis direction and the Y-axis direction is tripled, and the resolution in the X-axis direction is 6. Y
The resolution in the axial direction is 4.

このよ5−にシて仁の発明では、単素子量情報をも取り
出すことにより同一の固体撮像素子から。
According to the invention of 5-Nishiten, information on the quantity of a single element can also be extracted from the same solid-state image sensor.

この素子が持つ固有の解像度より高解儂度の画像を任意
に得るようにするものである。
The purpose is to arbitrarily obtain an image with a higher resolution than the inherent resolution of this element.

[2図はこの発明の一実m例を示すもので、本実施例で
は実質的に光学系を制御して光ビームを移動させ、解像
度を上げる場合である。
[Figure 2 shows an example of the present invention. In this embodiment, the optical system is substantially controlled to move the light beam to increase the resolution.

第2図において、(1)は被写体、 (21,(3)は
レンズであって、これ勢レンズ(2)及び(3)間に入
射光の光軸を印加電圧に応じて若干−げるためのプリズ
ム状の電気光学素子(4)を設ける。この電気光学素子
(4)は結晶に電界を加えるとき、結晶の屈折率が変化
する所謂電気光学効果を有するもので、この電界による
屈折率の変化を利用して光ビームの偏向を行うことがで
きる。この電気光学素子(4)としては、本実施例では
例えばLINbOlやLiTaO3等の第1次電気光学
結晶が用いられる。また、プリズム状の電気光学素子(
4)は光ビーム(光軸)を水平又は垂直方向の一方向へ
曲げる場合は1側でよいが、両方向へ曲げる場合は、第
2図に示すように2重構造とする。
In Figure 2, (1) is the object, (21, (3) are lenses, and the optical axis of the incident light is slightly shifted between the lenses (2) and (3) depending on the applied voltage. A prism-shaped electro-optical element (4) is provided for the purpose of The light beam can be deflected by utilizing the change in the electro-optic element (4). In this embodiment, a primary electro-optic crystal such as LINbOl or LiTaO3 is used as the electro-optic element (4). Electro-optical element (
For 4), when the light beam (optical axis) is bent in one direction horizontally or vertically, one side may be used, but when the light beam (optical axis) is bent in both directions, a double structure is used as shown in FIG.

(5)は固体撮像素子1例えばCOD、(6)はフレー
ムメ毫す、(7)は工ンコーf%(8)は表示器、(9
)は同期盤であって、この同期111(9)からは被写
体(1)からの入射光の光軸t′1フィールド毎に水平
方向又は垂直方向に曲げるための電圧vH、vyが電気
光学素子(4)k印加されると共に同期信号1m 、 
SvがC0D(5)に供給される。
(5) is a solid-state image sensor 1 such as a COD, (6) is a frame imager, (7) is an image sensor, (8) is a display device, and (9) is a display device.
) is a synchronous board, and from this synchronous board 111 (9), the voltages vH and vy for bending the optical axis of the incident light from the subject (1) in the horizontal or vertical direction for each field t'1 are applied to the electro-optical elements. (4) k is applied and synchronization signal 1m,
Sv is supplied to C0D(5).

次に本実施例の動作を、上述の如く解像度vxX軸方向
びY軸方向共2倍とする場合を例にと9゜11EIK及
び第31i11&も参照し乍ら説明する。
Next, the operation of this embodiment will be described with reference to 9°11EIK and 31i11&, taking as an example the case where the resolution vx is doubled in both the X-axis direction and the Y-axis direction as described above.

被写体(1)はレンズ(2)、電気光学素子(4)及び
レンズ(3)を通してc CD (5)上に結像される
。そしてこの結像m&1フィールドで走査するわけであ
るが、この際に動作開始時の第3図における時間Toに
おいては同期盤(9)から電気光学素子(4)Kは第3
図人、BK示すように何部電圧vH、vyは印加されて
おらず、従って時間’ro −T1の間は被写体(1)
からの光情報は電気光学素子(4)で光軸を曲けること
な(COD(5)に供給される。そしてCCU(5)に
おいては同期盤(9)からの信号all 、 eV k
同期してX、Y軸上の位置(1、1)を走査開始点とす
る1フイールドの走査が行われる。
The object (1) is imaged onto the cCD (5) through the lens (2), the electro-optical element (4) and the lens (3). Then, scanning is performed using this imaging m&1 field, and at this time, at time To in FIG. 3 at the start of operation, the electro-optical element (4) K from the synchronous disk (9)
As shown in Figure BK, some voltages vH and vy are not applied, so during time 'ro -T1, the subject (1)
The optical information from the synchronous disk (9) is supplied to the COD (5) by the electro-optical element (4) without bending the optical axis.Then, in the CCU (5), the signals all, eV k from the synchronous disk (9) are
One field is scanned synchronously with the scanning start point at position (1, 1) on the X and Y axes.

