JP2002333381A - Detection method for leak of hydrogen gas - Google Patents

Detection method for leak of hydrogen gas

Info

Publication number
JP2002333381A
JP2002333381A JP2001140034A JP2001140034A JP2002333381A JP 2002333381 A JP2002333381 A JP 2002333381A JP 2001140034 A JP2001140034 A JP 2001140034A JP 2001140034 A JP2001140034 A JP 2001140034A JP 2002333381 A JP2002333381 A JP 2002333381A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
pressure
supply pipe
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001140034A
Other languages
Japanese (ja)
Inventor
Takeshi Kanda
健 神田
Jun Kanai
恂 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Engineering Co Ltd
Original Assignee
Showa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Engineering Co Ltd filed Critical Showa Engineering Co Ltd
Priority to JP2001140034A priority Critical patent/JP2002333381A/en
Publication of JP2002333381A publication Critical patent/JP2002333381A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detection method for the leak of hydrogen gas, in which the leak of the hydrogen gas is detected easily and quickly when the hydrogen gas is supplied from a hydrogen storage container through a hydrogen supply pipe. SOLUTION: When the hydrogen gas is supplied from the hydrogen storage container 11 through the hydrogen supply pipe 14, the drop speed of the actual pressure of the hydrogen gas in the pipe 14 is measured. The drop speed of the actual pressure is compared with the drop speed of a theoretical pressure in a case where the hydrogen gas is not leaked, and the leak of the hydrogen gas is detected. At hit time, it is preferable that the drop speed of the actual pressure is measured between a pressure reducing valve 12 installed at the pipe 14 and the container 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素ガスを水素貯
蔵容器から水素供給配管を介して供給する際に、水素供
給配管からの水素ガスの漏洩を検知することを特徴とす
る水素ガス漏洩の検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a hydrogen gas leak from a hydrogen storage container when the hydrogen gas is supplied from the hydrogen storage container via the hydrogen supply pipe. Related to the detection method.

【0002】[0002]

【従来の技術】例えば、原子力発電所などでは、水素ガ
スを発電所内で製造せずに、ボンベなどの水素ガス貯蔵
容器を水素製造工場から運搬して受け入れて使用するこ
とが多い。水素ガス貯蔵容器を設置する場所は、全体配
置の都合上、水素ガス使用設備から大幅に離れてしまう
ことがある。そのため、水素ガス貯蔵容器と水素ガス使
用設備とを接続する水素供給配管は長くなり、その長さ
は数百メートルから数キロメートルになる。水素供給配
管が長くなると、その長さに応じて継手などの配管接続
部が増加することになる。配管接続部では隙間を生じや
すいので、水素ガスが漏洩しやすい。特に、水素ガスは
分子径が小さいため非常に狭い隙間であっても容易に侵
入するので、漏洩しやすいガスである。さらに、水素ガ
ス貯蔵容器の貯蔵圧力は10MPa以上、通常は20M
Paの高圧力となることがあり、このような高圧力にお
いては、水素ガスがさらに漏洩しやすくなる。そのた
め、配管接続部近傍に、例えば、水素ガス検知器などの
水素ガス漏洩を検知する手段を設置することがある。
2. Description of the Related Art For example, in a nuclear power plant, a hydrogen gas storage container such as a cylinder is often transported from a hydrogen manufacturing plant and received for use without producing hydrogen gas in the power plant. The place where the hydrogen gas storage container is installed may be largely separated from the hydrogen gas use facility due to the entire arrangement. Therefore, the length of the hydrogen supply pipe connecting the hydrogen gas storage container and the equipment using the hydrogen gas becomes long, and its length is several hundred meters to several kilometers. When the length of the hydrogen supply pipe becomes longer, the number of pipe connection parts such as joints increases in accordance with the length. Since a gap is easily generated at the pipe connection, hydrogen gas is likely to leak. In particular, hydrogen gas is a gas that leaks easily because it has a small molecular diameter and easily enters even a very narrow gap. Further, the storage pressure of the hydrogen gas storage container is 10 MPa or more, usually 20 M
The pressure may be as high as Pa, and at such a high pressure, hydrogen gas is more likely to leak. Therefore, a means for detecting hydrogen gas leakage, such as a hydrogen gas detector, may be installed near the pipe connection.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、漏洩し
やすい箇所の近くに水素ガス検知器を設置する方法で
は、あらかじめ水素ガス検知器が近傍に設置され、明ら
かに漏洩しやすいと予測される箇所については効率的に
検知できるものの、これ以外の箇所の漏洩が検知できな
いことがある。また、水素供給配管は長い上に、溶接箇
所は数多くあり、漏洩を網羅的に検知しようとすると、
水素ガス検知器を多量に設置しなければならず、そのた
めの設備費が増加する。
However, in the method of installing a hydrogen gas detector near a leak-prone portion, a method is proposed in which a hydrogen gas detector is installed in advance in the vicinity, and it is apparent that the hydrogen gas detector is likely to leak. May be detected efficiently, but leakage at other locations may not be detected. In addition, the hydrogen supply pipe is long, and there are many welds, so if you try to detect leaks comprehensively,
A large number of hydrogen gas detectors must be installed, which increases equipment costs.

