JPS6091213A - Method for measuring flow rate of solid in vertical pipe - Google Patents

Method for measuring flow rate of solid in vertical pipe

Info

Publication number
JPS6091213A
JPS6091213A JP58198247A JP19824783A JPS6091213A JP S6091213 A JPS6091213 A JP S6091213A JP 58198247 A JP58198247 A JP 58198247A JP 19824783 A JP19824783 A JP 19824783A JP S6091213 A JPS6091213 A JP S6091213A
Authority
JP
Japan
Prior art keywords
pipe
descending
flow rate
solid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58198247A
Other languages
Japanese (ja)
Other versions
JPH0527054B2 (en
Inventor
Takashi Moriyama
森山 峻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP58198247A priority Critical patent/JPS6091213A/en
Publication of JPS6091213A publication Critical patent/JPS6091213A/en
Publication of JPH0527054B2 publication Critical patent/JPH0527054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To shorten the measuring time of a flowmeter, by providing a plurality of acoustic detectors on the outer wall of a vertical pipe, and statistically smoothing the number of collision times between particles caused by the differences in particle size distribution and in flow speed distribution of high concentration descending bulk material. CONSTITUTION:A solid-state flow-rate measuring apparatus is composed of a pressurizing tank 1 having a fluid bed 2, a pressurizing gas source 3, a distributing discharge pipe 4, a valve 5, a descending transport pipe 6, a horizontal part 8, a tuyere nozzle 9, a carrier-gas blowing and controlling device 11, and the like. Two acoustic detectors 13a and 13b are provided at symmetrical positions on an outer wall 14 of the descending pipe 6 by attaching bodies 15. An octave filter 16, an average measured value computing circuit 17, and a regulator 18 are provided. The central frequency is set at 1kHz-8kHz. Then, the difference in detected output due to the difference in particle size distribution at the cross section of the pipe is averaged. Therefore the measurement for the length twice the conventional length can be performed in the same time period. Thus the measuring time of the flow rate can be shortened.

Description

【発明の詳細な説明】 この発明は、高温高圧炉等に重力下降波によって、粉粒
体を輸送する場合における固体illを精度よく計測す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for accurately measuring solid ill when transporting powder or granular material to a high-temperature, high-pressure furnace or the like by means of downward gravitational waves.

高圧供給端に微粉炭等を高固気比で安定に輸送する場合
、水平管路輸送より1重力下降流による方が質量流量比
を上げるために有利である。
When stably transporting pulverized coal or the like at a high solid-air ratio to the high-pressure supply end, one-gravity downward flow is more advantageous than horizontal pipe transport in order to increase the mass flow rate ratio.

粉粒体加圧輸送装置からその移動層と同程度の質量流量
比で分配輸送する装置として第1図の装置(特許117
58−94119)が提案されている。
The device shown in Fig. 1 (Patent No. 117
58-94119) has been proposed.

このような装置において、垂直輸送管路内の質量流量を
計測する有効な手段は未だ確立されていないが、木発明
者らは以下に説明するように、管内の粒子騒音を管外に
設けた音響又は、振動検出器によって検出し、この検出
出力のうち特定周波数帯域の信号出力によって管内の固
体流量を計測できることを見出した。
Although an effective means of measuring the mass flow rate in a vertical transport pipe has not yet been established in such a device, the inventors have developed a method to measure particle noise inside the pipe outside the pipe, as explained below. It has been found that the solid flow rate in a pipe can be measured by detecting with an acoustic or vibration detector and using the signal output of a specific frequency band among the detection outputs.