そして時間TIにおける次のフィールドの!1i[プラ
ン中ング期間中、同期盤(9)より第3図AK示すよう
に電圧vHが電気光学素子(4)K印加されると、被写
体(1)からの光情報は電気光学素子(4)で光軸を水
平方向に曲げられ、X、Y軸上の位置(2,1)に移動
させられる。そしてこの位置(Ll)を走査開始点とす
る1フイールドの走査が行われる。
And of the next field at time TI! 1i During the planning period, when a voltage vH is applied to the electro-optical element (4) from the synchronization board (9) as shown in FIG. ), the optical axis is bent in the horizontal direction and moved to position (2, 1) on the X and Y axes. Then, one field is scanned with this position (Ll) as the scanning start point.

すなわちこの場合×印にある情報っt9g子間情報が得
られる。
In other words, in this case, the information indicated by the x mark (t9g-child information) can be obtained.

次いで時間T2における次のフィールドの喬直ブランキ
ング期間中、同期盤(9)より電気光学素子(4) K
上述の如く印加されている電圧vHv保持し乍ら更に第
3図BK示すような電圧■vt−印加すると、光軸は垂
直方向に曲げられてX、Y軸上の位t (! 、 2)
に移動させられる。そしてこの位置(2、2)を走査開
始点とする1フイールドの走査が行われ、この場合も素
子間情報が得られる。
Then, during the direct blanking period of the next field at time T2, the electro-optical element (4) K is removed from the synchronous disk (9).
When the voltage vHv applied as described above is maintained and a voltage vt- as shown in FIG.
be moved to. Then, one field is scanned with this position (2, 2) as the scanning start point, and inter-element information is obtained in this case as well.

更に時間Ts Kおける次のフィールドの垂直ブランキ
ング期間中、同期盤(9)より電気光学素子(4)K上
述の如く印加されている電圧vH9vvのうち。
Furthermore, during the vertical blanking period of the next field at time Ts K, the voltage vH9vv applied as described above to the electro-optical element (4) K from the synchronization board (9).

第8tlAK示すように電圧vHの印加をやめると。When the application of voltage vH is stopped as shown in the 8th tlAK.

光軸は今度はX、Y軸上の位置(1、2) K移動させ
られる・そして仁の位置(1、2) t−走査開始点と
する1フイールドの走査が行われ、素子間情報が得られ
る。
The optical axis is now moved to the position (1, 2) K on the X and Y axes, and one field is scanned from the center position (1, 2) to the scanning start point, and the inter-element information is can get.

最後に時間T4 FCおいて電気光学素子(4)K印加
していた電圧Vv Jb第3図Bk示すようK11kり
去ると光軸は初期状態すなわちX、Y軸上の位置(1、
1)の所に戻り、動作を完了する。これKよう【x印で
示す位置全部の素子間情報が得られる。そしてこの場合
鱗像度はCCD (5)の持つ固有の解像度より縦横共
鵞倍になる。
Finally, at time T4 FC, the voltage Vv Jb applied to the electro-optical element (4) K moves away as shown in FIG.
Return to step 1) and complete the operation. As a result, inter-element information for all positions indicated by x marks can be obtained. In this case, the scale image resolution is much larger in both the vertical and horizontal directions than the inherent resolution of the CCD (5).

このようKしてCOD (5)より取り出された情報は
順次4回次段の7レー五メモ9 (6) K−たん記憶
された後読み出され、エンコーダ(7)を介して表示1
1(8)Ktつのii像として表示される。従って、表
示器(8)からは高解僚度の画像を得ることができる。
The information retrieved from the COD (5) in this way is sequentially stored four times in the next stage's 7-ray 5 memo 9 (6) and then read out and displayed via the encoder (7).
It is displayed as 1(8)Kt ii images. Therefore, an image with high resolution can be obtained from the display (8).

