JPS6087834A - Dry desulfurization process - Google Patents

Dry desulfurization process

Info

Publication number
JPS6087834A
JPS6087834A JP58194382A JP19438283A JPS6087834A JP S6087834 A JPS6087834 A JP S6087834A JP 58194382 A JP58194382 A JP 58194382A JP 19438283 A JP19438283 A JP 19438283A JP S6087834 A JPS6087834 A JP S6087834A
Authority
JP
Japan
Prior art keywords
gas
absorbent
absorbing agent
moving bed
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58194382A
Other languages
Japanese (ja)
Inventor
Shinji Nishizaki
西崎 進治
Takeo Kobayashi
小林 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58194382A priority Critical patent/JPS6087834A/en
Publication of JPS6087834A publication Critical patent/JPS6087834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce abrasion of absorbing agent and apparatus and to improve contact efficiency of the absorbing agent with gas to be treated by performing absorption of H2S using an absorbing agent comprising a metal oxide and regeneration of the absorbing agent on a moving bed moved in the form of a thin layer. CONSTITUTION:An absorbing agent such as ZnO is introduced into an absorption tower 1 from a hopper 4 and moved downward slowly in the form of a thin layer continuously or intermittently to form a moving bed 6 of the absorbing agent. The gas 7 to be treated contg. H2S such as coal gasification gas is introduced into an absorption tower 1 from an inlet 8 of the gas and is allowed to contact at right angle with the moving bed 6 to absorb and remove H2S. The desulfurized gas is discharged from an outlet 9. An H2S absorbing agent is introduced into a regenerating tower 2 from an outlet 10 through a passage 11, and is allowed to move downward slowly in the form of a thin layer to form the moving bed 13 of the H2S absorbing agent. O2-contg. gas is introduced from an inlet 15 of regenerating gas into a regenerating tower 2 and is allowed to contact with the moving bed 13 to contact at right angle to liberate SO2, and the absorbing agent is regenerated simultaneously. SO2 is sent to a reducing tower 3 together with the regenerating gas and is transformed to a single substance sulfur.

Description

【発明の詳細な説明】 本発明は石炭、C1油ガス化ガス等から含有HIS(硫
化水素)を除去づる乾式脱硫方法に係り、特に、十字流
移動体方式を採用づることにJ、す、吸収剤及び装置の
摩耗を減少さUるどバに、吸収剤と被処理ガスとの接触
効ヰ2の向」−を図って装置の設置面積の縮小を図るこ
とができる乾式脱(直方ン六に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry desulfurization method for removing HIS (hydrogen sulfide) from coal, C1 oil gasification gas, etc. In addition to reducing wear on the absorbent and equipment, dry desorption (straight direction) can reduce the installation area of the equipment by increasing the contact efficiency between the absorbent and the gas to be treated. Regarding six.

一般に、石炭、石油類のガス化ガス中には不純物どして
ト1+ S (硫化水素)ガスが含まれているため、大
気汚染防止及び各種装置類損傷防止の見地より精製過程
にて上記tl+sの除去がなされている。
Generally, the gasified gas of coal and oil contains t1+S (hydrogen sulfide) gas as an impurity, so the above tl+s is added during the refining process to prevent air pollution and damage to various equipment. has been removed.

従来のI−hS除去方法で”なりも脱硫方式には、湿式
法と、乾式法があるが、湿式法はアルカリ性吸収液を使
用するlCめ水が必要とされるばかりでなく、熱効率も
低下し、更には排水処理による二次公害発生の危惧もあ
った。
Conventional I-hS removal methods include wet and dry desulfurization methods, but the wet method not only requires 1C water using an alkaline absorption liquid, but also has lower thermal efficiency. Furthermore, there were concerns about secondary pollution caused by wastewater treatment.

