JPS6091290A - Detector for damage of piping - Google Patents

Detector for damage of piping

Info

Publication number
JPS6091290A
JPS6091290A JP58199084A JP19908483A JPS6091290A JP S6091290 A JPS6091290 A JP S6091290A JP 58199084 A JP58199084 A JP 58199084A JP 19908483 A JP19908483 A JP 19908483A JP S6091290 A JPS6091290 A JP S6091290A
Authority
JP
Japan
Prior art keywords
valve
pressure
opening
time
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58199084A
Other languages
Japanese (ja)
Inventor
隆之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58199084A priority Critical patent/JPS6091290A/en
Publication of JPS6091290A publication Critical patent/JPS6091290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は・配管破損検出装置に係シ、特に液体金属ナト
リウムを冷却材として筺用している原子カプラントのナ
トリウム自由表面の酸化を防止するためのアルゴンガス
系の配管破損を検出するのに好適な配管破損検出装置に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a piping breakage detection device, particularly for preventing oxidation of the sodium free surface of an atomic couplant using liquid metal sodium as a coolant. The present invention relates to a pipe damage detection device suitable for detecting pipe damage in an argon gas system.

〔発明の背景〕[Background of the invention]

高速中性子型原子炉において使用している液体ナトリウ
ムに、浸れた冷却材であるが、化学的に極めて活性であ
るために、化学的に不、活性なアルゴンガスによって、
原子炉容器および冷却系機器内のナトリウム自由液面ヲ
覆ってbる。
The coolant used in fast neutron nuclear reactors is immersed in liquid sodium, but it is chemically extremely active, so it is heated using argon gas, which is chemically inert and active.
Cover the sodium free liquid level in the reactor vessel and cooling system equipment.

このアルゴンガスを取扱う設備の概略構成を第1図に示
す。原子炉容器1を出たカバーガスは炉容器ミストトラ
ップ2および炉容器ベーパトラップ31(よりナトリウ
ムミスト・ベーパを除去され、圧力調整タンク4に流入
する。圧力調整タンク4から圧縮機5によって引かれた
後、高圧サージタンク6によって脈動および圧力変動全
抑見られたアルゴンガス中の核分裂生成ガス濃度を低く
抑えるため、常用活性炭吸着塔お工び希ガス除去・回収
設備7が設けられている。希ガス除去・回収設備7を出
た浄化アルゴンガスは、さらに減衰タンり8にて41A
ri減衰された後、浄化ガス供給タンク9に流入し再び
原子炉容器1に送り込まれるが、浄化ガス供給タンク9
から1次主循環ポンプ軸シールガスとして、−また炉上
部搭載機器からのブローダウンガスとして使用するため
のラインが設けられている。
Figure 1 shows the schematic configuration of the equipment that handles this argon gas. The cover gas leaving the reactor vessel 1 is removed from the reactor vessel mist trap 2 and the reactor vessel vapor trap 31 (from which sodium mist and vapor are removed) and flows into the pressure adjustment tank 4. The cover gas is drawn from the pressure adjustment tank 4 by the compressor 5. After that, in order to keep the concentration of fission product gas in the argon gas, which is completely suppressed by the high-pressure surge tank 6 to suppress pulsations and pressure fluctuations, a rare gas removal/recovery equipment 7 using a conventional activated carbon adsorption tower is provided. The purified argon gas leaving the rare gas removal/recovery equipment 7 is further transferred to a damping tank 8 at 41A.
After the ri is attenuated, it flows into the purified gas supply tank 9 and is sent into the reactor vessel 1 again.
A line is provided for use as primary main circulation pump shaft sealing gas from the reactor and as blowdown gas from the upper furnace equipment.