即ち、固体粒子(粉粒体)が輸送管中を流れるとき、衝
突音と摩擦音が発生する(粒子音)こと及びこれらの発
生音(雑音)即ち統計的衝突回数に起因する騒音は粒子
の流速及び濃度に比例することについては既に知られて
いる。(特公昭52−20869) しかしながら、検出器を管外に設置する無孔式の場合は
、検出される雑音中に種々の周波数成分を含んでおり、
従って計測場所における暗騒音(周囲雑音)の影響を受
けて識別が困難であるとされていた。
In other words, when solid particles (powder) flow through a transport pipe, collision and friction sounds are generated (particle sound), and these generated sounds (noise), that is, the noise caused by the statistical number of collisions, are caused by the particle flow velocity. It is already known that the concentration is proportional to the concentration. (Japanese Patent Publication No. 52-20869) However, in the case of a non-porous type where the detector is installed outside the pipe, the detected noise contains various frequency components.
Therefore, it was said that identification was difficult due to the influence of background noise (ambient noise) at the measurement location.

本発明者らは種々の実験の紘果1 kHz以上の周波数
域を計測領域とすることによって無孔式であっても暗騒
音の影響が少なくできる他輸送管の材質にも影響されな
いこと、更に発生音の検出器を従来の如く輸送管壁を貫
通して固定するのではなくt↑壁表面に固着するだけで
固体流量を計測できることを確認した。
As a result of various experiments, the present inventors have found that by setting the measurement range to a frequency range of 1 kHz or higher, the influence of background noise can be reduced even with a non-porous type, and that it is not affected by the material of the transport pipe. It was confirmed that the solid flow rate could be measured simply by fixing the sound detector to the wall surface instead of penetrating the transport pipe wall as in the conventional method.

本発明は、前記計測方法を更に高精度で実施しうる方法
を提供するものである。
The present invention provides a method that allows the above measurement method to be implemented with even higher precision.

以下に本発明を第1図について説明する。The invention will now be described with reference to FIG.

(1)は粉粒体輸送用の加圧タンク、(2)は流動床で
あって、加圧気体源(3)からの気体が供給される。(
4)はタンク側壁に開口する分配排出管であって、夫々
弁(5)を介して下降輸送管(6)に接続している。(
7)は屈曲部、(8)は水平部又は傾斜部、(8)は羽
口ノズルであって、高温高圧ガス化炉 高圧金IA還元
炉などの供給端(10)に開口しているつ (11)は、断続流発生装置、その他軸送用気体吹込制
御装置であって、輸送気体ig]箇弁(12)により粉
粒体の質)λ流部が調節される。
(1) is a pressurized tank for transporting powder and granular materials, and (2) is a fluidized bed, to which gas is supplied from a pressurized gas source (3). (
4) are distribution and discharge pipes opening into the side walls of the tank, each connected to a descending transport pipe (6) via a valve (5). (
7) is a bent part, (8) is a horizontal part or an inclined part, and (8) is a tuyere nozzle, which is opened at the supply end (10) of a high-temperature, high-pressure gasification furnace, high-pressure gold IA reduction furnace, etc. (11) is an intermittent flow generator or other gas blowing control device for axial transport, in which the quality of the granular material λ flow section is adjusted by the transport gas valve (12).

而して下降管(6)中の粉粒体密度は移動層と同程度の
高固気比を維持して緩速で下降するものである。
The density of the powder in the downcomer (6) is maintained at a high solid-air ratio comparable to that of the moving bed, and is slowly descending.

(13a)(+3b)は、下降管(6)ノ管壁外表面(
14)にψ パテその他適当なバッキングシール材で雀蒜した取付体
(15)によって固着した複数のマイクロホン又は振動
ピックアップ等の音響又は振動検出器であり、その出力
はオクターブフィルタ(16)に供給される。
(13a) (+3b) is the outer surface of the wall of the downcomer pipe (6) (
14) A plurality of microphones or acoustic or vibration detectors such as vibration pickups are fixed to the mounting body (15) covered with putty or other suitable backing sealing material, the output of which is supplied to an octave filter (16). Ru.

(17)は、計測平均値算出回路であって、検出回数の
加重平均を演算して平均固体流速を得、この出力によっ
て調節計(1日)の設定値を調節するように構成されて
いる。
(17) is a measurement average value calculation circuit, which is configured to calculate the weighted average of the number of detections to obtain the average solid flow velocity, and adjust the set value of the controller (1 day) based on this output. .