そのため、上記問題点のない乾式法が主に採用されてい
るが、吸収剤を固定覆るいわゆる固定床式脱硫払による
場合には、連続的な安定操業ができず、吸収剤の融着の
心配があり、更には再生率がイバいという問題がある。
For this reason, the dry method, which does not have the above-mentioned problems, is mainly adopted, but when using the so-called fixed bed desulfurization method, in which the absorbent is fixed and covered, continuous stable operation is not possible, and there is a risk of adhesion of the absorbent. Furthermore, there is a problem that the playback rate is extremely high.

そこC゛、この問題をF/1′決Jべく、吸収剤を流動
化してこれに被処理ガスを接触させるいわゆる流動床式
1j;2硫法も採用されてはいるが、この場合には吸収
剤及び装置類の1j粍が激しいばかりでなく、フリーボ
ードを必要どづるノ〔め設置面積の増大をRJ来し、更
には、吸収剤と被処理ガスとの接触に1扁りが生じて接
触効キーを低下さけるという不部会が生じ、未だ、十分
な脱硫方V、が提供されでいないのが現状である。
In order to solve this problem, the so-called fluidized bed method, in which the absorbent is fluidized and the gas to be treated comes into contact with it, has been adopted, but in this case, Not only is the absorbent and equipment severely damaged, but the installation area is increased due to the need for a free board, and furthermore, the contact between the absorbent and the gas to be treated is distorted. Therefore, there is a problem of reducing the contact effectiveness key, and the current situation is that a sufficient desulfurization method V has not yet been provided.

本発明11以上のような問題点に着に1シ、これを有効
に解決すべく創案され/j 、bのである。
The present invention has been devised to effectively solve the above-mentioned problems.

本発明の目的とりるどころは、いわゆる十字流移動床方
式を採用づることににす、吸収剤及び装置類の1!I耗
を減少さけるど)(に吸収剤と被処理ガスどの接触効申
の向」二を1ネjって装置の設置面積の減少を図ること
ができる乾式脱M1方法をJM供するにある。
The purpose of the present invention is to adopt a so-called cross-flow moving bed system, and to provide an absorbent and equipment. The purpose of the present invention is to provide a dry de-M1 method that can reduce the installation area of the apparatus by reducing the contact effects between the absorbent and the gas to be treated (while also reducing wastage).

本発明は、石炭、石油ガス化ガス等のHaSを含む被処
理ガスを金属酸化物によりIB2硫処理すると具に、H
aSを1人数し/ζ硫化1汲収剤を醇化して再生覆るよ
うになした乾式11f+! Ili!+ 17’5法に
Jjいて、上記吸収剤を薄層状に移動さけて移動床を形
成するどJtにこの移動層に被処理ガスを接触さけて脱
Mt処理し、次いでトhSを吸収した1ift化吸収剤
を薄層状に移動さυ−て移動床を形成Jると共に酸素含
有ガスを接触させて酸化し、これを11牛Jるようにし
て上記目的を達成りるt)のである。 以下に本発明方
法を添イー1図面に基づいて詳述づる。
The present invention provides a method for treating a gas containing HaS, such as coal or petroleum gasification gas, with a metal oxide using IB2 sulfur.
Dry type 11f+ with 1 aS/ζ sulfide 1 extracting agent liquefied and regenerated! Ili! + 17'5 method, the absorbent was moved in a thin layer to form a moving bed, and then Mt was removed by avoiding contact of the gas to be treated with this moving layer, and then ThS was absorbed in 1ift. The above objective is achieved by moving the oxidized absorbent in a thin layer to form a moving bed and oxidizing it by contacting it with an oxygen-containing gas. The method of the present invention will be explained in detail below based on the accompanying drawings.

第1図は本発明方法を説明覆るISめの工程図である。FIG. 1 is an IS process diagram illustrating the method of the present invention.