圧力調整タンク4では。本タンクの圧力を測定し、下記
の手順で原子炉カバーガス圧力P k P tからP2
の間に制御する。圧力検出器10にて検出した圧力Pが
、P>P2となった場合、弁11を閉し、浄化ガス供給
タンク9よシの浄化ガスの供給を止め、原子炉カバーガ
ス圧力を下げた後・通常圧力に戻った時点で弁11全開
する。圧力検出器10にて検出した圧力Pが、P<Pl
となった場合、弁12全開し・浄化ガス供給タンク9よ
シ浄化ガス全原子炉容器側に供給し、原子炉カバーガス
圧力を上げた後1通常圧力に戻った時点で弁12を閉す
る。浄化ガス供給タンク9では、タンクの圧力が低下す
ると、アルゴンガス供給系13よシ新鮮アルゴンガスが
供給される。
In pressure adjustment tank 4. Measure the pressure in this tank and calculate the reactor cover gas pressure P k P t to P2 using the following procedure.
control between. When the pressure P detected by the pressure detector 10 becomes P>P2, the valve 11 is closed, the supply of purified gas from the purified gas supply tank 9 is stopped, and the reactor cover gas pressure is lowered. - Valve 11 is fully opened when the pressure returns to normal. The pressure P detected by the pressure detector 10 is P<Pl
In this case, fully open the valve 12, supply the purified gas from the purified gas supply tank 9 to all the reactor vessels, raise the reactor cover gas pressure, and then close the valve 12 when the pressure returns to normal pressure. . In the purified gas supply tank 9, when the pressure of the tank decreases, fresh argon gas is supplied from the argon gas supply system 13.

以上のアルゴンガス系設備において、設備内の配管に破
損が生じた場合・現状では、■漏洩したアルゴンガス中
に含まれた放射能を雰囲気モニタにて検出する方式、■
系統内の著しい圧力の低下を圧力計にて検出する方式・
■雰囲気の圧力の増加を圧力計にて検出する方式・■系
統流量の著しい増加また(は低下を流量計にて検出する
方式、の4つの方式にてその破損を検出する。
In the above argon gas system equipment, if damage occurs to the piping inside the equipment, the current method is to detect the radioactivity contained in the leaked argon gas using an atmosphere monitor.
A method that uses a pressure gauge to detect a significant drop in pressure within the system.
Damage can be detected using four methods: (1) detecting an increase in atmospheric pressure using a pressure gauge; and (2) detecting a significant increase or decrease in system flow using a flow meter.

以上の方式を使った場合、破損の規模が大きい場合には
短時間で破損を検出できるが、配管に直径数聴程度の破
損が生じた等の中小規模の破損では、破損を検出できる
までに数時間から数日程度の時間を要し、アルゴンガス
が多量に流出してしまう。
When using the above method, if the damage is large, it can be detected in a short time, but if the damage is small or medium-sized, such as a pipe with a diameter of a few centimeters, it may take a long time to detect the damage. It takes several hours to several days, and a large amount of argon gas flows out.

そのうち、特に浄化ガス供給タンク9から原子炉容器1
0間で破損が生じた場合は、系統内の圧力低下を圧力計
にて検出する方式でしか検出できず、前述のような原子
炉カバーガス圧制御を行っているために・破損の検出が
遅れる。
Among them, especially from the purified gas supply tank 9 to the reactor vessel 1
If a breakage occurs between I'll be late.

これに対し、他産業での類似例により次のような対応策
が考えられる。
In response to this, the following countermeasures can be considered based on similar examples in other industries.

通常運転時の原子炉カバーガス圧力と弁12の開閉関係
を第2図に示す。通常運転時においては。
FIG. 2 shows the relationship between the reactor cover gas pressure and the opening/closing of the valve 12 during normal operation. During normal operation.

原子炉カバーガス(圧力調整タンク4)圧力Pが、圧力
制御範囲の下限圧力P1″!で低下すると、弁12が開
し、浄化ガスを原子炉容器側に供給する。
When the reactor cover gas (pressure adjustment tank 4) pressure P decreases to the lower limit pressure P1'' of the pressure control range, the valve 12 opens and the purified gas is supplied to the reactor vessel side.

これにより、原子炉カバーガス(圧力調整タンク4)圧
力Pは通常レベルまで復帰し・弁12は閉となる。その
後、ある時間、経過後、再び圧力Pが下限圧力Plまで
低下し、再び同様の操作が行われ、これが繰り返される
As a result, the reactor cover gas (pressure adjustment tank 4) pressure P returns to the normal level and the valve 12 is closed. Thereafter, after a certain period of time has elapsed, the pressure P is reduced to the lower limit pressure Pl again, and the same operation is performed again, and this is repeated.

