JPS608638B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS608638B2
JPS608638B2 JP50095591A JP9559175A JPS608638B2 JP S608638 B2 JPS608638 B2 JP S608638B2 JP 50095591 A JP50095591 A JP 50095591A JP 9559175 A JP9559175 A JP 9559175A JP S608638 B2 JPS608638 B2 JP S608638B2
Authority
JP
Japan
Prior art keywords
gate
voltage
transistor
circuit
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50095591A
Other languages
Japanese (ja)
Other versions
JPS5219085A (en
Inventor
俊男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50095591A priority Critical patent/JPS608638B2/en
Publication of JPS5219085A publication Critical patent/JPS5219085A/en
Publication of JPS608638B2 publication Critical patent/JPS608638B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 この発明は記憶装置として用いる絶縁ゲート型電界効果
トランジスタ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect transistor circuit used as a memory device.

記憶装置の理想的機能は情報の書込・謙出速度が高速で
あるとともに情報が不揮発性であることである。
The ideal function of a storage device is that information can be written and retrieved at high speed and that the information is non-volatile.

従来、浮遊ゲート型もしくは二重絶縁膜ゲート型電界効
果トランジスタを用いた半導体記憶装置は1ビット当り
の書込時間tに1マイクロ秒〜1ミリ秒を要し、大容量
の記憶装置ではNビットを書込むのに、N・tの書込時
間が必要とされていた。このような記憶装置は理想的で
ないだけでなく汎用的な機能としての欠陥を持ち、量産
性を高めて経済性の優れた半導体記憶装置を実現するた
めに不都合が多い。この発明の目的は汎用的機能を有す
る半導体記憶装置を提供することにある。
Conventionally, a semiconductor memory device using a floating gate type or double insulating film gate type field effect transistor requires a writing time t of 1 microsecond to 1 millisecond per bit, and a large capacity memory device requires N bits. A writing time of N·t was required to write. Such a memory device is not only not ideal, but also has defects in general-purpose functions, and has many disadvantages in realizing an economical semiconductor memory device with increased mass productivity. An object of the present invention is to provide a semiconductor memory device having general-purpose functions.

この発明の他の目的は情報の書込・謙出動作が従来のラ
ンダム・アクセス・メモリ・デバイス(RAM)と同様
に高速で行なわれ、且つ蓄積された情報を不揮発的に保
持することのできる半導体記憶装置を提供することにあ
る。
Another object of the present invention is that information can be written and retrieved at high speed similar to conventional random access memory devices (RAM), and stored information can be held in a non-volatile manner. An object of the present invention is to provide a semiconductor memory device.

この発明によれば、複数の行線と複数の列線とが形成す
るマトリクス交点にそれぞれフリップ・フロップ回路か
ら成るメモリセルを配置し、前記行線および列線を選択
して所定のメモリセルへの情報の送受を行う記憶装置に
おいて、前記フリップ・フロップ回路の駆動トランジス
タの少くとも一方がゲート絶縁膜中に電荷を捕獲し蓄積
する機能を有するメモリトランジスタであることを特徴
とする半導体装置が得られる。
According to the present invention, memory cells each comprising a flip-flop circuit are arranged at matrix intersections formed by a plurality of row lines and a plurality of column lines, and the row lines and column lines are selected and transferred to a predetermined memory cell. In the memory device for transmitting and receiving information, at least one of the drive transistors of the flip-flop circuit is a memory transistor having a function of capturing and accumulating charges in a gate insulating film. It will be done.

この発明の記憶装置は、メモリセルがフリップ・フロッ
プ回路で構成されるため、RAMとしての情報の高速書
込・諸出を行うことができる。
In the memory device of the present invention, since the memory cells are constituted by flip-flop circuits, it is possible to write and output information as a RAM at high speed.