図示する如く、本発明方法を実流する肌橘装置Nは、被
処理ガスを吸収剤ど接触さl!′−c脱硫処理づる吸収
塔1と、吸収塔1ノ〕日)排出された硫化吸収剤を酸素
含有ガスと接触さlてこれを再’L ′?Jる再生塔2
ど、再生塔2で回収されたSO+(二酸化fオウ)を還
元して単体イAつを回収するSO+ 還元基3とにより
主にm成されている。
As shown in the figure, the Hadachibana apparatus N which actually carries out the method of the present invention brings the gas to be treated into contact with the absorbent! '-c Absorption tower 1 subjected to desulfurization treatment and absorption tower 1) The discharged sulfurized absorbent is brought into contact with an oxygen-containing gas and re-injected into 'L'? Juru play tower 2
It is mainly composed of an SO+ reducing group 3 which reduces SO+ (sulfur dioxide) recovered in the regeneration tower 2 and recovers a simple substance.

まず、ホッパ4から流下した吸収剤zn oTjを吸収
剤導入口5から吸収塔1内へ導入し、これを薄層状に連
続的にまたは間欠的に徐々に下降移動させて、吸収剤の
移動床6を・形成する。
First, the absorbent zn oTj flowing down from the hopper 4 is introduced into the absorption tower 1 through the absorbent inlet 5, and is gradually moved downward continuously or intermittently in a thin layer to form a moving bed of absorbent. Form 6.

一方、イコ油或いはイf炭ガス化カスなとのl’llj
を含む被処理ガス7を、ガス導入口8から上記、吸収j
?51内へ導入し、このガス流を上記移動床0と直交さ
1!(接触さIJ、これを水平方向へ横切らせる。こね
により、下記式1に示J如くガス中がらl−1tsを吸
収除去して被処理ガスの1j;2硫処理をhなう。
On the other hand, l'llj with oil or coal gasification residue
The gas to be treated 7 containing
? 51, and this gas flow is perpendicular to the moving bed 0! (The contact IJ is made to cross horizontally. By kneading, 1-1ts is absorbed and removed from the gas as shown in the following formula 1, and the 1j; 2 sulfur treatment of the gas to be treated is performed.

l−h 8+Zn 0−)Zll S−1−1−h O
−mそして、脱硫処理された処理済みガスはガス排出1
.19から吸収」?シ1外へ1711B <’:れ、他
の処理系に移送される。
l-h 8+Zn 0-)Zll S-1-1-h O
-m And the treated gas that has been desulfurized is gas discharged 1
.. Absorbed from 19”? 1711B <': is transferred to another processing system.

ここで使用づる吸収剤どしては金属酸化物が使用され、
!、:どえば破砕鉄鉱G、担体+酸化鉄、フライj′ツ
シュと酸化鉄の沢合物、酸化銅、酸化亜鉛等などを用い
る。
The absorbent used here is a metal oxide,
! For example, crushed iron ore G, carrier + iron oxide, a mixture of fly j' tshu and iron oxide, copper oxide, zinc oxide, etc. are used.

吸収剤移動床6の移動速度は1〜20m/l+rが望ま
しい3.これは、吸収剤の移動速度が遅いど吸+1′y
、剤の吸収能力の低下により脱硫率が低くなり、また早
づさ゛ると吸収剤のIJ耗が激しくなるばかりでなく、
再生塔での処理用の増加に伴なう加熱用及び移送用のエ
ネルギーが増大するため不経済となるからである。
3. The moving speed of the absorbent moving bed 6 is preferably 1 to 20 m/l+r. This is due to the fact that the moving speed of the absorbent is slow.
, the desulfurization rate decreases due to a decrease in the absorption capacity of the absorbent, and if the desulfurization rate is too early, not only will the IJ wear of the absorbent increase,
This is because the energy for heating and transport increases as the amount of processing in the regeneration tower increases, which becomes uneconomical.

また、吸収塔1へ導入される被処理ガス7のH+S含有
量は平均3000ppm(屹基準)で、約460℃前後
に維持づる。
Further, the H+S content of the gas to be treated 7 introduced into the absorption tower 1 is maintained at about 460° C. at an average of 3000 ppm (based on the standard).