【0004】また、水素供給配管に流量計を設けて実際
に流れた水素流量を測定し、この水素流量と水素ガス使
用設備における水素ガスの消費量とを比較することによ
っても、水素ガス漏洩を検知できる。しかも、漏洩量も
測定可能である。しかしながら、流量計は高価である上
に、流量計を設置することで配管接続部が増加するの
で、漏洩の可能性をさらに高くすることになる。本発明
は、前記事情を鑑みて行われたものであり、水素ガスを
水素貯蔵容器から水素ガス使用設備に供給する際に、水
素供給配管からの水素ガスの漏洩を少ない設備投資で容
易に検知する水素ガス漏洩の検知方法を提供することを
目的とする。
A hydrogen gas leak is also measured by installing a flow meter in the hydrogen supply pipe and measuring the actual flow rate of the hydrogen gas, and comparing the hydrogen flow rate with the consumption of the hydrogen gas in the equipment using the hydrogen gas. Can be detected. In addition, the amount of leakage can be measured. However, the flow meter is expensive, and the installation of the flow meter increases the number of pipe connections, thereby further increasing the possibility of leakage. The present invention has been made in view of the above circumstances, and when hydrogen gas is supplied from a hydrogen storage container to a facility using hydrogen gas, leakage of hydrogen gas from a hydrogen supply pipe is easily detected with a small facility investment. It is an object of the present invention to provide a method for detecting hydrogen gas leakage.

【0005】[0005]

【課題を解決するための手段】本発明の水素ガス漏洩の
検知方法は、水素ガスを水素貯蔵容器から水素供給配管
を介して供給する際に、前記水素供給配管の水素ガスの
実圧力低下速度を測定し、この実圧力低下速度と、水素
ガスが漏洩していない場合の理論圧力低下速度とを比較
して水素ガスの漏洩を検知することを特徴とする。その
際、前記実圧力低下速度を、前記水素供給配管に設けら
れた減圧弁と前記水素貯蔵容器との間で測定することが
好ましい。
According to the method for detecting hydrogen gas leakage of the present invention, when hydrogen gas is supplied from a hydrogen storage container via a hydrogen supply pipe, the actual pressure drop rate of the hydrogen gas in the hydrogen supply pipe is reduced. Is measured, and the actual pressure drop rate is compared with the theoretical pressure drop rate when hydrogen gas is not leaking, to detect hydrogen gas leak. At this time, it is preferable that the actual pressure reduction rate is measured between a pressure reducing valve provided in the hydrogen supply pipe and the hydrogen storage container.