又駆動トランジスタが電荷蓄積機能を有するため、書込
動作でフリップ・フロップ回路が保持している情報を不
揮発性記憶することができる。この不揮発性記憶に要す
る時間は後述するように他のメモリセルと同時に一勢に
行なわれるため、大容量の記憶装置においても全ビット
書込時間が1マイクロ秒〜1ミリ秒程度の短時間に完了
する。次にこの発明の特徴をより良く理解するため、こ
の発明の実施例につき図を用いて説明する。第1図はこ
の発明の一実施例の回路図を示す。この実施例は複数対
の行線D,,D,,D2,D2と複数の列線W,,W2
とが形成するマトリクス交点にそれぞれ後述するフリッ
プ。フロップ回路を含むメモリセルM,.,M,2,M
2,,地2を配置している。行線D,,D,および,D
2,D2 は互いに相補的信号線であり、メモリセルと
の相補的信号の送受に寄与する。第2図は第1図の実施
例のメモリセルの回路図である。
Furthermore, since the drive transistor has a charge storage function, the information held by the flip-flop circuit during a write operation can be stored in a nonvolatile manner. The time required for this non-volatile storage is as described below, because it is performed simultaneously with other memory cells, so even in large-capacity storage devices, the total bit writing time is short, about 1 microsecond to 1 millisecond. Complete. Next, in order to better understand the characteristics of the present invention, embodiments of the present invention will be described using figures. FIG. 1 shows a circuit diagram of an embodiment of the present invention. This embodiment includes a plurality of pairs of row lines D,,D,,D2,D2 and a plurality of column lines W,,W2.
Flips, which will be described later, are applied to the matrix intersections formed by and. Memory cells M, . ,M,2,M
2,, Earth 2 is placed. Row lines D,,D, and,D
2 and D2 are mutually complementary signal lines, and contribute to transmitting and receiving complementary signals with the memory cells. FIG. 2 is a circuit diagram of the memory cell of the embodiment shown in FIG.

この実施例では、ゲートが互いに他のドレィンに接続し
ソースが共通の接地端子に結合する2個の駆動トランジ
スタQ。.,Q。2と、各駆動トランジスタQo,,Q
o2の負荷素子として駆動トランジスタのドレィンと電
源端子Voにそれぞれぞれソースおよびドレィンが結合
しケントが共通にケント端子Vcに接続する2個の負荷
トランジスタQL,?QL2とでフリップ。
In this embodiment, two drive transistors Q whose gates are connected to each other's drains and whose sources are coupled to a common ground terminal. .. ,Q. 2 and each drive transistor Qo,,Q
As load elements of o2, two load transistors QL, ? whose sources and drains are coupled to the drain of the drive transistor and the power supply terminal Vo, respectively, and whose Kents are commonly connected to the Kent terminal Vc, are used as load elements of o2. Flip with QL2.

フロップ回路が構成される。又、入出力信号を送受する
接点である駆動トランジスタQD,y Qo2のドレィ
ンには、それぞれの結合トランジスタQT,,Qr2の
ドレインもしくはソースの一方が結合し他方は行線D,
Dにそれぞれ結合する。この結合トランジスタQT,,
QT2のゲートは共通に列線Wに接続する。各トランジ
スタの基体ゲートは同一の基体端子SBである。駆動ト
ランジスタQo,?Qo2のゲート構造には浮遊ゲート
が含まれ、この浮遊ゲートに影響を及ぼす低耐圧ダイオ
ードD,,D2がドレイン接合の少くとも一部に設けら
れている。このダイオードの陽極は基体端子SBである
。第3図は第2図の駆動トランジスタおよび低耐圧ダイ
オードを説明する断面図である。
A flop circuit is configured. In addition, one of the drains and sources of the respective coupling transistors QT, Qr2 is coupled to the drain of the driving transistor QD, y Qo2, which is a contact point for transmitting and receiving input/output signals, and the other is connected to the row line D,
Each binds to D. This coupling transistor QT,,
The gates of QT2 are commonly connected to column line W. The body gate of each transistor is the same body terminal SB. Drive transistor Qo,? The gate structure of Qo2 includes a floating gate, and low breakdown voltage diodes D, D2 that affect this floating gate are provided at least in part of the drain junction. The anode of this diode is the base terminal SB. FIG. 3 is a cross-sectional view illustrating the drive transistor and low voltage diode shown in FIG. 2.