吸収塔1内におけるガス速1腹は0.05〜5m/’ 
S OCが望ましい。
The gas velocity in the absorption tower 1 is 0.05 to 5 m/'
SOC is preferred.

これは、ガス速度が遅いど、ガス流のみだ【ノにより鍋
流が起り、脱硫率が低トし、また、ガス速度が速いと反
応速度どの関係から充分に脱硫′r−きない可能性があ
り、8党M【率のイ氏下を6にらづばかりでなく、圧ノ
Nロ失が増大し不経済どなるがらCある。
This is because although the gas velocity is slow, the desulfurization rate is low because of the gas flow only.If the gas velocity is high, the desulfurization rate may not be sufficient due to the reaction rate. Not only will the 8-party M [ratio] fall to 6, but the loss of pressure will increase, making it uneconomical.

また、吸収塔1内にJハノる反応温瓜は、使用リ−る吸
収剤の種類によっても異なるが例えば吸収剤として酸化
鉄を使用JるsJ合には約400−550℃の範囲に維
持覆る。これは、酸化鉄の平行関係から温度が高くなる
と麗硫宇が低下し、また湿度が低くなると反応速度がJ
5そくなって同様に脱硫率が低下づるからである。
The temperature of the reaction mixture in the absorption tower 1 will vary depending on the type of absorbent used, but for example, if iron oxide is used as the absorbent, the temperature will be maintained at approximately 400-550°C. cover This is due to the parallel relationship between iron oxide, which means that as the temperature rises, the reaction rate decreases, and as the humidity decreases, the reaction rate decreases.
This is because the desulfurization rate decreases as well.

更に、吸収剤の粒径は約0.5〜5imn+の範囲どす
るのが望ましい。これは、粒径が小さくなると圧力損失
が増大し、まlこtM 23が人さくなると反応速度の
低下にJ:す、11党tiI!l率が低下づるかうであ
る。
Further, it is desirable that the particle size of the absorbent range from about 0.5 to 5 imn+. This is because as the particle size decreases, the pressure drop increases, and as the particle size becomes smaller, the reaction rate decreases. This means that the l rate will decrease.

次に、吸収塔1内で硫化乃至還元された硫化吸収剤を吸
収塔下部のU+出口10から場外へ11出し、通路11
を介しCIり生JiS 2へ向()で移送りる。ぞして
、このlIi!f化吸収剤全吸収剤?S2の上部に設(
プた吸収剤導入[112かうこのI?S 2内へ導入し
て、これを薄層状に連続的に又は間欠的に徐々に下階移
動さlて硫化吸収剤の移動床13を形成覆る。
Next, the sulfurized absorbent that has been sulfurized or reduced in the absorption tower 1 is discharged outside from the U+ outlet 10 at the bottom of the absorption tower 11, and the passage 11
Transfer to CI raw JiS 2 via (). Next, this lIIi! f-absorbent total absorbent? Set at the top of S2 (
Introduction of absorbent [112 Kauko I? S 2 and gradually moved downward in a thin layer, either continuously or intermittently, to form a moving bed 13 of sulfurized absorbent.

一方、空気などの再生ガスどしての酸素含有ガス1/1
を再生ガス導入「115から、」−記再牛塔2内へ導入
し、このガス流を上記移動床13と直交させて接触さU
、これを水平方向に横切らU゛る。
On the other hand, oxygen-containing gas such as air or other regeneration gas is 1/1
A regeneration gas is introduced into the column 2 from 115, and this gas flow is brought into contact with the moving bed 13 at right angles.
, cross this horizontally.

これにより、下記式2に示づ如く、la化吸収剤が約8
00℃で酸化されてSolを放出し、元の金属酸化物の
吸収剤に再生される。
As a result, as shown in formula 2 below, the la absorbent becomes about 8
It is oxidized at 00°C to release Sol and is regenerated into the original metal oxide absorbent.