【0006】[0006]

【発明の実施の形態】本発明の水素ガス漏洩の検知方法
に係る一実施形態について図1を参照しながら説明す
る。この実施形態では、図1に示すように、水素ガスを
水素貯蔵容器11から、減圧弁12が設けられた水素供
給配管14を介して、水素ガス使用設備(図示せず)に
接続された水素注入口13に供給する。なお、水素ガス
は、水素ガス使用設備にて、あらかじめ設定された一定
速度で消費されている。そして、水素貯蔵容器11と減
圧弁12との間に設置された圧力計15によって、水素
貯蔵容器11から減圧弁12までの水素供給配管の圧力
を測定する。この圧力値は圧力計15から演算部16に
送られ、この演算部16において、一定時間における圧
力の低下値から実圧力低下速度が求められる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for detecting hydrogen gas leakage according to the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 1, hydrogen gas is supplied from a hydrogen storage container 11 to a hydrogen gas supply facility (not shown) via a hydrogen supply pipe 14 provided with a pressure reducing valve 12. Supply to inlet 13. Note that the hydrogen gas is consumed at a preset constant speed in the hydrogen gas use facility. Then, the pressure of the hydrogen supply pipe from the hydrogen storage container 11 to the pressure reducing valve 12 is measured by the pressure gauge 15 installed between the hydrogen storage container 11 and the pressure reducing valve 12. The pressure value is sent from the pressure gauge 15 to the calculation unit 16, and the calculation unit 16 calculates the actual pressure reduction speed from the pressure reduction value in a certain time.

【0007】ところで、水素ガスは一定速度で消費され
ているため、水素供給配管での漏洩がない場合の理論圧
力低下速度を求めることができる。この理論圧力低下速
度は、水素ガスを供給する前に、演算部16にあらかじ
め入力される。そして、演算部16において、あらかじ
め入力された理論圧力低下速度と実測された実圧力低下
速度とを比較する。実測された実圧力低下速度が理論圧
力低下速度以下の場合には、水素供給配管14からの水
素ガス漏洩はない。一方、実圧力低下速度が理論圧力低
下速度より大きい場合には、水素ガスが消費量以上に供
給されているので、漏洩していると判断する。そして、
演算部16から信号を発し、警報17を作動させる。
By the way, since hydrogen gas is consumed at a constant rate, the theoretical pressure drop rate when there is no leakage in the hydrogen supply pipe can be obtained. This theoretical pressure decrease rate is input to the calculation unit 16 in advance before supplying the hydrogen gas. Then, the arithmetic unit 16 compares the theoretical pressure decrease speed input in advance with the actually measured actual pressure decrease speed. When the measured actual pressure drop rate is equal to or lower than the theoretical pressure drop rate, no hydrogen gas leaks from the hydrogen supply pipe 14. On the other hand, if the actual pressure drop rate is higher than the theoretical pressure drop rate, it is determined that the hydrogen gas is leaking because the hydrogen gas is supplied at a consumption amount or higher. And
A signal is issued from the arithmetic unit 16 and the alarm 17 is activated.

【0008】実圧力低下速度の測定は、一定時間におけ
る圧力の低下を測定することによって求められる。その
一定時間は、圧力低下の測定に問題がなければ特に制限
はないが、10〜30分間であることが好ましい。10
分間未満であると、圧力の低下値が小さくなり、圧力計
15での計測精度限界を下回ってしまうことがあり、3
0分間を超えると、漏洩してからの検知が遅れてしまう
場合がある。なお、圧力計15の測定誤差は、通常約1
%であることが多い。例えば、20MPaの水素では、
測定誤差が0.2MPaである。実圧力低下速度と理論
圧力低下速度とを比較する際には、この測定誤差を考慮
しておくことが好ましい。すなわち、理論圧力低下速度
に測定誤差を加算した数値を演算部16に入力すること
が好ましい。例えば、理論圧力低下速度を3.0MPa
/5分とし、測定誤差を0.2MPaとすると、演算部
16に入力する値は、3.2MPaである。
[0008] The measurement of the actual pressure drop rate is obtained by measuring the pressure drop over a certain period of time. The fixed time is not particularly limited as long as there is no problem in measuring the pressure drop, but is preferably 10 to 30 minutes. 10
If the time is less than one minute, the pressure drop value becomes small, and may fall below the measurement accuracy limit of the pressure gauge 15.
If the time exceeds 0 minutes, detection after the leakage may be delayed. The measurement error of the pressure gauge 15 is usually about 1
%. For example, in hydrogen of 20 MPa,
The measurement error is 0.2 MPa. When comparing the actual pressure drop rate with the theoretical pressure drop rate, it is preferable to consider this measurement error. That is, it is preferable that the numerical value obtained by adding the measurement error to the theoretical pressure drop rate is input to the arithmetic unit 16. For example, the theoretical pressure drop rate is 3.0 MPa
Assuming / 5 minutes and a measurement error of 0.2 MPa, the value input to the calculation unit 16 is 3.2 MPa.