これらの回路素子は好ましくは比抵抗40一肌のP型シ
リコン単結晶基体301の一表面の1仏程度の厚いSi
02の周辺酸化膜302に囲まれた活性領域に形成され
る。活性領域の基体表面には表面濃度約1ぴ1肌‐3、
接合深さ2〆のN型のソースおよびドレィン領域303
,304があり、これらの領域間の基体表面に300A
程度のSi02膜305を介して多結晶シリコンの浮遊
ゲート306が設けられている。浮遊ゲート306はさ
らに有効厚さで2000AのSi02膜307で絶縁被
膜され、回路的導電結合を防止され、Si02膜307
を介してアルミニウムのゲート308と容量結合を有す
る。従ってこのゲート構造はゲート308と活性領域の
基体表面との間に二層の絶縁物によるゲート絶縁膜と、
ゲート絶縁膜中に埋込まれた浮遊ゲートを有する所謂M
OSOS構造である。ドレィン領域304は基体301
との間にPN接合を形成するが、浮遊ゲートの直下の一
部に表面濃度約1ぴ7肌‐3のポロン受入領域309が
あり、これとの接合部に約14Vの接合耐圧をもつPN
接合ダイオードが形成されている。本来の約30Vのド
レィン接合耐圧に比してこれは低耐圧ダイオードとして
寄与する。第4図は第3図に示したMOSOS構造のト
ランジスタの動作を示す特性図である。
These circuit elements are preferably formed using a thick silicon layer on one surface of a P-type silicon single crystal substrate 301 with a specific resistance of 40 mm.
02 is formed in an active region surrounded by a peripheral oxide film 302. The surface of the substrate in the active area has a surface concentration of approximately 1 pi 1 skin-3,
N-type source and drain region 303 with junction depth 2〆
, 304, and 300A on the substrate surface between these areas.
A floating gate 306 made of polycrystalline silicon is provided through a Si02 film 305 of approximately 100 mL. The floating gate 306 is further insulated with a Si02 film 307 with an effective thickness of 2000A to prevent circuit conductive coupling, and the Si02 film 307
It has a capacitive coupling with the aluminum gate 308 via. Therefore, this gate structure includes a gate insulating film made of two layers of insulator between the gate 308 and the substrate surface of the active region;
A so-called M having a floating gate embedded in a gate insulating film
It is an OSOS structure. Drain region 304 is connected to base body 301
A PN junction is formed between the floating gate and the floating gate, but there is a poron acceptance region 309 with a surface concentration of about 1p7-3 directly below the floating gate, and a PN junction with a junction withstand voltage of about 14V is formed at the junction with this.
A junction diode is formed. Compared to the original drain junction breakdown voltage of about 30V, this serves as a low breakdown voltage diode. FIG. 4 is a characteristic diagram showing the operation of the transistor of the MOSOS structure shown in FIG.

この図の縦軸はトランジスタのゲート閥値VTをドレィ
ン電圧=5V、基体電位=ソース電位=OVで測定した
値で示し、機軸にはドレィン電圧Voもしくは基体電位
VsBを示す。第3図のトランジスタは初期に約IVの
ゲート閥値を示し、所定の基体電位VsBを1ミリ秒印
加したのちにゲ−ト闇値を測定すると、この図に破線4
1で示す如く負の基体電位VsBの絶対値の増大と共に
増加する傾向を示す。増加を開始する基体電圧はPN接
合ダイオードの降服点からであり、アバランシェ降服時
の電子注入による負電荷蓄積と考えられる。又、増大し
たゲート関値は、基体とに−5Vの基体バイアスを与え
、ドレイン電圧Voを1ミリ秒間印加したのちに同様な
ゲート関値測定を行うことにより図に実線42で示す如
くゲート閥値VTを減少する。このゲート闇値の減少は
PNダイオードのアバランシェ降服で正孔の寄与による
負電荷消失が浮遊ゲートから起るためと考えられる。こ
れらのゲート闇値変化はアバランシヱ降服時のゲート電
界に大きく依存し、負電荷蓄積時にはゲート電極に正電
圧を印加するとき印加電圧値だけゲート閥値の増大分が
大きくなる。
The vertical axis of this figure shows the gate threshold value VT of the transistor as a value measured with drain voltage=5V and base potential=source potential=OV, and the vertical axis shows drain voltage Vo or base potential VsB. The transistor shown in Fig. 3 initially shows a gate threshold value of approximately IV, and when the gate voltage value is measured after applying a predetermined base potential VsB for 1 millisecond, the broken line 4
1, it shows a tendency to increase as the absolute value of the negative substrate potential VsB increases. The base voltage that starts to increase is from the breakdown point of the PN junction diode, and is thought to be due to negative charge accumulation due to electron injection during avalanche breakdown. In addition, the increased gate function value can be determined by applying a -5V body bias to the substrate and applying the drain voltage Vo for 1 millisecond and then measuring the gate function value in the same way, as shown by the solid line 42 in the figure. Decrease the value VT. This decrease in gate darkness value is thought to be due to negative charge dissipation from the floating gate due to the contribution of holes due to avalanche breakdown of the PN diode. These changes in the gate threshold value largely depend on the gate electric field at the time of avalanche breakdown, and when a positive voltage is applied to the gate electrode during negative charge accumulation, the increase in the gate threshold value increases by the applied voltage value.