2211 S−130+ −)22+10−l−2SO
+ =−+2+ここで、上記再生162内での硫化吸収
剤の移動速度は約20+n/l]r以下とする。これは
、移動速度が速いと再生が不充分であったり、吸収剤の
摩耗が多くなったり、更には加熱用エネルギの増大を招
き、不経済となるからである。
2211 S-130+ -)22+10-l-2SO
+ =-+2+Here, the moving speed of the sulfurized absorbent within the regeneration 162 is approximately 20+n/l]r or less. This is because if the moving speed is high, regeneration will be insufficient, the absorbent will wear out more, and furthermore, the heating energy will increase, which will be uneconomical.

まIc−、再生塔2内でのガス速度は約0.05へ・5
 m / 5eICの範囲とする。これは前述したと同
様にガス速度が速いと圧力損失が増大するからである。
Well, Ic-, the gas velocity in the regeneration tower 2 is about 0.05・5
m/5eIC range. This is because, as mentioned above, when the gas velocity is high, pressure loss increases.

また、再生塔2内での反応iQ Imは使用Jる吸収剤
の種類にもよるが約550〜800℃の範囲と覆る。こ
れは反応温度が高いと焼結等の不都合を牛じ、逆に反応
温度が低いと再生に時間がかかったり、再生が不充分に
なったり覆るからである。
Further, the reaction iQ Im in the regeneration tower 2 ranges from about 550 to 800°C, depending on the type of absorbent used. This is because if the reaction temperature is high, there will be problems such as sintering, whereas if the reaction temperature is low, regeneration may take a long time or may be insufficient.

このようにして再生された吸収剤は再生JM 2の下部
に設りだ吸収剤排出口16から1M外へ171出される
。そして、摩耗して粉化した吸収剤をフルイ17により
ふり分りで系外へ01出りる一方、残留する大部分の吸
収剤を通路18を介して前記吸収塔1に向(Jて移送と
、再瓜被処理ガスの脱硫処理に奇!jさlるべく吸収j
ハ1内へ循環導入さlる。
The absorbent thus regenerated is discharged 171 out of the absorbent discharge port 16 provided at the bottom of the regenerated JM 2 1M. Then, the worn and powdered absorbent is sorted by a sieve 17 and sent out of the system, while most of the remaining absorbent is directed to the absorption tower 1 through a passage 18 (J is transferred). , It is strange for the desulfurization treatment of the gas to be remelted!
It is circulated and introduced into C1.

この際、不足分の吸収剤は小ツバ4から順次供給されて
ゆくことになる。
At this time, the missing amount of absorbent is sequentially supplied from the small brim 4.

一方、11■生塔2内にて硫化吸収剤を酸化することに
より生成されたSolは、再生カスに随伴しで再生ガス
出し119から再生ガスと共に塔外へ排出され、再生ガ
ス通に’fl 20を/1・してSO+還元jハ3へ移
送される。(l〕°l’、sO+を含む再生ガスはSO
+還元j33の還元」?5ガス人口21からこの場内へ
導入される一方、この堝3内には、石炭或いはヂト−よ
りなる還元剤がホッパ23より)W元請人口24を介し
で?9人されて還元剤の充填層25が形成されている。
On the other hand, Sol generated by oxidizing the sulfurized absorbent in the raw tower 2 is discharged from the regenerated gas outlet 119 to the outside of the tower along with the regenerated gas, and the 'fl 20 to /1. and transferred to SO+reduction jha3. (l] °l', regeneration gas containing sO+ is SO
+Reduction j33 reduction”? 5 gas is introduced into this plant from 21, while a reducing agent made of coal or carbon is introduced into this pit 3 from a hopper 23 via a main contractor 24. A filling layer 25 of reducing agent is formed by filling nine layers.

て−して、上記再生ガスは、塔内を徐々に下階する上記
還元剤と接触して、これに含まれるSolが還元され、
大615分が単体、rオウとなる。
Then, the regeneration gas comes into contact with the reducing agent gradually moving lower in the tower, and the Sol contained therein is reduced.
Large 615 minutes will be a single r-oh.