この際、所定時間Tにおける弁12°開°積算回数をN
とする。また・弁12゛開″による浄化ガス供給時間を
tlとする。
At this time, the cumulative number of times the valve is opened 12° in the predetermined time T is
shall be. In addition, the purification gas supply time when the valve 12 is opened is tl.

(1)弁開閉頻度(Cよる判定 配管に小中規模の破損が生じた場合の原子炉カバーガス
圧力と弁12の開閉関係を第3図に示す。配管破損が生
じた場合、原子炉カバーガス圧力Pの低下が通常運転時
に比べて早くなり、浄化ガスを供給するための弁12の
開閉頻度が多くなる。よって、所定時間Tにおける弁1
2°開“積算回数N1は、Nより多くなる。
(1) Valve opening/closing frequency (determined by C) Figure 3 shows the relationship between the reactor cover gas pressure and the opening/closing of the valve 12 in the event of small or medium-sized damage to the piping. The decrease in gas pressure P becomes faster than during normal operation, and the frequency of opening and closing of the valve 12 for supplying purified gas increases.
The cumulative number of times N1 is 2° open is greater than N.

この時、通常運転時の弁12°開°積算回数Nより、誤
差、バラツキ等を考慮して、ある余裕Aをもって、異常
判定基準としての弁12“開°積算回数をN+Aと設定
する。この設定値N+AとN′を常時比較し・ N1 ≧N+A となった時点で、異常と判定し・配管破損を検出する。
At this time, the cumulative number of times the valve 12" is opened during normal operation is set to N + A, with a certain margin A, taking into account errors, variations, etc. Constantly compares the set values N+A and N'. When N1 ≧ N+A, it is determined that there is an abnormality and piping damage is detected.

(2)弁′開“時間による判定 第4図に、配管破損によりアルゴンガスの流出量が多く
なった場合の原子炉カバーガス圧力と弁12の開閉関係
を示す。原子炉カバーガス圧力Pが、圧力制御範囲の下
限圧力P1まで低下した際の通常圧力レベルまで戻すた
めの弁12゛開°時間t2が・浄化ガスを供給している
途中で一部流出してしまうため、通常運転時の弁12′
開″時間11 と比べて長くなる。
(2) Judgment based on valve opening time Figure 4 shows the relationship between the reactor cover gas pressure and the opening/closing of the valve 12 when the amount of argon gas flowing out increases due to pipe damage. , the opening time t2 of the valve 12 to return the pressure to the normal pressure level when the pressure drops to the lower limit pressure P1 of the pressure control range is longer than that during normal operation because some of the purified gas leaks out while supplying the purified gas. Valve 12'
The opening time is longer than the opening time 11.

この時1通常運転時の弁12゛開”時間tlより・誤差
・バラツキ等を考慮して、異常判定基準としての弁12
”開“時間をt!+Δtと設定する。この弁12°開゛
時間t2を弁開動作毎に測定し、設定値t1+Δtと比
較して、t2≧11+Δt となった時点で異常と判定し、配管破損を検出する。
At this time, 1. From the valve 12 open time tl during normal operation, considering errors, variations, etc., the valve 12 is set as the abnormality judgment standard.
“Open” time! +Δt. This valve 12° opening time t2 is measured every time the valve is opened, and compared with the set value t1+Δt. When t2≧11+Δt, it is determined that there is an abnormality and pipe damage is detected.