又、負電荷消失時には正電圧印加の電圧値だけゲート閥
値の減少が妨げられる。フリップ・フロップ回路では一
方の駆動トランジスタが他方より明らかに優勢にゲート
関値を増減し、共にドレィン電圧がOVのときには同一
のゲート関値に整う。第5図は第1図〜第4図に示した
実施例の動作波形の一例を示す。
Furthermore, when the negative charge disappears, the gate threshold value is prevented from decreasing by the voltage value of the positive voltage applied. In a flip-flop circuit, one drive transistor increases or decreases the gate function value clearly more than the other, and when both drain voltages are OV, the gate function values are the same. FIG. 5 shows an example of operating waveforms of the embodiment shown in FIGS. 1 to 4.

初期においては、第1図の実施例は通常のスタティック
型RAM動作を行い、書込時twに導入した情報を保持
して読出時tRに行線に謙出信号を与える。これらの情
報の送受はドレィン電源電圧20Vの印加状態で列線電
圧Vw、行線電圧Vo、負荷トランジスタのゲート電圧
VG、基体電圧VsBを図に示す如く印加して行なわれ
る。記憶装置内の全ビットに情報が導入されたのち、停
電事故もしくは必要に応じて情報を不揮発性に固定する
ことが好ましいときには不揮発性書込時t側にゲート電
圧Vcを増大し基体電圧を下降することにより全ビット
のフリツプ・フロップ回路内のそれぞれゲート電圧が低
い駆動トランジスタのゲート閥値が減少し、電源遮断後
にフリップ・フロッブ回路内には不平衡の復帰が起る。
即ち、電源再授入後のフリップ・フロップ回路はゲート
関値が減少している駆動トランジスタが常に導適状態と
なって読出時tR′に不揮発性書込以前と反転された出
力を行線に与える。この状態は固定記憶動作であるため
電源の有無に無関係にROM動作を行い、再度のRAM
動作への複帰へは消去時tERで基体電圧を−20Vま
で下降することにより行う。この消去動作も記憶装置内
で全ビット一勢に行うことができてフリップ・フロップ
回路のゲート関値の減少しているトランジスタのみがゲ
ート電極に正電圧印加されているため有効にゲート閥値
を上昇して他方のトランジスタの特性と一致するように
なり、当初のRAM機能を回復する。第6図はこの発明
の一実施例の他の動作波形図を示す。
In the initial stage, the embodiment of FIG. 1 performs normal static type RAM operation, holds the information introduced at tw during writing, and applies a drop signal to the row line at tR during reading. Transmission and reception of these information is carried out by applying a column line voltage Vw, a row line voltage Vo, a gate voltage VG of the load transistor, and a base voltage VsB as shown in the figure while a drain power supply voltage of 20V is applied. After information has been introduced into all bits in the storage device, if it is desirable to fix the information in a non-volatile manner due to a power outage or if necessary, the gate voltage Vc is increased and the base voltage is decreased on the t side during non-volatile writing. As a result, the gate threshold values of the drive transistors each having a low gate voltage in the flip-flop circuits of all bits are reduced, and unbalance is restored in the flip-flop circuits after the power is cut off.
That is, in the flip-flop circuit after the power is turned on again, the drive transistor whose gate function value has decreased is always in a conductive state, and at the time of reading, at tR', an output that is inverted from that before non-volatile writing is sent to the row line. give. Since this state is a fixed memory operation, ROM operation is performed regardless of the presence or absence of the power supply, and the RAM is reused.
Returning to operation is performed by lowering the substrate voltage to -20V at tER during erasing. This erasing operation can also be performed on all bits in the memory device at once, and only the transistors whose gate thresholds in the flip-flop circuit have decreased have a positive voltage applied to their gate electrodes, effectively reducing the gate threshold value. It rises to match the characteristics of the other transistor, restoring the original RAM function. FIG. 6 shows another operational waveform diagram of an embodiment of the present invention.