【0009】水素貯蔵容器11は、運搬が可能であり、
10MPa以上の高圧水素を充填できるものが好まし
い。水素貯蔵容器11が充填できる水素が10MPa未
満であると、水素ガス輸送効率が低下することがある。
このような水素貯蔵容器11は、例えば、ボンベなどが
挙げられる。さらに、このようなボンベは、ボンベトレ
ーラーなどに積載されたまま使用することもできる。
The hydrogen storage container 11 can be transported,
What can fill high-pressure hydrogen of 10 MPa or more is preferable. If the hydrogen that can be filled in the hydrogen storage container 11 is less than 10 MPa, the hydrogen gas transport efficiency may be reduced.
Such a hydrogen storage container 11 is, for example, a cylinder. Further, such a cylinder can be used while being loaded on a cylinder trailer or the like.

【0010】圧力計15については、10MPa以上の
水素圧力を測定できれば特に制限されないが、圧力値を
演算部16に送ることができるものが好ましい。圧力計
15による圧力の測定には特に制限はなく、一定間隔で
断続的に行ってもよいし、継続的に行ってもよい。本実
施形態では、圧力を測定する位置は、水素貯蔵容器11
と減圧弁12との間である。圧力を測定する位置が水素
貯蔵容器11と減圧弁12との間にあると、水素使用設
備の圧力変動の影響を受けにくい。
The pressure gauge 15 is not particularly limited as long as it can measure a hydrogen pressure of 10 MPa or more. However, a pressure gauge that can send a pressure value to the calculation unit 16 is preferable. The pressure measurement by the pressure gauge 15 is not particularly limited, and may be performed intermittently at fixed intervals or may be performed continuously. In the present embodiment, the position for measuring the pressure is the hydrogen storage container 11.
And the pressure reducing valve 12. If the position where the pressure is measured is between the hydrogen storage container 11 and the pressure reducing valve 12, it is less susceptible to the pressure fluctuation of the hydrogen using equipment.

【0011】上述した実施形態では、水素供給配管14
の漏洩しやすい箇所の近傍に水素ガス検知器をさらに設
置してもよい。また、水素供給配管14に流量計を設け
てもよい。
In the above embodiment, the hydrogen supply pipe 14
A hydrogen gas detector may be further installed in the vicinity of a place where the gas easily leaks. Further, a flow meter may be provided in the hydrogen supply pipe 14.

【0012】上述した実施形態にあっては、水素供給配
管14における水素貯蔵容器11と減圧弁12との間の
水素ガスの実圧力低下速度を圧力計15によって測定
し、この実圧力低下速度と、水素ガスが漏洩していない
場合の理論圧力低下速度とを比較し、水素ガスの漏洩を
検知するので、水素ガス検知器を配管近傍に多数設置す
る必要がなくなり、そのための設備費が不要になるだけ
でなく、水素ガスの漏洩も容易かつ迅速に検知できる。
In the above-described embodiment, the actual pressure drop rate of the hydrogen gas between the hydrogen storage vessel 11 and the pressure reducing valve 12 in the hydrogen supply pipe 14 is measured by the pressure gauge 15, and the actual pressure drop rate is measured. Compared with the theoretical pressure drop rate when hydrogen gas is not leaking, it detects hydrogen gas leaks, so it is not necessary to install many hydrogen gas detectors near the piping, and equipment costs for it are unnecessary. In addition, the leak of hydrogen gas can be easily and quickly detected.