生成された単体イAつ20(ユ還元塔3の上部に設(〕
たーイAつiJl出[127から、排出される一方、使
用済みの還元剤28は還元剤1)「出L129から塔外
へIJ+出される。
The generated single unit A20 (installed at the top of the reduction tower 3)
The used reducing agent 28 is discharged from the output 127, while the used reducing agent 28 is discharged outside the column from the output 129.

また、特に、イオウ収率を高くJる場合には、上記還元
塔3に通常のクラウス反応器などを紺合せるようにする
In addition, particularly when a high sulfur yield is desired, a conventional Claus reactor or the like is fitted to the reduction column 3.

このように、吸収塔1内にて、連続的にまたは間欠的に
下降移動させた吸収剤の移動床6に、これに白交覆る如
く被処理ガスを接触通過させて1;2硫処理を行なうに
うにしたので、従来例の流動床方式に比較して吸収剤が
流動化されることがなく、従って吸収剤及び[1類の摩
耗を可及的に減少さけることができる。これは、吸収塔
1のみ4Tらず、再生塔2内においてら同様な移動床を
形成して1■生処理を行なうようにしたので、同様な効
果を発揮し、これらの相乗効果により、吸収剤装置類の
摩耗をお幅に防止できる。
In this way, the gas to be treated is passed in contact with the moving bed 6 of the absorbent that is continuously or intermittently moved downward in the absorption tower 1 so as to cover the moving bed 6, thereby carrying out the 1;2 sulfur treatment. As a result, the absorbent is not fluidized as compared to the conventional fluidized bed system, and therefore, wear of the absorbent and type 1 can be avoided as much as possible. This is because a similar moving bed is formed not only in the absorption tower 1 but also in the regeneration tower 2 to perform 1-T raw treatment, so the same effect is achieved, and the synergistic effect of these It can greatly prevent wear on the chemical equipment.

また、吸収塔1、再生塔2において、ともに薄層状の移
動層にガス流を直交させて通過さぼるlど1ノなので、
従来例のJ、うに流速の)士いガス流により吸収剤を流
動化させる必要がなく、従って、圧力ッ[1失を減少さ
せることが(・キ、また装■テr白体の振動も防止づる
ことがCさる。
In addition, in both the absorption tower 1 and the regeneration tower 2, the gas flow passes orthogonally through the thin moving bed.
There is no need to fluidize the absorbent with a gas flow (at the same flow rate as in the conventional example), and therefore, it is possible to reduce the pressure loss and also reduce the vibration of the loading body. Preventing it is C.

更に、形成される流動床全域にわたつ−(ガス流を均一
に通過させることができるので、従来の流動床り式ど異
なってガス流の(転)流が生「ザ、吸収剤とガスどの接
触効率を向」ニさせることがでさ及応率がト昇づる。
Furthermore, since the gas flow can be uniformly passed through the entire area of the fluidized bed formed, unlike the conventional fluidized bed type, the gas flow (diversion) is created. By increasing the contact efficiency, the response rate will increase.

また、吸収剤を連続的に或い(よ間欠的に下降移動させ
て形成した移動体にガス流を接触させるので従来の固定
式脱硫法と異なり、連続的な脱硫処理が行なえ、また、
吸収剤の融着を防止することができる。
In addition, since the gas flow is brought into contact with the moving body formed by moving the absorbent downward continuously or intermittently, unlike the conventional fixed desulfurization method, continuous desulfurization treatment can be performed.
Fusion of the absorbent can be prevented.

次に、以上の方法に基づいで行なわれた結果を示す。Next, the results obtained based on the above method will be shown.

吸収j3おJ、び再生J?)での条flは下記の通りで
ある。
Absorption j3 OJ, and regeneration J? ) is as follows.

(1) 脱硫条件(吸収塔) ガス組成 l−h S : 30001IDm 。(1) Desulfurization conditions (absorption tower) Gas composition l-h S: 30001 IDm.