この図の電圧印加ではRAM動作に続く不揮発性書込時
tNw′で基体電圧VsBのみをOVから−20Vに下
降する。この電圧操作によれば全ビットのフリップ・フ
ロップ回路内部の導適状態にある駆動トランジスタのみ
が正電圧のゲート電圧の寄与でゲート閥値を増大し不平
衡のフリップ・フロップ回路機能を成す。この電圧波形
も不揮発性書込後の各メモリセルは読出時tR′に反転
出力を発生し固定記憶装置として動作する不揮発性書込
状態からの回復は第5図の書込時のように負荷トランジ
スタのゲート電圧を増大して駆動トランジスタのドレィ
ン電圧を電源電圧値附近にまで増大してドレィソ接合に
アバランシェ降服を生じ、且つ基体電圧を下降してゲー
ト閥値の増大している駆動トランジス外こ優勢に負電荷
消失を行いフリツプ・フロツプ回路機能を発生する。こ
れらの実施例によれば、RAMおよびROM機能を有す
る記憶装置が得られる。
In the voltage application shown in this figure, only the base voltage VsB is lowered from OV to -20V at tNw' during nonvolatile writing following RAM operation. According to this voltage manipulation, only the drive transistors in the conductive state inside the flip-flop circuit of all bits increase the gate threshold value due to the contribution of the positive gate voltage, and perform an unbalanced flip-flop circuit function. This voltage waveform also shows that each memory cell after non-volatile writing generates an inverted output at tR' during reading, and operates as a fixed memory device.Recovery from the non-volatile writing state is performed under a load similar to that during writing in Figure 5. Increasing the gate voltage of the transistor to increase the drain voltage of the drive transistor to near the power supply voltage value causes avalanche breakdown in the drain junction, and lowering the substrate voltage to remove the drain voltage of the drive transistor whose gate voltage has increased. Predominantly negative charge dissipation occurs to generate flip-flop circuit function. According to these embodiments, a storage device having RAM and ROM functions is obtained.

又RAMに停電対策を施すことができる。更に記憶容量
の増大に無関係に高速で不揮発性書込を行う記憶装置が
得られる。第7図は上述の実施例に好適な検出回路図で
ある。
Also, it is possible to take measures against power outages to the RAM. Furthermore, a storage device that performs nonvolatile writing at high speed regardless of an increase in storage capacity can be obtained. FIG. 7 is a diagram of a detection circuit suitable for the above embodiment.

この検出回路は通常の絶縁ゲート型電界効果トランジス
タを用いた第1のフリツプ・フロツプ回路F/FIと、
メモリセルと同一回路構成の第2のフリツプ・フロツプ
回路F/F2と、ゲート回路Gを有する。ゲート回路G
は各フリップ・フロツプ回路の相補出力71一72,7
3−74のアンド(AND)回路K,,K2と一方のア
ンド回路K2の出力を反転する反転回路1と、この反転
出力と他のアンド回路K,の出力の和(オアノ回路)を
含む。第2のフリップ・フロップ回路は通常は瞬時的に
与えられるリセット信号で第1のアンド回路K,を駆動
するため、メモリ回路部からの出力信号線D,Dの情報
はそのま)出力outに与えられる。メモリ回路部が不
揮発性書込されると同時に第2のフリップ・フロップ回
路F/F2も駆動トランジスタQo,、Q′o2へのゲ
ート関値変化が生じ、信号線73を通して第2のアンド
回路K2を駆動するようになるため、出力信号線の情報
は反転して出力outに導出され、本来の不揮発性書込
前後の読出情報を同一にすることができる。第8図はこ
の発明の他の実施例のメモリ回路部に好適な駆動トラン
ジスタの他のトランジスタ構造を示す。
This detection circuit includes a first flip-flop circuit F/FI using an ordinary insulated gate field effect transistor;
It has a second flip-flop circuit F/F2 having the same circuit configuration as the memory cell, and a gate circuit G. Gate circuit G
are the complementary outputs 71-72, 7 of each flip-flop circuit.
It includes 3-74 AND circuits K, , K2, an inverting circuit 1 that inverts the output of one AND circuit K2, and the sum of this inverted output and the output of the other AND circuit K (or-another circuit). Since the second flip-flop circuit usually drives the first AND circuit K with a reset signal that is instantaneously applied, the information on the output signal lines D and D from the memory circuit section remains unchanged (output). Given. At the same time as non-volatile writing is performed on the memory circuit section, the gate function value of the second flip-flop circuit F/F2 also changes to the drive transistors Qo, Q'o2, and the second AND circuit K2 passes through the signal line 73. Therefore, the information on the output signal line is inverted and led out to the output out, and the read information before and after the original nonvolatile writing can be made the same. FIG. 8 shows another transistor structure of a drive transistor suitable for a memory circuit section according to another embodiment of the present invention.