以上の2方式によれば、放射能、圧力及び流量による検
出方式と比べて早期に検出できるが、信頼性の点で問題
がある。また1通常運転時の原子炉カバーガス圧力55
00WAqに比べて、燃料交換時には100NnAqと
なるため、燃料交換時に配管破損が生じた場合、検出で
きるまでにさらに多量のアルゴンガスが流出してしまう
という問題があった。
According to the above two methods, detection can be performed earlier than detection methods using radioactivity, pressure, and flow rate, but there is a problem in terms of reliability. In addition, 1 Reactor cover gas pressure during normal operation 55
Compared to 00 WAq, the amount is 100 NnAq at the time of refueling, so if a pipe breakage occurs during refueling, an even larger amount of argon gas will flow out before it can be detected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、アルゴンガス系設備内の小中規模(配
管に直径数聴程度の破損)の配管破損をプラント運転モ
ードにかかわらず、早期にかつ誤信号を発することのな
い高い信頼性で検出し運転員に報知することができる配
管破損検出装置を提供することにある。
The purpose of the present invention is to detect small to medium-sized pipe damage (damage to the pipe with a diameter of several meters) in argon gas equipment quickly and with high reliability without generating false signals, regardless of the plant operation mode. It is an object of the present invention to provide a piping breakage detection device that can detect and notify an operator.

〔発明の概要〕[Summary of the invention]

本発明は・配管破損検出装置を設け、この装置により、
原子炉カバーガス圧力を圧力制御範囲に調整する弁の開
閉頻度、弁の開時間を常時監視し、各プラント運転モー
ドの運転時と比較して、開閉頻度が多くなったこと、開
時間が長くなったことの双方が成立した場合に、配管破
損と判定し、瞥報信号を発することによって、運転員に
配管破損を報知することを可能としたものである。
The present invention is provided with a pipe damage detection device, and with this device,
We constantly monitored the opening/closing frequency and opening time of the valves that adjust the reactor cover gas pressure within the pressure control range, and found that the opening/closing frequency was higher and the opening time was longer than when operating in each plant operation mode. If both of the following conditions are true, it is determined that the pipe is damaged, and a warning signal is issued to notify the operator of the pipe damage.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例全第5図、第6図により説明する
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 5 and 6.

配管に小中規模の破損が生じた場合における、原子炉カ
バーガス圧力と圧力を調整している弁12°開°演算回
数、弁12“開゛時間の関係を第5図に、配管破損検出
装置14の構成を第6図に示す。
Figure 5 shows the relationship between the reactor cover gas pressure, the number of times the valve 12 that regulates the pressure is opened, and the time the valve 12 is opened in the event of small or medium-sized damage to the piping. The configuration of the device 14 is shown in FIG.

配管破損検出装置14は、弁12開閉回数積算回路15
.弁12“開”時間計算回路16.開閉回数比較回路1
7、開時間比較回路18.弁12開閉回数設定回路19
.弁12°開“時間設定回路20.配管破損判定回路2
1により構成される。
The piping damage detection device 14 includes a valve 12 opening/closing frequency integration circuit 15.
.. Valve 12 "open" time calculation circuit 16. Opening/closing frequency comparison circuit 1
7. Open time comparison circuit 18. Valve 12 opening/closing frequency setting circuit 19
.. Valve 12° open time setting circuit 20. Piping damage judgment circuit 2
1.

弁12開閉回数積算回路15では、弁12°開”信号・
弁12°閉°信号ヲ増り込み、弁12の開閉回数を積算
する。開閉回数比較回路17は、弁12開閉回数積算回
路15よりの積算回数と、弁12開閉回数設定回路19
よりの設定回数を比較し・その結果を配管破損判定回路
21に送る。なお・弁12開閉回数設定回路19では・
プラント運転モード信号ヲをり込み、運転モードに応じ
て設定回数をかえる。
In the valve 12 opening/closing frequency integration circuit 15, the valve 12° open” signal/
The valve 12° close signal is increased and the number of times the valve 12 is opened and closed is accumulated. The opening/closing frequency comparison circuit 17 calculates the cumulative frequency from the valve 12 opening/closing frequency accumulating circuit 15 and the valve 12 opening/closing frequency setting circuit 19.
The set number of times are compared and the results are sent to the piping damage determination circuit 21. In addition, in the valve 12 opening/closing frequency setting circuit 19,
Incorporates the plant operation mode signal and changes the set number of times according to the operation mode.