なお、この画像は表示するかわりに高画質VTRに記憶
したり、或いは印刷等に利用してもよい。
Note that instead of displaying this image, it may be stored in a high-quality VTR or used for printing.

上述の如くこの発明によれば、プリズム状の電気光学素
子に電圧を印加するか、又は固体撮像素子(基板)を動
かすことにより実質的に光軸を所定距離任意の方向に移
動させて固体撮像素子を構成する単素子の情報だけでな
く、その単素子量情報も得るよ5Kt、だので、固体撮
像素子が本来持つ固有の解像度より大きな解像度を得る
ことができ、生産性の向上やコストの低廉化に寄与でき
る。
As described above, according to the present invention, solid-state imaging is performed by applying a voltage to the prism-shaped electro-optical element or moving the solid-state imaging device (substrate) to substantially move the optical axis a predetermined distance in any direction. You can obtain not only information about the single element that makes up the device, but also information about the amount of that single element (5Kt), so you can obtain a resolution higher than the inherent resolution of solid-state image sensors, improving productivity and reducing costs. It can contribute to lower prices.

なお、この解像度は実質的に光軸を変化させる変位回数
に依存し1例えばX軸方向K11回、Y軸方向Kfn1
gI%合計でnxm回変化を与えれば、X軸方向は聰倍
、Y軸方向はm倍解偉度が改善される。
Note that this resolution substantially depends on the number of displacements to change the optical axis. For example, K11 times in the X-axis direction and Kfn1 in the Y-axis direction.
If the total gI% is changed nxm times, the resolution is improved by a factor of 1 in the X-axis direction and by a factor of m in the Y-axis direction.

なお、上述の実施例はプリズム状の電気光学素子を用い
て光軸を変える場合に付いて説明したが。
It should be noted that the above-described embodiments have been described with reference to the case where the optical axis is changed using a prism-shaped electro-optical element.

例えばカム機構等な用いて光ビームに対して固体撮像素
子(基板)V機械的に移動させるようにしてもよい。こ
の場合構造的には複雑になるも電気光学素子は不要であ
る。
For example, a cam mechanism or the like may be used to mechanically move the solid-state imaging device (substrate) V relative to the light beam. In this case, although the structure is complicated, an electro-optical element is not required.

また、上述の実施例ではCODの出力を直接7レームメ
モWFC入れて高画質映像にしてから利用する場合であ
るが、CODの出力を−たんシートレツー〆やVTR等
に7レーム毎Kl[次記鎌し。
In addition, in the above embodiment, the output of the COD is directly input into the 7-frame memo WFC and used after making a high-quality image, but the output of the COD is transferred to a sheet recorder, VTR, etc. every 7 frames. death.

所望時これを再生し、7レームメモリによりIllを入
れ換えて見るようkしてもよい。
When desired, this may be played back and viewed by replacing the Ill with the 7-frame memory.

また、上述の実施例では解像度vX軸方向に2倍、Y軸
方向に2倍とする場合に付いて説−したが、これに限定
されることなく、実質的に光軸の移動距離を最大隣接単
素子間距離内で堆ることKより、任意の方向に任意の解
像度を得ることができる。
Further, in the above embodiment, the case where the resolution v is doubled in the X-axis direction and doubled in the Y-axis direction is described, but the present invention is not limited to this, and the distance of movement of the optical axis is substantially increased to the maximum. By disposing K within the distance between adjacent single elements, any resolution can be obtained in any direction.

tたプリズム状の電気光学素子に使用された結晶は上述
のものに限定されることなく、同様の状態が得られ−ば
その他のもの、例えば88N勢を用いてもよい。
The crystal used in the prismatic electro-optical element is not limited to those mentioned above, and other crystals, such as 88N crystal, may be used as long as similar conditions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1IIはこの発明の基本原理の説明に供するための線
図、第意図はこの発明の一実施例を示す構成図、第3図
は第2図の動作説1jiK供するための線図である。 (1)は被写体、(4)はプリズム状の電気光学素子。 (5)はCOD、(9)は同期盤である。 第1図 X 第2図 第3図
1II is a diagram for explaining the basic principle of the present invention, the first intention is a configuration diagram showing one embodiment of the invention, and FIG. 3 is a diagram for explaining the operation theory 1jiK of FIG. 2. (1) is a subject, and (4) is a prism-shaped electro-optical element. (5) is a COD, and (9) is a synchronized version. Figure 1X Figure 2Figure 3