このトランジスタは第3図の構造に比してドレィン接合
に低耐圧のダイオードを持たない。か)る構造では浮遊
ゲート306の上面の多結晶シリコンの熱酸化で得られ
る約1000人のSi02膜801を通して負電荷消失
が生じ、基体電圧を下降することにより約1び6肌‐3
の高濃度P型領域802のチャンネル領域への割込部か
ら電荷の回復が起る。第9図は第8図のトランジスタ構
造におけるゲート閥値VT−印加電圧Vc,VsB特性
を示す。
This transistor does not have a low breakdown voltage diode at the drain junction as compared to the structure shown in FIG. In this structure, negative charges are dissipated through the approximately 1,000-layer Si02 film 801 obtained by thermal oxidation of the polycrystalline silicon on the upper surface of the floating gate 306, and by lowering the substrate voltage, approximately 1 to 6 layers are removed.
Charge recovery occurs from the interruption of the high concentration P-type region 802 into the channel region. FIG. 9 shows the gate threshold value VT-applied voltage Vc, VsB characteristics in the transistor structure of FIG. 8.

ゲート電圧VGの増大により浮遊ゲートは負電荷を失い
正電荷蓄積状態となるため実線91に示すようにゲート
閥値VTを下降する。又、基体電圧を下降するとゲート
闇値VTは上昇傾向を示し、これらはそれぞれイオンド
リフト型および反転層降服型特性と呼ばれる。この実施
例のトランジスタは書込速度が低下するが、構造が簡易
である点で有利であり、第6図、第7図と同様な不揮発
性書込動作で正転状態の情報固定を行うことができる。
As the gate voltage VG increases, the floating gate loses negative charge and enters a positive charge accumulation state, so that the gate threshold value VT decreases as shown by a solid line 91. Furthermore, when the substrate voltage is lowered, the gate darkness value VT shows an increasing tendency, and these are called ion drift type and inversion layer breakdown type characteristics, respectively. Although the writing speed of the transistor of this embodiment is lower, it is advantageous in that the structure is simple, and the information in the normal rotation state can be fixed by a nonvolatile writing operation similar to that shown in FIGS. 6 and 7. I can do it.

即ちへ書込前にゲート電圧が高く導適状態の駆動トラン
ジスタのゲート闇値がィオンドIJフト型効果で引き下
げられるため、不揮発性書込後も導適状態の情報を与え
る。この実施例のメモリ回路は第1図と全く同一‘こな
る。第10図はこの発明の更に他の実施例に好適な駆動
トランジスタの断面図を示す。
That is, since the gate voltage value of the drive transistor in a conductive state with a high gate voltage before writing is lowered by the iondo IJ type effect, information on the conductive state is provided even after non-volatile writing. The memory circuit of this embodiment is exactly the same as that in FIG. FIG. 10 shows a sectional view of a drive transistor suitable for yet another embodiment of the invention.

この実施例も第1図および第2図と同機な回路構成を備
え、駆動トランジス外こ第10図のトランジスタを用い
る。このトランジスタもドレィン接合は通常のものであ
り、ゲート構造のみ前実施例と異る。浮遊ゲート306
′は無添加の半導電性の多結晶シリコンから成り、ァル
ミナ、シリコン窒化物のようなSi02膜305に比し
て高誘電率の絶縁膜1001に覆われる。第11図は第
10図のトランジスタのゲート関値VT−ゲート電圧V
oもしくはドレィン電圧Voの特性を示す。
This embodiment also has the same circuit configuration as that of FIGS. 1 and 2, and uses the transistor shown in FIG. 10 outside of the drive transistor. This transistor also has a normal drain junction, and only the gate structure differs from the previous embodiment. floating gate 306
' is made of semiconductive polycrystalline silicon with no additives, and is covered with an insulating film 1001 having a higher dielectric constant than the Si02 film 305, such as alumina or silicon nitride. Figure 11 shows the gate function value VT - gate voltage V of the transistor in Figure 10.
o or drain voltage Vo.