【0013】なお、上述した実施形態では、水素使用設
備での水素消費速度が一定であり、理論圧力低下速度が
一定であるとして、演算部16で実圧力低下速度と比較
していたが、本発明はそれに限定されない。例えば、水
素使用設備での水素ガスの消費速度が変動する場合に
は、水素ガスの消費速度に応じた理論圧力低下速度をあ
らかじめ演算部16に入力しておき、これと実測された
実圧力低下速度とを比較し、水素ガスの漏洩を検知する
ことができる。また、上述した実施形態では、実圧力低
下速度が理論圧力低下速度より大きいと、警報17を作
動させたが、本発明はこれに限定されることはない。例
えば、警報17の代わりに緊急遮断装置を水素供給配管
14に設け、演算部16から発する信号によって作動さ
せ、水素ガスの供給を緊急遮断するようにしてもよい。
また、上述した実施形態では、水素供給配管14に減圧
弁12が設けられていたが、本発明では水素供給配管1
4に減圧弁12が設けられていなくてもよい。
In the above-described embodiment, the calculation unit 16 compares the actual hydrogen pressure reduction rate with the actual pressure reduction rate on the assumption that the hydrogen consumption rate in the hydrogen-using facility is constant and the theoretical pressure reduction rate is constant. The invention is not so limited. For example, when the consumption rate of the hydrogen gas in the hydrogen-using equipment fluctuates, a theoretical pressure reduction rate corresponding to the consumption rate of the hydrogen gas is input in advance to the calculation unit 16, and this and the actually measured actual pressure drop By comparing with the speed, the leakage of the hydrogen gas can be detected. In the above-described embodiment, the alarm 17 is activated when the actual pressure decrease speed is higher than the theoretical pressure decrease speed, but the present invention is not limited to this. For example, an emergency shutoff device may be provided in the hydrogen supply pipe 14 instead of the alarm 17 and activated by a signal generated from the arithmetic unit 16 to urgently shut off the supply of hydrogen gas.
In the above-described embodiment, the pressure reducing valve 12 is provided in the hydrogen supply pipe 14, but in the present invention, the hydrogen supply pipe 1
The pressure reducing valve 12 may not be provided in 4.

【0014】[0014]

【実施例】この実施例では、図1の水素ガス漏洩検知シ
ステムを用いた。なお、水素貯蔵容器11には大型水素
ボンベを用い、その初期圧力は約16MPaであった。
また、減圧弁12によって圧力は2.8MPaに減圧さ
れる。また、水素使用設備での水素消費速度は5分間で
2.6MPaと算出された。この理論圧力低下速度に
0.2MPaの計器の計測誤差を考慮し、5分間で2.
8MPa圧力が低下する実圧力低下速度となった際に、
演算部16から信号を発し、警報17が作動するように
設定した。
EXAMPLE In this example, the hydrogen gas leak detection system shown in FIG. 1 was used. Note that a large hydrogen cylinder was used for the hydrogen storage container 11, and the initial pressure was about 16 MPa.
The pressure is reduced to 2.8 MPa by the pressure reducing valve 12. In addition, the hydrogen consumption rate in the hydrogen using facility was calculated to be 2.6 MPa in 5 minutes. Considering the measurement error of the instrument of 0.2 MPa to this theoretical pressure drop rate, 2.
When the actual pressure drop rate at which the 8 MPa pressure drops,
A signal was issued from the arithmetic unit 16 and the alarm 17 was set to operate.

【0015】(実施例1)まず、大型水素ボンベの開閉
弁を開け、水素供給配管14に水素ガスを流した。そし
て、大型水素ボンベと減圧弁12との間に設けられた圧
力計15によって水素供給配管14の圧力を一分毎に測
定した。その結果を、図2に示す。図2の横軸は時間で
あり、縦軸は圧力である。このように、実圧力低下速度
は5分間で2.6MPaであり、水素供給配管14には
漏洩はなかった。
(Example 1) First, the open / close valve of the large hydrogen cylinder was opened, and hydrogen gas was supplied to the hydrogen supply pipe 14. Then, the pressure of the hydrogen supply pipe 14 was measured every minute by a pressure gauge 15 provided between the large hydrogen cylinder and the pressure reducing valve 12. The result is shown in FIG. The horizontal axis in FIG. 2 is time, and the vertical axis is pressure. Thus, the actual pressure reduction rate was 2.6 MPa for 5 minutes, and there was no leakage in the hydrogen supply pipe 14.