次に本発明を¥5例と共に説明する。第1図の装置品に
おいで屈曲部(7)を開放して輸送管垂直部を直径50
mII+のステンレス管とし、粉粒体資料としてABS
樹脂ベレット(2mmφX2mmL)を落下させた場合
の粒子球度Vsと各周波数における騒音レベル(マイク
ロホン出力)の関係は第2図の如く略直線関係がある。
Next, the present invention will be explained along with an example of ¥5. In the equipment shown in Figure 1, open the bent part (7) and cut the vertical part of the transport pipe with a diameter of 50 mm.
mII+ stainless steel tube, ABS as powder material material
The relationship between the particle sphericity Vs when a resin pellet (2 mm φ x 2 mm L) is dropped and the noise level (microphone output) at each frequency is approximately linear as shown in FIG.

寥た、粒子流速Vsが例えば5.8cm/seeの場合
のオクターブフィルタの中心周波数における粒子音と暗
騒音の騒音レベルは第3図の如くである。
Furthermore, when the particle flow velocity Vs is, for example, 5.8 cm/see, the noise levels of the particle sound and background noise at the center frequency of the octave filter are as shown in FIG.

(検出回数1回/sec 、 10回平均値)。(Number of detections: 1 time/sec, average value of 10 times).

以にのことから本発明において使用1する中心周波数は
1 kHz以−に力1イましいこと、更に1 kHz以
ヒにおいては流速に対する騒音レベルが輸送管材質によ
って影響され難いこと、SN比を高くできるなどのこと
から1 kHz〜8 kHz位までの周波数範囲を採用
するものとする。
From the above, it is clear that the center frequency used in the present invention is less than 1 kHz, and that the noise level relative to the flow velocity is not easily affected by the material of the transport pipe at 1 kHz or less, and that the signal-to-noise ratio is A frequency range of about 1 kHz to about 8 kHz is adopted because it can be made at high frequencies.

従って、例えば中心周波数を8 kHzとして、適用装
置における平均粒子流速と騒音レベルとの関係を予め計
測しておき、装置稼動時の同一周波数の騒音レベルを検
出することによって輸送管中の手、カニ降流の質量がC
量がめられ、そのときにおける供給端への供給量が得ら
れるのである。
Therefore, for example, by setting the center frequency to 8 kHz, measuring the relationship between the average particle flow velocity and the noise level in the applicable equipment in advance, and detecting the noise level at the same frequency when the equipment is operating, it is possible to detect hands and crabs in the transport pipe. The mass of the downflow is C
The quantity is measured, and the amount of supply to the supply end at that time is obtained.

従って、この出力によりliF、 fi調節計を作動さ
せ供給量を一定に制御することが可能になるのである。
Therefore, this output enables the liF and fi controllers to be operated to control the supply amount to a constant value.

以上の計測方法において被輸送物即ち粉粒体がベレット
の如く形状、性状等が比較的均一なものである場合は流
速と騒音レベルとの関係が安定しているので、検出器1
個でも問題はないが、微粉層 幡その他微粉を含む粉粒体の場合は、流速と騒音レベル
との関係が統計的ゆらぎ現象のために変動するから、検
出器が1個の場合は、実際上約10秒間位のデータの移
動平均を算出する必要があった。
In the above measurement method, if the object to be transported, that is, the powder or granular material, is relatively uniform in shape, properties, etc., such as a pellet, the relationship between the flow velocity and the noise level is stable, so the detector 1
However, in the case of fine powder beds and other powder materials containing fine powder, the relationship between flow velocity and noise level fluctuates due to statistical fluctuation phenomena, so if there is only one detector, the actual It was necessary to calculate the moving average of the data for about 10 seconds.

例えば最高速度10cm/s の下降流を計測する場合
においては、下限を10%とすると速度はIcm/sで
あり、IQcm/sを10秒間(10回)計測した平均
値は1mの管内下降波の騒音平均を意味する。従ってI
cm/sでは誤差平均を同程度にするためには100秒
間必要となる。
For example, when measuring a descending flow with a maximum speed of 10 cm/s, if the lower limit is 10%, the speed is I cm/s, and the average value of IQ cm/s measured for 10 seconds (10 times) is the descending flow in a pipe of 1 m. means the average noise level. Therefore I
cm/s, it takes 100 seconds to make the average error similar.