この図に示すようにこの実施例に用いられる駆動トラソ
ジス外まゲート電圧Vcの増大で実線1101で示した
トンネル注入型特性と破線で示したァバランシェ注入特
性を示す。即ちフリップ・フロッフ。回路においてゲー
ト電圧が高く導適状態にある一方の駆動トランジス外ま
不揮発性書込動作でゲート閥値が下降し、他方はゲート
閥値が下降する反転状態の情報固定を行う。この実施例
は不揮発性書込の効率が高い利点を有するが、RAM動
作への回復は浮遊ゲートへの紫外線照射による。上述の
実施例によれば、全ビットを同時に不揮発性書込してR
AMこROMメモリの機能変換のできる記憶装置が得ら
れる。
As shown in this figure, when the gate voltage Vc is increased outside the drive system used in this embodiment, the tunnel injection characteristics shown by a solid line 1101 and the avalanche injection characteristics shown by a broken line are shown. i.e. flip flop. In the circuit, a nonvolatile write operation is performed outside one of the drive transistors in which the gate voltage is high and the gate voltage is high, and the gate voltage falls in a nonvolatile write operation, while the other drive transistor fixes information in an inverted state in which the gate voltage falls. Although this embodiment has the advantage of high efficiency of non-volatile writing, recovery to RAM operation relies on UV irradiation to the floating gate. According to the embodiment described above, all bits are written nonvolatilely at the same time and R
A storage device capable of converting the functions of AM and ROM memories is obtained.

尚、実施例における回路機能、材料等は必要に応じて変
更可能であり、たとえば負荷素子としては上述のトラン
ジスタのほかにディプレッション型トランジスタ、逆導
電チャンネル型トランジスタ、純抵抗、チャージポンプ
型素子が用いられ、フリツプ・フロツプ回路への結合ト
ランジスタは一方を省くこともできメモリ回路の行列配
線数を減少することもできる。
Note that the circuit functions, materials, etc. in the embodiments can be changed as necessary. For example, in addition to the above-mentioned transistors, a depletion type transistor, a reverse conduction channel type transistor, a pure resistor, or a charge pump type element may be used as the load element. Therefore, one of the transistors coupled to the flip-flop circuit can be omitted, and the number of row and column wires in the memory circuit can be reduced.

又、電荷を絶縁ゲート膜中に捕獲する他のトランジスタ
構造としてはRAM二ROMの再回復時の特性低下の問
題はあるがMNOS,MAOS等の高誘電率と低誘電率
の二層絶縁ゲート膜構造のトランジスタも用い得る。
Other transistor structures that trap charges in an insulated gate film include two-layer insulated gate films with high dielectric constant and low dielectric constant such as MNOS and MAOS, although there is a problem of deterioration of characteristics during recovery of RAM and ROM. Structured transistors may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回路図、第2図はこの発
明の一実施例のメモIJセルの回路図、第3図は第2図
の駆動トランジスタの断面図、第4図は第3図のトラン
ジスタの特性図、第5図は第1図の電圧波形図、第6図
は第1図の他の例の電圧波形図、第7図は第1図のメモ
リ回路の出力論出のための回路図、第8図はこの発明の
他の実施例の駆動トランジスタの断面図、第9図は第8
図のトランジスタの特性図、第IQ図はこの発明の更に
他の実施例の駆動トランジスタの断面図、第11図は第
10図のトランジスタの特性図である。 図中D,,D2は行線、D,,D2 はD,,D2の相
補的信号線として用いる行線、W,,W2は列線、Qo
,,Qo2は浮遊ゲート構造の駆動トランジスタ、QL
,,QL2は負荷トランジスタ、QT・,QT2は結合
トランジスタ。 繁ー図 繁2図 菱3図 姿4図 鎌s図 鏡ら図 紫7図 驚8図 姿タ図 篤′o図 甥、ー図
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is a circuit diagram of a memo IJ cell of an embodiment of the invention, Fig. 3 is a sectional view of the drive transistor of Fig. 2, and Fig. 4 is a circuit diagram of an embodiment of the invention. Fig. 3 is a characteristic diagram of the transistor, Fig. 5 is a voltage waveform diagram of Fig. 1, Fig. 6 is a voltage waveform diagram of another example of Fig. 1, and Fig. 7 is an output theory of the memory circuit of Fig. 1. FIG. 8 is a cross-sectional view of a drive transistor according to another embodiment of the invention, and FIG.
FIG. 11 is a characteristic diagram of the transistor shown in FIG. 10. FIG. In the figure, D,,D2 are row lines, D,,D2 are row lines used as complementary signal lines of D,,D2, W,,W2 are column lines, and Qo
,,Qo2 is a driving transistor with a floating gate structure, QL
,,QL2 is a load transistor, and QT・,QT2 is a coupling transistor. Traditional drawing Traditional drawing 2 drawing Rhizo 3 figure 4 sickle s figure mirror et al figure purple 7 figure surprise 8 figure ta figure Atsushi'o figure nephew, - figure

