JPS6090428A - Semiconductor logical circuit - Google Patents

Semiconductor logical circuit

Info

Publication number
JPS6090428A
JPS6090428A JP19858983A JP19858983A JPS6090428A JP S6090428 A JPS6090428 A JP S6090428A JP 19858983 A JP19858983 A JP 19858983A JP 19858983 A JP19858983 A JP 19858983A JP S6090428 A JPS6090428 A JP S6090428A
Authority
JP
Japan
Prior art keywords
reference voltage
capacitor
noise
base
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19858983A
Other languages
Japanese (ja)
Inventor
Joji Nokubo
野久保 丞二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19858983A priority Critical patent/JPS6090428A/en
Publication of JPS6090428A publication Critical patent/JPS6090428A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/082Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using bipolar transistors
    • H03K19/086Emitter coupled logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To stabilize the reference voltage of an ECL circuit by connecting a capacitor between the base of an emitter follower transistor (TR) for reference voltage generation and the low potential of a power source. CONSTITUTION:When an input signal VIN rises to H, a transient current is superposed upon a source current and a circuit voltage varies abruptly owing to inductance, etc., on a power line to generate opposite-phase noises between points VC and VE, but the noise at the side of the point VC lowers the base potential of the emitter follower TRQ3 for reference voltage generation and the noise at the side of the point VE raises the base potential through a capacitor C1. The value of the capacitor C1 is selected properly to reduce the influence of the noises appearing between the points VC and VE, then the base potential is kept almost constant.

Description

【発明の詳細な説明】 本発明は半導体論理回路のスイッチング動作の安定化に
関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to stabilizing the switching operation of semiconductor logic circuits.

従来第1図に示す様なエミッタ結合型論理回路(以下E
CLと略す)において線、温度や電@電圧の変動に対し
安定化した基準電圧発生回路lOを利用しこの電圧をQ
l、 Q4等の定電流トランジスタに入力して所定の入
力リファレンス電圧あるμは出力レベルを発生させてい
た。
Conventionally, an emitter-coupled logic circuit (hereinafter referred to as E
(abbreviated as CL), this voltage is Q
A predetermined input reference voltage μ that is input to constant current transistors such as I and Q4 generates an output level.

第1図においてVBO(Vmからの電圧で)をVBO:
Vf + Va (11 とする。ここでV(はトランジスタのベース:エミッタ
間オフセット電圧でおり約soomVとする。
In Figure 1, VBO (in voltage from Vm) is VBO:
Vf + Va (11), where V( is the offset voltage between the base and emitter of the transistor and is approximately soomV).

またvaは基準電圧発生回路で決定される約500mV
の電圧を持って−ると仮定する。
Also, va is approximately 500mV determined by the reference voltage generation circuit.
Assume that it has a voltage of -.

今説明の簡単の為VcR1==R3とすると、VROは
(Vcからの電圧で) となる。すなわちVB□=800mV+500mV=1
300mVよりVRO=1300mVとなりECLの入
力リフ7ランス電圧を発生させることができる。
For the sake of simplicity of explanation, if VcR1==R3, VRO will be (voltage from Vc). That is, VB□=800mV+500mV=1
From 300 mV, VRO=1300 mV, and it is possible to generate an input reference voltage of ECL.

ところで、近年の半導体素子の高性能化坪つれ −てE
CL回路の高速化が成されており、特に最近ではゲート
1段当り0.5”から0.3 n 8 程度のものまで
実現されて−る。しかしこの様な高速のBCLf使用す
る上で1つの問題点が生じている。
By the way, in recent years, the performance of semiconductor devices has improved.
The speed of CL circuits has been increased, and in recent years, CL circuits have been realized from 0.5" to 0.3 n 8 per gate stage. However, when using such a high-speed BCLf, Two problems have arisen.

それはECLがスイッチングする過渡状態において電源
電流に急峻な過渡電流が重しようされ、こノ為に電源端
子に存在するインダクタンスの為に回路に急激な電圧変
動が生じることである。
This is because in a transient state when the ECL switches, a sharp transient current is added to the power supply current, and this causes a sudden voltage fluctuation in the circuit due to the inductance present at the power supply terminal.