ところで、騒音源である粉粒体の衝突回数は時間に関し
て不規則に発生する確率分布関数であり、時間平均値と
集合平均値(場所の違う処の平均値)とが一致すること
(数学的にはエルゴード性)を利用して検出個所を離間
させておき同時に計測することによって騒音検出レベル
の統計的平滑止を行なうことが67能である。
By the way, the number of collisions of powder and granular materials, which are noise sources, is a probability distribution function that occurs irregularly with respect to time, and it is mathematically It is possible to statistically smooth out the noise detection level by separating the detection points and measuring them at the same time using ergodicity.

そこで、本発明は、複像の検出器を場所を異ならしめて
固着するものである。この場合において、第4図の如く
検出器(13a)(13b)を管路の断面に対称的に取
付けるか又は第5図の如く管軸方向に一定間隔(L)を
おいて数句ける場合とがある。
Therefore, the present invention fixes the multiple image detectors in different locations. In this case, if the detectors (13a) and (13b) are installed symmetrically on the cross section of the pipe as shown in Figure 4, or if they are installed several times at regular intervals (L) in the pipe axis direction as shown in Figure 5. There is.

第4図の場合は管断面における粒度分布の差異による検
出出力の差異が平均化され、同一時間で2倍長の計測を
したのと同等になり、従って計測時間を坏にすることが
可能である。
In the case of Figure 4, the difference in detection output due to the difference in particle size distribution in the cross section of the tube is averaged out, and it becomes equivalent to measuring twice the length in the same time, so it is possible to make the measurement time almost the same. be.

また、第5図の場合は、例えば下降流速10cm/s〜
1cm/sのとき計測時間10秒、1o回として夫々別
個のloocm〜l0cmの移動範囲を計測したことに
等しくなるから、これの平均は200cn+〜20cm
の平均(11′1と等しくなり、この結果全体として計
測時間を局にする空間フィルターと同等になる。
In the case of Fig. 5, for example, the downward flow velocity is 10 cm/s ~
At 1 cm/s, the measurement time is 10 seconds, and it is equivalent to measuring a moving range of 10 cm separately, so the average of this is 200 cn + ~ 20 cm.
is equal to the average (11'1), and as a result, the overall result is equivalent to a spatial filter that uses the measurement time as a station.

本発明において検出器は2個に限られることはなく、第
4図と第5図の複合即ち4個の構成又は断面一対、管軸
方向3個計6個の構成も可能である。
In the present invention, the number of detectors is not limited to two, and a combination of the configurations shown in FIGS. 4 and 5, that is, four detectors, or a pair of cross-sections, three in the tube axis direction, and a total of six detectors is also possible.

これを要するに本発明は、高濃度下降流粉粒体基 の粒度分布流速分布の相違に迦因する粒子間衝突回教を
統計的に平滑化して計測時間を短縮することを目的とす
るものであって、同一特性の検出器を複数個設置するだ
けで簡単に実現できるものである。
In short, the present invention aims to shorten measurement time by statistically smoothing out interparticle collisions caused by differences in particle size distribution and flow velocity distribution of high-concentration, downward-flowing powder and granular materials. Therefore, it can be easily realized by simply installing multiple detectors with the same characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[;?lは大発明装置の概略構成図、第2図は粒子
速度と騒音レベルのグラフ、第3図は粒子音レベルと暗
騒音レベルとの比較グラフ、第4図及び第511は夫々
検出器の■ソ伺態様を示す実施例図で(+3a)(13
b)・・・音響又は振動検出器(16)・・・・;棒域
又はオクターブフィルタ特許出願人 才 1 図 22 図
1st [;? 1 is a schematic configuration diagram of the device of the great invention, FIG. 2 is a graph of particle velocity and noise level, FIG. 3 is a comparison graph of particle sound level and background noise level, and FIGS. 4 and 511 are the detector's (+3a) (13)
b)...Acoustic or vibration detector (16)...; Bar range or octave filter Patent applicant: 1 Figure 22