Claims (1)

【特許請求の範囲】[Claims] 固体撮像素子と、入射光に対して上記固体撮像素子の前
面に配されたプリズム状の電気光学素子とを備え、上記
固体撮像素子の単素子間にある情報を上記電気光学素子
により上記単素子の所に移動させて高解像度情報を得る
ようにしたことv4I黴とする撮像装置。
It includes a solid-state image sensor and a prismatic electro-optical element arranged in front of the solid-state image sensor with respect to incident light, and the electro-optical element transmits information between the single elements of the solid-state image sensor to the single element. It is possible to obtain high-resolution information by moving the image pickup device to the location of the V4I.
JP56163943A 1981-10-14 1981-10-14 Image pickup device Pending JPS5864875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163943A JPS5864875A (en) 1981-10-14 1981-10-14 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163943A JPS5864875A (en) 1981-10-14 1981-10-14 Image pickup device

Publications (1)

Publication Number Publication Date
JPS5864875A true JPS5864875A (en) 1983-04-18

Family

ID=15783764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163943A Pending JPS5864875A (en) 1981-10-14 1981-10-14 Image pickup device

Country Status (1)

Country Link
JP (1) JPS5864875A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093894A (en) * 1983-10-27 1985-05-25 Sony Corp Image pickup device
JPS60112377A (en) * 1983-11-22 1985-06-18 Olympus Optical Co Ltd Solid-state image pickup device
EP0150973A2 (en) * 1984-01-31 1985-08-07 Kabushiki Kaisha Toshiba Wobbling-swing driven image sensor
EP0289182A2 (en) * 1987-04-27 1988-11-02 GEC-Marconi Limited Imaging system
FR2702325A1 (en) * 1993-03-03 1994-09-09 France Telecom Method and device for forming a sampled image

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093894A (en) * 1983-10-27 1985-05-25 Sony Corp Image pickup device
JPS60112377A (en) * 1983-11-22 1985-06-18 Olympus Optical Co Ltd Solid-state image pickup device
EP0150973A2 (en) * 1984-01-31 1985-08-07 Kabushiki Kaisha Toshiba Wobbling-swing driven image sensor
EP0289182A2 (en) * 1987-04-27 1988-11-02 GEC-Marconi Limited Imaging system
JPS6439177A (en) * 1987-04-27 1989-02-09 G Ii C Marukooni Ltd Image making system
FR2702325A1 (en) * 1993-03-03 1994-09-09 France Telecom Method and device for forming a sampled image

Similar Documents

Publication Publication Date Title
JP3351667B2 (en) Monitor display device and color filter
JPS5864875A (en) Image pickup device
JP2001189847A (en) Device and method for correcting picture tilt, and recording medium storing picture tilt correcting program
JP3200276B2 (en) Imaging device
JP3222687B2 (en) Solid-state imaging device
JP2907465B2 (en) Image input / output device
JPS6091774A (en) Zoom lens for solid-state image pickup camera
JPS5915377A (en) Image pickup mechanism
JPS59183579A (en) Electronic still camera
US20080174658A1 (en) High speed photography system for producing 3D still pictures and movies
JP4533175B2 (en) Imaging device
JPS62291288A (en) Stereoscopic picture device
JPH0548979A (en) Image pickup device
JPH0678338A (en) Stereoscopic photographic device
JPH0334778A (en) Electronic camera
JPH05244609A (en) Color image pickup device
JPS60130976A (en) Electronic camera
JPH05289165A (en) Camera capable of recording photographing information and photographed image processor
JPS63285526A (en) Image pickup device
JPS6130873A (en) Picture recorder
JPS6130874A (en) Picture recorder
JPH04298169A (en) Size display system for electronic still camera
JPH10145666A (en) Image signal recording and reproducing device and its method, image signal recording device and its method, and image signal reproducing device and its method
WO1993014598A1 (en) A line monitoring system
JPH11341416A (en) Still video camera