【0016】(実施例2)実施例1とは別に、新品の大
型水素ボンベをこの水素供給配管14に取り付け、水素
ガスを供給したところ、はじめの5分間で3.0MPa
圧力が低下し、警報17が作動した。直ちに水素の供給
を止め、水素供給配管14に石鹸水をかけて漏洩箇所を
調べたところ、減圧弁13付近の溶接箇所にピンホール
が認められた。このように、水素ガス検知器を設置しな
くても、水素ガス漏洩を容易かつ迅速に検知することが
できた。
(Embodiment 2) Apart from Embodiment 1, a new large hydrogen cylinder was attached to the hydrogen supply pipe 14 and hydrogen gas was supplied.
The pressure dropped and the alarm 17 was activated. Immediately after the supply of hydrogen was stopped, soapy water was applied to the hydrogen supply pipe 14 and the leaked portion was examined. As described above, it was possible to easily and quickly detect a hydrogen gas leak without installing a hydrogen gas detector.

【0017】[0017]

【発明の効果】本発明によれば、水素ガス検知器を水素
供給配管近傍に多数設置する必要がなくなり、そのため
の設備費が不要になるだけでなく、水素ガスの漏洩も容
易かつ迅速に検知できる。
According to the present invention, it is not necessary to install a large number of hydrogen gas detectors near the hydrogen supply pipe, so that equipment costs are not required, and leakage of hydrogen gas can be detected easily and quickly. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素ガス漏洩の検知方法に係る一実
施形態で用いられる水素ガス漏洩検知システムを示す模
式図である。
FIG. 1 is a schematic diagram showing a hydrogen gas leak detection system used in one embodiment of the hydrogen gas leak detection method of the present invention.

【図2】 実施例1において、水素ガスを一定速度で供
給したときの圧力低下速度を示すグラフである。
FIG. 2 is a graph showing a pressure drop rate when hydrogen gas is supplied at a constant rate in Example 1.

【符号の説明】[Explanation of symbols]

11 水素ガス容器 12 減圧弁 13 水素注入口 14 水素供給配管 15 圧力計 11 hydrogen gas container 12 pressure reducing valve 13 hydrogen inlet 14 hydrogen supply pipe 15 pressure gauge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素ガスを水素貯蔵容器から水素供給配
管を介して供給する際に、前記水素供給配管の水素ガス
の実圧力低下速度を測定し、 この実圧力低下速度と、水素ガスが漏洩していない場合
の理論圧力低下速度とを比較して水素ガスの漏洩を検知
することを特徴とする水素ガス漏洩の検知方法。
When the hydrogen gas is supplied from a hydrogen storage container through a hydrogen supply pipe, an actual pressure drop rate of the hydrogen gas in the hydrogen supply pipe is measured, and the actual pressure drop rate and the hydrogen gas leak are measured. A method for detecting hydrogen gas leakage, comprising detecting a leakage of hydrogen gas by comparing with a theoretical pressure reduction rate when the hydrogen gas is not leaked.
【請求項2】 前記実圧力低下速度を、前記水素供給配
管に設けられた減圧弁と前記水素貯蔵容器との間で測定
することを特徴とする請求項1に記載の水素ガス漏洩の
検知方法。
2. The method for detecting a hydrogen gas leak according to claim 1, wherein the actual pressure reduction rate is measured between a pressure reducing valve provided in the hydrogen supply pipe and the hydrogen storage container. .
JP2001140034A 2001-05-10 2001-05-10 Detection method for leak of hydrogen gas Withdrawn JP2002333381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140034A JP2002333381A (en) 2001-05-10 2001-05-10 Detection method for leak of hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140034A JP2002333381A (en) 2001-05-10 2001-05-10 Detection method for leak of hydrogen gas

Publications (1)

Publication Number Publication Date
JP2002333381A true JP2002333381A (en) 2002-11-22

Family

ID=18986711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140034A Withdrawn JP2002333381A (en) 2001-05-10 2001-05-10 Detection method for leak of hydrogen gas

Country Status (1)