第3図を用いてこのノイズ電圧の影響を簡単に説明する
。令弟1図の従来回路の入力VINICLOwよりHi
gbに遷移するパルスが入力されたとすると、Qsのベ
ースが同時に立上りほぼ同じ時定数でQsのエミッタが
立上る。
The influence of this noise voltage will be briefly explained using FIG. Hi from the input VINICLOw of the conventional circuit in the younger brother 1 diagram
If a pulse that transitions to gb is input, the base of Qs rises at the same time, and the emitter of Qs rises with approximately the same time constant.

この時Q6はQa 、 Qaの共通エミッタ部に存在す
る容量を充電するが、この容量COは主としてQ4のコ
レクター:サブストレート容量とQ4のベース:コレク
ター容量より成り立っているので、第1図に示す様なり
Bとの間に接続された容量COと考えて良い。
At this time, Q6 charges the capacitance existing in the common emitter section of Qa and Qa, but this capacitance CO mainly consists of the collector:substrate capacitance of Q4 and the base:collector capacitance of Q4, so it is shown in Figure 1. It can be thought of as a capacitor CO connected between B and B.

これよりQsが立上る時の過渡電流は■c端子よりvB
端子まで第1図点線で示す様にR6* Qs ICoの
パスで流れる。
From this, the transient current when Qs rises is vB from the c terminal.
It flows through the path of R6*Qs ICo as shown by the dotted line in Figure 1 to the terminal.

この電流はほぼ第3図Bに示すIcc電流の様に短かい
時間のみ流れる。
This current flows only for a short time, almost like the Icc current shown in FIG. 3B.

この電流の変化量t−di/diとすると■cKはL□
の為にΔVC= LI X (d i/ d t )だ
けのノイズ電圧が発生する。このときVBVCは若干の
時間のズレはあるがΔ!ccと同量の過渡電流が流れ込
む。
If the amount of change in this current is t-di/di, ■cK is L□
Therefore, a noise voltage of ΔVC=LI x (d i/d t ) is generated. At this time, VBVC has a slight time difference, but Δ! A transient current of the same amount as cc flows into the current.

この為vEにはR2の為にΔVcとは逆位相の電圧が発
生する。この様子を第3図Eに示す。
Therefore, a voltage having an opposite phase to ΔVc is generated in vE due to R2. This situation is shown in FIG. 3E.

ところでこの過渡時VROはは#t’Vcの動きに応じ
て変動する。これはR3及びQaの負荷が定電流となっ
ている為にvEの変動の影響を受けないからでわる。
By the way, during this transition, VRO varies according to the movement of #t'Vc. This is because the loads of R3 and Qa are constant currents, so they are not affected by fluctuations in vE.

第5図は入力電圧とVROの関係を示す。VINが入力
されればVROは過渡的に振動するのは上述の通りであ
る。入力電圧は通常High (VIN )が−09V
、Low(Vll、)が−1,7■でおり、入力リファ
レンス電圧VROは(2)式で示される如(−1,3V
である。
FIG. 5 shows the relationship between input voltage and VRO. As described above, when VIN is input, VRO oscillates transiently. Input voltage is usually High (VIN) -09V
, Low (Vll,) is -1,7■, and the input reference voltage VRO is (-1,3V) as shown in equation (2).
It is.

従って直流的にはVROとVIH# ■ILのマージン
は0.4■らるが、過渡的にはVROが約±0.15 
V振動スル為TIC、コtvマー シンハ0.4v−0
,15v=0.25vまで減少させられてしまう。
Therefore, in DC terms, the margin between VRO and VIH# ■IL is 0.4■, but in transient terms, VRO is approximately ±0.15
V vibration through TIC, Kotvmer Shinha 0.4v-0
, 15v=0.25v.

この様に第1図で示す従来回路では、トランジスタ等の
素子性能が向上した場合、スイッチング時に発生する過
渡電流によるノイズ電圧に対し無防備でめった。
As described above, in the conventional circuit shown in FIG. 1, even when the performance of elements such as transistors has been improved, the circuit is vulnerable to noise voltages caused by transient currents generated during switching.

本発明の目的はこの様なノイズ電圧が発生しても、回路
が正しく動作をする回路を提供する事にある。
An object of the present invention is to provide a circuit that operates correctly even when such a noise voltage occurs.