11+:13%。11+: 13%.

1−h’o:10%。1-h'o: 10%.

CO:1(3%。CO: 1 (3%.

CO2:10%。CO2: 10%.

N+:[3aρ 温度 460℃ 吸収剤 赤鉄鉱、平均粒径:3川− 吸収剤移送速度 3m/旧゛ +1t211I率 95% (2) 再生条件(再生塔) ガス組成 02 :6%、 N+ : l3FI A温
度 800℃ 吸収剤移送速度 5m/l+r 再生率 99% 以上要するに、本発明方法によれば次のような優れた効
果を発揮することができる。
N+: [3aρ Temperature 460℃ Absorbent hematite, average particle size: 3 rivers Absorbent transfer speed 3m/old +1t211I rate 95% (2) Regeneration conditions (regeneration tower) Gas composition 02: 6%, N+: 13FI Temperature A: 800°C Absorbent transfer speed: 5 m/l+r Regeneration rate: 99% In summary, the method of the present invention can exhibit the following excellent effects.

(1) 吸収剤の移動床にガス流を直交さ已て1j12
 le+処理及び再生処理を行イ1つようにしたので、
吸収剤及び装量類の席耗を大幅に減少させることができ
る。
(1) Crossing the gas flow perpendicularly to the moving bed of absorbent
Since I have done le+ processing and playback processing in one,
Wear of the absorbent and loading materials can be significantly reduced.

(2) 薄層状に形成した移動床に均一にガス流を通過
させるので、圧力損失を大幅に減少させることがでさ、
月つ吸収乃すとガス流との接触効率の向上を図ることが
Cき、脱硫乃至再生効率を向上させることができる。
(2) Since the gas flow is uniformly passed through the moving bed formed in a thin layer, pressure loss can be significantly reduced.
It is possible to improve the absorption efficiency or the contact efficiency with the gas flow, and the desulfurization or regeneration efficiency can be improved.

(3) 従来の流動床方式の場合に必要とされたフリー
ボードを不要にできるので、装置自体の小型化が図れ、
設置面積を少な(覆ることができる。
(3) Since the free board required in the conventional fluidized bed method can be eliminated, the equipment itself can be made smaller;
The installation area is small (can be covered).

(/I) 流動床方式に比較して装置自体の振動が少な
くなるので、構造段バ1が容易にできる。
(/I) Since the vibration of the device itself is reduced compared to the fluidized bed method, the structure bar 1 can be easily formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水元明方v1を説明りるための脱硫再生工程を
示す工程図である。 尚、図中、1は吸収jハ、2は再生塔、3はSC2還元
塔、6 LJ吸収剤の移動床、7は被処理ガス、13は
硫化吸収剤の移動床、14は酸素8有ガスである。 特許出願人 石川島播磨重工業株式会召代理人弁理士 
組 谷 信 雄
FIG. 1 is a process diagram showing a desulfurization regeneration process to explain Mizumoto Akikata v1. In the figure, 1 is an absorption tower, 2 is a regeneration tower, 3 is an SC2 reduction tower, 6 is a moving bed of LJ absorbent, 7 is a gas to be treated, 13 is a moving bed of sulfurized absorbent, and 14 is an oxygen It's gas. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney
Group Nobuo Tani

Claims (1)