Claims (1)

【特許請求の範囲】[Claims] 1 フリツプ・フロツプ構成の2個の駆動用トランジス
タと、該2個の駆動用トランジスタの各出力端と出力線
との間に挿入された結合用トランジスタとを有する半導
体装置において、前記駆動用トランジスタの少なくとも
一方はそのゲート絶縁膜中に電荷を捕獲し蓄積する機能
を有するメモリトランジスタで構成され、該駆動用トラ
ンジスタはそれ自身で情報書き込みおよび読み出し機能
と情報読み出し専用機能との両機能を有することを特徴
とする半導体装置。
1. In a semiconductor device having two driving transistors having a flip-flop configuration and a coupling transistor inserted between each output terminal of the two driving transistors and an output line, At least one of them is composed of a memory transistor that has the function of capturing and storing charge in its gate insulating film, and the driving transistor itself has both functions of writing and reading information and a function exclusively for reading information. Characteristic semiconductor devices.
JP50095591A 1975-08-06 1975-08-06 semiconductor equipment Expired JPS608638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50095591A JPS608638B2 (en) 1975-08-06 1975-08-06 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50095591A JPS608638B2 (en) 1975-08-06 1975-08-06 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5219085A JPS5219085A (en) 1977-01-14
JPS608638B2 true JPS608638B2 (en) 1985-03-04

Family

ID=14141810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50095591A Expired JPS608638B2 (en) 1975-08-06 1975-08-06 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS608638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316495Y2 (en) * 1987-11-30 1991-04-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000407B (en) * 1977-06-27 1982-01-27 Hughes Aircraft Co Volatile/non-volatile logic latch circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316495Y2 (en) * 1987-11-30 1991-04-09

Also Published As

Publication number Publication date
JPS5219085A (en) 1977-01-14

Similar Documents

Publication Publication Date Title
US4233526A (en) Semiconductor memory device having multi-gate transistors
US3836894A (en) Mnos/sos random access memory
US4017888A (en) Non-volatile metal nitride oxide semiconductor device
US5446688A (en) Non-volatile semiconductor memory device
US4336603A (en) Three terminal electrically erasable programmable read only memory
JPS5958695A (en) Permanent type memory
US3846768A (en) Fixed threshold variable threshold storage device for use in a semiconductor storage array
US20090213648A1 (en) Integrated Circuit Comprising a Thyristor and Method of Controlling a Memory Cell Comprising a Thyristor
KR100229961B1 (en) Memory cell arrangement and process for operating it
US4363110A (en) Non-volatile dynamic RAM cell
EP0051672A4 (en) Volatile/non-volatile dynamic ram cell and system.
JPS5811105B2 (en) semiconductor memory
US3838405A (en) Non-volatile diode cross point memory array
US4446535A (en) Non-inverting non-volatile dynamic RAM cell
EP0055803B1 (en) Semiconductor memory
JPS608559B2 (en) Non-volatile semiconductor memory device
KR20020020829A (en) 2T-1C FRAM and operation method thereof
JPS5922359A (en) Integrated semiconductor storage device
JPS608638B2 (en) semiconductor equipment
US3641512A (en) Integrated mnos memory organization
US3908182A (en) Non-volatile memory cell
EP0021777A1 (en) Semiconductor non-volatile memory device
JPS5961072A (en) Nonvolatile semiconductor memory device
JPS6343902B2 (en)
IE52954B1 (en) Control of a signal voltage for a semiconductor device