本発明に従えば■cに発生したノイズ電圧は直接VRO
に伝達されず、安定な入力電圧とリファレンス電圧のマ
ージンを確保する事ができる。
According to the present invention, the noise voltage generated at ■c is directly connected to VRO.
This ensures a stable input voltage and reference voltage margin.

すなわちエミッタ結合型論理回路の入力リファレンス電
圧を発生させるエミッタホロワトランジスタのペース端
子と最低電位端子の間にコンデンサが接続されている事
t−特徴とする半導体論理回路においては、従来回路で
問題となったVROの過渡的な変動による入力レベルの
ノイズマージンの減少と言う問題を解決する事ができる
In other words, the semiconductor logic circuit is characterized by the fact that a capacitor is connected between the pace terminal and the lowest potential terminal of the emitter follower transistor that generates the input reference voltage of the emitter-coupled logic circuit. This solves the problem of reduced input level noise margin due to transient fluctuations in VRO.

第2図は本発明の具体的な実施例でらる。FIG. 2 shows a specific embodiment of the present invention.

第2図において、 VINが入力され第1図の従来例と
同様にVo、VBに逆位相のノイズ電圧が発生する。こ
の時Vo側のノイズは抵抗R3を介してQaのペース電
位を下げる方向に動作するが、同時にvB側のノイズは
Ctt−介してQaのベース電位を上昇させる様に動作
する。従ってC1の値を適量に選ぶ事でQaのベース電
位は■o、VBのノイズに影響を受けない一定値とする
事ができる。
In FIG. 2, VIN is input and noise voltages of opposite phases are generated at Vo and VB, similar to the conventional example shown in FIG. At this time, the noise on the Vo side operates to lower the pace potential of Qa via the resistor R3, but at the same time, the noise on the vB side operates to increase the base potential of Qa via Ctt-. Therefore, by appropriately selecting the value of C1, the base potential of Qa can be set to a constant value that is not affected by the noise of ■o and VB.

今Vo端子にΔ■O# ■Pi端子にΔvBのノイズ電
圧が発生したとすると、VB0の変動量はとなる。ここ
でZlはQaのベース端子トVo 間に存在するインピ
ーダンスでありほぼR3となる。
Assuming that a noise voltage of ΔvB is now generated at the Vo terminal and the Pi terminal, the amount of variation in VB0 is as follows. Here, Zl is an impedance existing between the base terminal of Qa and Vo, and is approximately R3.

またZlはQaのベース端子とvB間に存在するインピ
ーダンスでありす1はC1で代表される。
Further, Zl is an impedance existing between the base terminal of Qa and vB, and is represented by C1.

(3)式においてΔVoとΔ■Eが#1ぼ逆相で動作す
る事を考慮して、ノイズの周波数を考慮の上Z1=z2
とすればΔ■VB0ほぼゼロとする事ができる訳でおる
In equation (3), considering that ΔVo and Δ■E operate in opposite phase by #1, taking into account the noise frequency, Z1=z2
If so, Δ■VB0 can be made almost zero.

第5図はこのVRDのゆれを改善された様子を示す。C
1がない従来例の場合は点線の様にVROがゆれたもの
が、0111cつければvBのゆれ1cCxを介してV
ROに伝えられるのでs VRoのゆれは実線の様に小
さくなる。
FIG. 5 shows how this VRD fluctuation is improved. C
In the case of the conventional example without 1, the VRO fluctuates as shown by the dotted line, but if 0111c is attached, the VRO fluctuates through the vB fluctuation 1cCx.
Since it is transmitted to RO, the fluctuation of sVRo becomes smaller as shown by the solid line.