【特許請求の範囲】[Claims] ?′i炭刀ス化ガス等の1128を含む被処理ガスを、
金属酸化物よりなる吸収剤と接触させて被処理ガス中の
1−hsを吸収除去して脱fa処即刀ると共に、I−h
sを吸収した硫化吸収剤を酸化し゛てこれを再生りるJ
、うになした乾式脱硫方法において、上記吸収剤を薄層
状に移動させて吸収剤の移動床を形成覆ると共に該移動
床に上記被処理ガスを接触させて被処理ガスを脱硫処理
し、次いで、I−1+Sを吸収した上記硫化吸収剤を薄
層状に移動さUて硫化吸収剤の移動体を形成覆ると」ξ
に、該移動床に酸素含有ガスを接触させて硫化吸収剤か
らイAつ分を分離除去し、これを再生づるにJ、にした
ことを特徴どづる乾式脱硫方法。
? 'i The gas to be treated containing 1128 such as carbon dioxide gas,
The 1-hs in the gas to be treated is absorbed and removed by contacting with an absorbent made of metal oxide, and the I-h
Oxidize and regenerate the sulfurized absorbent that has absorbed s.
In the dry desulfurization method described above, the absorbent is moved in a thin layer to form a moving bed of the absorbent, and the gas to be treated is brought into contact with the moving bed to desulfurize the gas to be treated, and then, When the above sulfurized absorbent that has absorbed I-1+S is moved in a thin layer to form a moving body of sulfurized absorbent,
A dry desulfurization method characterized in that the movable bed is brought into contact with an oxygen-containing gas to separate and remove A from the sulfurized absorbent, and this is made into a regenerating vine.
JP58194382A 1983-10-19 1983-10-19 Dry desulfurization process Pending JPS6087834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194382A JPS6087834A (en) 1983-10-19 1983-10-19 Dry desulfurization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194382A JPS6087834A (en) 1983-10-19 1983-10-19 Dry desulfurization process

Publications (1)

Publication Number Publication Date
JPS6087834A true JPS6087834A (en) 1985-05-17

Family

ID=16323665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194382A Pending JPS6087834A (en) 1983-10-19 1983-10-19 Dry desulfurization process

Country Status (1)

Country Link
JP (1) JPS6087834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861566A (en) * 1986-12-24 1989-08-29 Imperial Chemical Industries Plc Desulphurization
US4894210A (en) * 1985-07-09 1990-01-16 Imperial Chemical Industries Plc Purification of a hydrocarbon mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894210A (en) * 1985-07-09 1990-01-16 Imperial Chemical Industries Plc Purification of a hydrocarbon mixture
US4861566A (en) * 1986-12-24 1989-08-29 Imperial Chemical Industries Plc Desulphurization

Similar Documents

Publication Publication Date Title
US2992895A (en) Process for recovering oxides of nitrogen and sulfur from gaseous mixtures
US4455286A (en) High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures
RU2026722C1 (en) Method for removal of sulfur and device for its realization
EP0097240B1 (en) Process for removal of sulfur oxides from hot gases
US3717976A (en) Process for removing sulfur oxides from sulfur oxide containing exhaust gas
JP2865845B2 (en) Purification method of high-temperature reducing gas
JPS6087834A (en) Dry desulfurization process
JPH02180614A (en) Process for refining high temperature reducing gas
JP3831435B2 (en) Gas purification equipment
US4686090A (en) Desulfurizing of reducing gas stream using a recycle calcium oxide system
US2967587A (en) Process and apparatus for dry-process adsorption of hydrogen sulfide from coke-oven gases
JPH0394815A (en) Method for desulfurizing and denitrating exhaust gas from sintering apparatus
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPS63291986A (en) Purification of high-temperature reducing gas
US4321242A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
JPS62502815A (en) Regeneration method for removing mercaptans contained in gas
JP2662768B2 (en) Method for removing mercury from acidic exhaust gas
JPS57184418A (en) Method for recovering sulfur in dry type flue gas desulfurizing apparatus
JPH06210138A (en) Dry exhaust gas purifying method and operation of blast furnace and sintering machine
JPH01254226A (en) Purification of high temperature reductive gas
JPS6168123A (en) Dry desulfurizing method
JPS5864117A (en) Dry stack-gas desulfurization process
JP2755799B2 (en) Fluid bed combustion furnace exhaust gas desulfurization method
JP3046238B2 (en) Method and apparatus for regenerating desulfurizing agent
JPS56126428A (en) Dry type stack gas desulfurizing process