Claims (1)

【特許請求の範囲】[Claims] 粉粒体固体が移動層と同程度の質量流量比で下降する管
路の外壁面に8I数の音響又は振動検出器を位置を異な
らしめて固設し、該検出器からの出力信号を粒子流速分
布の空間的偏差を少なくして時間平均値をめることを特
徴とする管路内の固体流9−計測方法。
8I acoustic or vibration detectors are fixed at different positions on the outer wall surface of the pipe in which the granular solids descend at a mass flow rate similar to that of the moving bed, and the output signals from the detectors are used to calculate the particle flow rate. 9-Measurement method of solid flow in a pipe, characterized in that the spatial deviation of the distribution is reduced and the time average value is calculated.
JP58198247A 1983-10-25 1983-10-25 Method for measuring flow rate of solid in vertical pipe Granted JPS6091213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198247A JPS6091213A (en) 1983-10-25 1983-10-25 Method for measuring flow rate of solid in vertical pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198247A JPS6091213A (en) 1983-10-25 1983-10-25 Method for measuring flow rate of solid in vertical pipe

Publications (2)

Publication Number Publication Date
JPS6091213A true JPS6091213A (en) 1985-05-22
JPH0527054B2 JPH0527054B2 (en) 1993-04-20

Family

ID=16387948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198247A Granted JPS6091213A (en) 1983-10-25 1983-10-25 Method for measuring flow rate of solid in vertical pipe

Country Status (1)

Country Link
JP (1) JPS6091213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322045A (en) * 2005-05-19 2006-11-30 Nippon Steel Corp Method for distributing pneumatically-conveyed pulverized coal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075070A (en) * 1973-11-02 1975-06-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075070A (en) * 1973-11-02 1975-06-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322045A (en) * 2005-05-19 2006-11-30 Nippon Steel Corp Method for distributing pneumatically-conveyed pulverized coal

Also Published As

Publication number Publication date
JPH0527054B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
Cabrejos et al. Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport
US6988857B2 (en) Method and device for monitoring a mass flow in a pneumatic pipeline
Green et al. Velocity and mass flow rate profiles of dry powders in a gravity drop conveyor using an electrodynamic tomography system
HU189585B (en) Method for determining the mass stream by means of measuring at the transport of powdered and fine-grained fuels
CA2133343A1 (en) Measuring and monitoring the size of particulate material
US4483199A (en) Method of measuring solid matter mass flow
Farbar Flow Characteristics of Solids-Gas Mixtures in a Horizontal and Vertical Circular Conduit
JPS6091213A (en) Method for measuring flow rate of solid in vertical pipe
Lee et al. Scaling laws for metering the flow of gas-particle suspensions through venturis
Hong et al. Measurement of distribution of solids concentration on high density gas-solids flow using an optical-fiber probe system
JPH0527053B2 (en)
Plumpe et al. Measurement of fluctuations in motion of particles in a dense gas—solid suspension in vertical pipe flow
Barry et al. Concentration Variations Within Pipe Cross-Section in a Dilute Phase Pneumatic Conveying System
Daoud et al. Experimental study of horizontal plug flow of cohesionless bulk solids
Capes Dense phase vertical pneumatic conveying
Yates et al. Residence time distributions in a fluidised bed in which gas adsorption occurs: stimulus-response experiments
JPH04505965A (en) buffer volume
JP3268699B2 (en) Method and apparatus for measuring the flow of particles flowing in a pipe
Kumar et al. Granular pressure measurements in fluidized beds
JPS6091214A (en) Method for measuring flow rate of solid in descending stream by gravity
JAMA et al. Analysis of unstable behavior of pneumatic conveying systems
Mason et al. Pressure measurements in a flowing alumina suspension along a horizontal duct immediately following a vertical riser
US4825706A (en) Flowmeter for a moving packed bed
RU2207518C2 (en) Method of measurement of mass flow rate of powder-like medium
JPS58186014A (en) Flowmeter