以上本発明によればリファレンス回路発生用エミッタホ
ロワトランジスタのベースにコンデンサを最低電位との
間に接続すればリファ2ンス電圧は安定化される事が判
った。
As described above, according to the present invention, it has been found that the reference voltage can be stabilized by connecting a capacitor between the base of the reference circuit generating emitter follower transistor and the lowest potential.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のECL回路例を示す図である。 第2図は本発明の実施例を示す図である。 第3図は従来のECL回路での入力波形s 工00電流
、■o、■Ro及びvB端子の電圧を示す図、第4図は
従来のECL回路でのVROと入力レベルの関係を示す
図、第5図は本発明の詳細な説明する図でbる。 lO・・・・・・基準電圧発生回路 L 4 図 篤 −sZ
FIG. 1 is a diagram showing an example of a conventional ECL circuit. FIG. 2 is a diagram showing an embodiment of the present invention. Figure 3 is a diagram showing the input waveforms of the conventional ECL circuit, 00 current, ■o, ■Ro, and the voltage at the vB terminal. Figure 4 is a diagram showing the relationship between VRO and input level in the conventional ECL circuit. , FIG. 5 is a detailed illustration of the present invention. lO...Reference voltage generation circuit L 4 Atsushi -sZ

Claims (1)

【特許請求の範囲】[Claims] エミッタ結合型論理回路の入力リファレンス電HEヲ発
生させるエミッメホロワトランジスタのベース端子と最
低電位端子の間にコンデンサが接続されてしることを特
徴とする半導体論理回路。
A semiconductor logic circuit characterized in that a capacitor is connected between the base terminal and the lowest potential terminal of an emitter follower transistor for generating an input reference voltage HE of an emitter-coupled logic circuit.
JP19858983A 1983-10-24 1983-10-24 Semiconductor logical circuit Pending JPS6090428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19858983A JPS6090428A (en) 1983-10-24 1983-10-24 Semiconductor logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19858983A JPS6090428A (en) 1983-10-24 1983-10-24 Semiconductor logical circuit

Publications (1)

Publication Number Publication Date
JPS6090428A true JPS6090428A (en) 1985-05-21

Family

ID=16393696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19858983A Pending JPS6090428A (en) 1983-10-24 1983-10-24 Semiconductor logical circuit

Country Status (1)

Country Link
JP (1) JPS6090428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184963B1 (en) 1987-06-10 2001-02-06 Hitachi, Ltd. TFT active matrix LCD devices employing two superposed conductive films having different dimensions for the scanning signal lines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184963B1 (en) 1987-06-10 2001-02-06 Hitachi, Ltd. TFT active matrix LCD devices employing two superposed conductive films having different dimensions for the scanning signal lines
US6384879B2 (en) 1987-06-10 2002-05-07 Hitachi, Ltd. Liquid crystal display device including thin film transistors having gate electrodes completely covering the semiconductor
US6839098B2 (en) 1987-06-10 2005-01-04 Hitachi, Ltd. TFT active matrix liquid crystal display devices
US6992744B2 (en) 1987-06-10 2006-01-31 Hitachi, Ltd. TFT active matrix liquid crystal display devices
US7196762B2 (en) 1987-06-10 2007-03-27 Hitachi, Ltd. TFT active matrix liquid crystal display devices
US7450210B2 (en) 1987-06-10 2008-11-11 Hitachi, Ltd. TFT active matrix liquid crystal display devices

Similar Documents

Publication Publication Date Title
US4783607A (en) TTL/CMOS compatible input buffer with Schmitt trigger
EP0169210B1 (en) Dynamic ecl circuit adapted to drive loads having significant capacitance
US5157278A (en) Substrate voltage generator for semiconductor device
KR910009086B1 (en) Output circuit
US3900746A (en) Voltage level conversion circuit
JP2837215B2 (en) Temperature compensation voltage multiplier
US4687953A (en) Dynamic ECL line driver circuit
JPH0666678B2 (en) ECL circuit
US5485110A (en) ECL differential multiplexing circuit
JPH0258806B2 (en)
JPS6090428A (en) Semiconductor logical circuit
EP0404125A2 (en) Booster circuit
US4831343A (en) Crystal clock generator having fifty percent duty cycle
JPS6340371B2 (en)
JPS6334652B2 (en)
US6466097B1 (en) Phase locked loop and associated control method
JPS6331214A (en) Variable delay circuit
JPH0720059B2 (en) Transistor circuit
JPS6022862A (en) Power supply circuit
JP2570492B2 (en) Semiconductor circuit
JP2808783B2 (en) Current switching type differential logic circuit
KR930006692Y1 (en) Switching time reducted circuit used for short diode
JPH0245378B2 (en)
JPH03147421A (en) Semiconductor integrated circuit
JP3461091B2 (en) Integrated circuit input circuit