Country Link
JP (1) JP2002333381A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194409A (en) * 2005-01-17 2006-07-27 Hitachi Metals Ltd Piping device
JP2017026593A (en) * 2015-07-21 2017-02-02 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Testing system, and testing method for the same
JP2017133482A (en) * 2016-01-29 2017-08-03 日立工機株式会社 Transportable tank device and compressed-air storage system
KR102003169B1 (en) * 2018-11-26 2019-07-23 주식회사대한송유관공사 Apparatus and method for estimating oil leaking position, detecting oil leaking using using flow data
JP2020153394A (en) * 2019-03-18 2020-09-24 Necエンベデッドプロダクツ株式会社 Alarm device, alarm method, and program
CN112944221A (en) * 2021-02-04 2021-06-11 成都秦川物联网科技股份有限公司 Risk prevention method and system based on natural gas full-period energy
CN113408104A (en) * 2021-05-24 2021-09-17 中核核电运行管理有限公司 Method and device for calculating real-time hydrogen leakage rate of generator
CN114542976A (en) * 2022-04-27 2022-05-27 浙江浙能航天氢能技术有限公司 Operation maintenance early warning method and system based on hydrogen filling station

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194409A (en) * 2005-01-17 2006-07-27 Hitachi Metals Ltd Piping device
JP4514133B2 (en) * 2005-01-17 2010-07-28 日立金属株式会社 Piping equipment
JP2017026593A (en) * 2015-07-21 2017-02-02 ▲ゆ▼晶能源科技股▲分▼有限公司Gintech Energy Corporation Testing system, and testing method for the same
JP2017133482A (en) * 2016-01-29 2017-08-03 日立工機株式会社 Transportable tank device and compressed-air storage system
KR102003169B1 (en) * 2018-11-26 2019-07-23 주식회사대한송유관공사 Apparatus and method for estimating oil leaking position, detecting oil leaking using using flow data
JP2020153394A (en) * 2019-03-18 2020-09-24 Necエンベデッドプロダクツ株式会社 Alarm device, alarm method, and program
CN112944221A (en) * 2021-02-04 2021-06-11 成都秦川物联网科技股份有限公司 Risk prevention method and system based on natural gas full-period energy
CN112944221B (en) * 2021-02-04 2022-06-17 成都秦川物联网科技股份有限公司 Risk prevention method and system based on natural gas full-cycle energy
CN113408104A (en) * 2021-05-24 2021-09-17 中核核电运行管理有限公司 Method and device for calculating real-time hydrogen leakage rate of generator
CN114542976A (en) * 2022-04-27 2022-05-27 浙江浙能航天氢能技术有限公司 Operation maintenance early warning method and system based on hydrogen filling station

Similar Documents

Publication Publication Date Title
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
US20190063689A1 (en) Leak detection device and method
US4012944A (en) Electronic fluid pipeline leak detector and method
KR940009575A (en) Gas supply equipment abnormality detection device and detection method
JP2014505874A5 (en)
JPH02248834A (en) Method and apparatus for monitoring leakage in fluid canalization
RU2012158359A (en) FUEL LEAKAGE DETECTION SYSTEM AND TURBINE SUPPLIED WITH SUCH SYSTEM
JP2004205477A (en) Method of estimating abnormal spot in fluid conveying piping network
JP2002333381A (en) Detection method for leak of hydrogen gas
JPH10185749A (en) Method and apparatus for leak inspection
CN113227642A (en) Method for detecting a leak in a gas network under pressure or vacuum, and gas network
JP2002310024A (en) Fuel leakage detecting method of generating set
CN105788681A (en) Main steam pipeline leakage monitoring system of nuclear power station
JP3069265B2 (en) Gas safety equipment
KR20180008857A (en) Error detect and control method for gas filling and exhausting system of pressure tank
KR20180000181U (en) Leak Testing Apparatus using pressure-difference of Ball valve
JP2004333411A (en) Water leak detection device and method of water supply system
EA016949B1 (en) Pipeline for transport of gas
JP2604981B2 (en) Gas leak monitoring device
JP2001108569A (en) Method for measuring content volume of gas supply line and leak volume, and device therefor
GB2475323A (en) Alarm system for an oil-fired heating system that monitors pressure in the fuel supply line
JPH0829289A (en) Gas leak monitoring apparatus
JP2713066B2 (en) Gas supply equipment abnormality detector
JP4139908B2 (en) Gas conduit leak detection method and detection apparatus
JP2018184798A (en) Water leakage detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805