弁12゛開′時間計算回路16では、弁12°開゛時刻
、弁12゛閉”時刻をml)込み、弁12の“開”時間
を計算する。開時間比較回路18は、弁12゛開°時間
計算回路16よりの°開”時間と・弁12”開”時間設
定回路20よりの設定時間を比較し、その結果を配管破
損判定回路21に送る。なお、弁12”開”時間設定回
路20では・プラント運転モード信号を増り込み運転モ
ードに応じて設定回数をかえる。
The valve 12' open time calculating circuit 16 calculates the "open" time of the valve 12 by including the valve 12' open time and the valve 12' closed time. The "open" time from the open time calculation circuit 16 is compared with the set time from the valve 12 "open" time setting circuit 20, and the result is sent to the pipe damage determination circuit 21. In addition, the valve 12 "open" time setting circuit 20 increases the plant operation mode signal and changes the set number of times according to the operation mode.

配管破損判定回路21では、開閉回数比較回路17、開
時間比較回路18より送られてきた結果が、双方とも設
定値を超えて異常となった場合に・配管破損と判定し9
報信号を発する。
In the pipe damage determination circuit 21, if the results sent from the opening/closing frequency comparison circuit 17 and the opening time comparison circuit 18 both exceed set values and become abnormal, it is determined that the pipe is damaged.
Emit a warning signal.

具体的に図5に示すケースにあてはめてみる。Let's apply this specifically to the case shown in Figure 5.

弁12開閉回数積算回路15での積算回数N2と設定回
路19よりの設定回数N+Aを開閉回数比較回路17で
比較する。
The cumulative number N2 of the valve 12 opening/closing frequency accumulating circuit 15 and the set frequency N+A from the setting circuit 19 are compared in the opening/closing frequency comparing circuit 17.

KI=N2 (N+A) また・弁12゛開°時間計算回路16での計算時間t3
と設定回路20よシの設定時間1.+Δtを開”時間比
較回路18で比較する。
KI=N2 (N+A) Also, the calculation time t3 in the valve 12° opening time calculation circuit 16
and the setting time of the setting circuit 20 1. +Δt is compared by the open time comparison circuit 18.

Kz=tz (t++Δt) このに+ 、に2が双方とも に1 >O,Kz >0 となった場合、配管破損判定回路21では、配管破損と
判定し、訃報信号を発する。
Kz=tz (t++Δt) When both + and 2 become 1>O, Kz>0, the pipe damage determination circuit 21 determines that the pipe is damaged and issues an obituary signal.

上記したように・本発明の実施例を弁12が0N−OF
F弁の場合を対象に説明したが、加減弁の場合にも適用
可能である。
As mentioned above, in the embodiment of the present invention, the valve 12 is 0N-OF.
Although the explanation has been made for the case of the F valve, it is also applicable to the case of a control valve.

カバーガス圧力を加減弁の開度を連続制御することによ
って一定に保っているループにおいて、配管破損が生じ
た場合、原子炉カバーガス圧力は低下し、必然的に加減
弁の開度をコントロールしている制御器より開方向の操
作出力が・通常運転時に比べて増加する。
In a loop where the cover gas pressure is kept constant by continuously controlling the opening degree of the regulator valve, if a pipe breakage occurs, the reactor cover gas pressure will decrease, and the opening degree of the regulator valve will inevitably be controlled. The operating output in the opening direction from the controller increases compared to normal operation.

通常運転時の制御器の操作出力Mの積算値に、誤差・バ
ラツキ等を考慮して、所定時間Tにおける異常判定基準
としての設定値を 七設定する。
Seven set values are set as abnormality determination criteria for a predetermined time T in the integrated value of the operation output M of the controller during normal operation, taking into account errors, variations, etc.

所定時間Tにおいて制御器の操作出力M′を積算し、設
定値と比較して。
The operation output M' of the controller is integrated over a predetermined time T and compared with the set value.

となった時点で異常と判定し・配管破損を検出する。本
方式によれば、原子炉カバーガス圧力P−AI、圧力制
御範囲の下限圧力Pr iで至らなくとも検出が可能で
あり、前述の0N−OFF弁の場合と比較して、エリ早
く検出可能であり、より有効である。
When this happens, it is determined that there is an abnormality and piping damage is detected. According to this method, detection is possible even if the reactor cover gas pressure P-AI is lower than the lower limit pressure P i of the pressure control range, and compared to the case of the 0N-OFF valve described above, detection is possible more quickly. and is more effective.

〔発明の効果〕〔Effect of the invention〕

本発明fF:、よれば、アルゴンガス系の配管が中小破
損した時、カバーガス圧力が一定になるよう制御してい
る弁の開閉頻度、弁の開”時間の双方ともをプラント運
転モードにあわせて監視することにより、異常を自動的
に検出して警報を発しているため、放射線モニタ、圧力
計、流量計にて検出可能々レベルまで破損規模が犬きく
ならなくとも、また配管破損が発生してから多くの時間
が経過し彦くとも、どの運転モードにおいても、早期に
かつ誤信号を発することのない高い信頼度で検出し運転
員に報知することができるという優れた効果がある。こ
れにより、運転員は確実に放射能を含んだアルゴンガス
の系外放出を−早く食す止めることができる。
According to the present invention fF:, when there is a small or medium-sized breakage in the argon gas system piping, both the opening/closing frequency and the opening time of the valve that controls the cover gas pressure to be constant are adjusted to the plant operation mode. By monitoring the system, abnormalities are automatically detected and alarms are issued, so even if the damage does not reach a level that can be detected by radiation monitors, pressure gauges, and flow meters, pipe damage will occur again. Even after a long period of time has elapsed, there is an excellent effect of being able to detect and notify the operator early and with high reliability without generating false signals in any operating mode. This allows the operator to reliably quickly stop the release of radioactive argon gas to the outside of the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉容器および冷却系機器内のナトリウム自
由液面を覆っているアルゴンガスを取扱う設備の概略構
成図・21T 2図は通常運転時の原子炉カバーガス圧
力と圧力全調整している弁の関係図、第3図は配管に中
小規模の破損が生じた場合の原子炉カバーガス圧力と圧
力を調整している弁の関係と配管破損検出方式の説明図
、第4図は配管破損によりアルゴンガスの流出量が多く
なった場合の原子炉カバーガス圧力と圧力を調整してい
る弁の”開“時間との関係図、2g5図は配管破損が生
じた場合における原子炉カバーガス圧力と圧力を調整し
ている弁の“開”回数、゛開゛時聞及び配管破損検出方
式の説明図、第6図は本発明の実施例である配管破損検
出装置の構成を示すブロック図である。 l・・・原子炉容器、2・・・炉容器ミストトラップ・
3・・・炉容器ベーパトラップ、4・・・圧力調整タン
ク、5・・・圧縮機、6・・・高圧サージタンク、7・
・・希ガス除去・回収設備、8・・・減衰タンク、9・
・・浄化ガス供給タンク、10・・・圧力検出器、13
・・・アルゴンガス供給系、14・・・配管破損検出装
置、15・・・弁12開閉回数積算回路、16・・・弁
12゛開′時間計算回路、17・・・開閉回数比較回路
、18・・・開時間比較回路、19・・・弁12開閉回
数設定回路。 20・・・弁12“開”時間設定回路、21・・・配管
破損判定回路。
Figure 1 is a schematic diagram of the equipment that handles the argon gas that covers the sodium free liquid level in the reactor vessel and cooling system equipment.Figure 2 shows the reactor cover gas pressure during normal operation and the pressure fully adjusted. Figure 3 is an explanatory diagram of the relationship between the reactor cover gas pressure and the valves that adjust the pressure in the event of small or medium-sized damage to the piping, and the piping damage detection method. Figure 4 is an explanatory diagram of the piping damage detection method. A diagram showing the relationship between the reactor cover gas pressure and the "opening" time of the valve that adjusts the pressure when the amount of argon gas flowing out increases due to a breakage. Figure 2g5 shows the reactor cover gas pressure when a pipe breakage occurs. An explanatory diagram of the pressure, the number of openings of the valve that adjusts the pressure, the opening time, and the piping damage detection method. Figure 6 is a block diagram showing the configuration of the piping damage detection device that is an embodiment of the present invention. It is. l...Reactor vessel, 2...Reactor vessel mist trap/
3... Furnace vessel vapor trap, 4... Pressure adjustment tank, 5... Compressor, 6... High pressure surge tank, 7...
・・Rare gas removal/recovery equipment, 8・Attenuation tank, 9・
...Purified gas supply tank, 10...Pressure detector, 13
... Argon gas supply system, 14... Piping damage detection device, 15... Valve 12 opening/closing frequency integration circuit, 16... Valve 12 'opening' time calculation circuit, 17... Opening/closing frequency comparison circuit, 18... Opening time comparison circuit, 19... Valve 12 opening/closing frequency setting circuit. 20... Valve 12 "open" time setting circuit, 21... Piping damage determination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、 液体金属ナトリウムを冷却材として使用している
原子カプラントの、ナトリウム自由表面の酸化を防止す
るために2化学的に不活性なアルゴンガスによって、原
子炉容器および冷却系機器内のナトリウム自由液WUk
 ’Dい、そのカッ(−ガス圧力の変動に対し・弁?開
閉することによって、カッ(−ガス圧力を一定に保って
いる設備において、弁の開閉頻度と弁が開している時間
または弁の開度を監視する装置を設け、弁の開閉頻度と
弁が開している時間または弁開方向の操作出力の双方と
もがプラント運転モードに応じて設定した設定値全1え
たことにより配管破損と判定し官報信号を発することを
特徴とする配管破損検出装置。
1. To prevent oxidation of the sodium free surface of an atomic couplant using liquid metallic sodium as a coolant. 2. To prevent oxidation of the sodium free surface in the reactor vessel and cooling system equipment by chemically inert argon gas. WUk
(-In response to fluctuations in gas pressure, by opening and closing the valve) A device was installed to monitor the opening degree of the valve, and pipe damage occurred when both the valve opening/closing frequency, the valve opening time, or the operation output for the valve opening direction exceeded the set value set according to the plant operation mode. A piping breakage detection device characterized in that it determines that and issues an official gazette signal.
JP58199084A 1983-10-26 1983-10-26 Detector for damage of piping Pending JPS6091290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199084A JPS6091290A (en) 1983-10-26 1983-10-26 Detector for damage of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199084A JPS6091290A (en) 1983-10-26 1983-10-26 Detector for damage of piping

Publications (1)

Publication Number Publication Date
JPS6091290A true JPS6091290A (en) 1985-05-22

Family

ID=16401831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199084A Pending JPS6091290A (en) 1983-10-26 1983-10-26 Detector for damage of piping

Country Status (1)

Country Link
JP (1) JPS6091290A (en)

Similar Documents

Publication Publication Date Title
US7208117B2 (en) Automated process for inhibiting corrosion in an inactive boiler containing an aqueous system
JPS6213634B2 (en)
JPS6091290A (en) Detector for damage of piping
JP2002333381A (en) Detection method for leak of hydrogen gas
KR102629816B1 (en) Hydrogenation system and method for pressurized water reactor
JPS62201394A (en) Method of monitoring leakage from nuclear reactor container
JPH0690305B2 (en) Reactor accessory cooling system
RU82915U1 (en) HEAT CARRIER LEVEL DETECTION SYSTEM BY MONITORING AEROSOL ACTIVITY IN NPP ROOMS (OPTIONS)
JPS58202895A (en) Reactor container monitoring device
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
CN118116626A (en) System and method for preventing reactor core from being exposed during cold shutdown of nuclear power unit
JPS6057522B2 (en) How to detect abnormality in gas supply source
JPH04194502A (en) Generating plant and method and device for controlling water level
JPS6098391A (en) Monitor device for temperature of suppression pool
JPS61129548A (en) Sodium leak detecting system
JPS589547A (en) Hydrogen gas cooling rotary electric machine
JPS6390795A (en) In-housing piping leakage detector
JPS5890138A (en) Leak monitoring device
RU2071021C1 (en) Device for transfer of heat and method of determination of abnormal conditions of operation of liquid-metal heat-transfer agent loop
SU1222115A1 (en) System of emergency cooling of reactor active zone and localization of atomic power station breakdown
JPH0247593A (en) Separation valve controller of nuclear power plant
JPS593235A (en) Liquid metal leakage detection system
JPS62132127A (en) Purge type level gage
Wang et al. Study on Cycle-Based Fatigue Monitoring Technique
JPS58100796A (en) Bwr type reactor power plant