JPS6086010A - Concentration of nitrogen - Google Patents

Concentration of nitrogen

Info

Publication number
JPS6086010A
JPS6086010A JP58194203A JP19420383A JPS6086010A JP S6086010 A JPS6086010 A JP S6086010A JP 58194203 A JP58194203 A JP 58194203A JP 19420383 A JP19420383 A JP 19420383A JP S6086010 A JPS6086010 A JP S6086010A
Authority
JP
Japan
Prior art keywords
column
gas
nitrogen
pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194203A
Other languages
Japanese (ja)
Other versions
JPH0356769B2 (en
Inventor
Tadao Takebayashi
竹林 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58194203A priority Critical patent/JPS6086010A/en
Publication of JPS6086010A publication Critical patent/JPS6086010A/en
Publication of JPH0356769B2 publication Critical patent/JPH0356769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To prepare high-purity nitrogen with the desired concentration, by introducing a raw material gas containing nitrogen into one of two adsorption columns packed with zeolite so that it has high pressure, with the other at low pressure, communicating both the columns. CONSTITUTION:The two adsorption columns 10 and 20 are packed with zeolite, a raw material gas containing nitrogen is sent from the feed pipe 1 through the valve 13 and the pipe 11 to the column 10, the pressure of which is raised to the desired pressure. Then, the valve 13 is closed, the valve 14 is opened, a treated gas rich in oxygen is exhausted from the pipe 2, and a gas rich in nitrogen is left in the column 10. Meanwhile the column 20 is evacuated and made in vacuum at 50-600 Torr through the pipe 21 and the valve 26 by the vacuum circuit pipe 3. Then, when the column 10 is made at atmospheric pressure, it is communicated through the pipe 12, the valve 15, and the pipe 21 with the column 20. Consequently, oxygen in the column 10 is preferentially transferred to the column 20, and an adsorption gas in the column 10 has nitrogen with high concentration. A nitrogen product with the desired purity is obtained by adjustment of the communication period and the filler.

Description

【発明の詳細な説明】 本発明は、圧力変動吸着法(以下PSAという)によっ
て窒素を含む混合ガスから窒素を分11Il濃縮する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for concentrating nitrogen by 11 Il from a nitrogen-containing mixed gas by pressure swing adsorption (hereinafter referred to as PSA).

PSAは空気中の水分除去、水素の高純度精製、大気中
の酸素濃縮等のガス分離法として多用されている。
PSA is widely used as a gas separation method for removing moisture from the air, purifying hydrogen to high purity, concentrating oxygen from the atmosphere, and the like.

混合ガス中の成分分離を行なうには 1)成分間の吸着選択性の差を利用し、強吸着性成分を
吸着剤側に濃縮し、弱吸儒性成分をガス側に濃縮する。
To separate components in a mixed gas: 1) Utilizing the difference in adsorption selectivity between the components, strongly adsorbing components are concentrated on the adsorbent side, and weakly adsorbing components are concentrated on the gas side.

2)吸着剤側に選択的に捕捉濃縮された強吸着成分を、
吸着剤周囲の圧力を低下せしめ吸着剤より脱離する。
2) Strongly adsorbed components selectively captured and concentrated on the adsorbent side,
The pressure around the adsorbent is reduced and the adsorbent is desorbed.

方法により行なわれており、通常、強吸椙剤を塔又はカ
ラムに充填し固定床方式でガス流通(る。
This is usually done by filling a tower or column with a strong absorbent agent and passing gas through it using a fixed bed method.

原料ガスを吸着塔の一端から過大した場合、他端からは
弱吸着性成分に富むガス流が原料ガスの送入圧力にほぼ
等しい圧力で得られる。
When feed gas is overcharged from one end of the adsorption tower, a gas stream rich in weakly adsorbable components is obtained from the other end at a pressure approximately equal to the feeding pressure of the feed gas.

一方強吸着性成分は吸着圧力より低い圧力に減じられて
回収される。これら各成分の純度は、使用する吸着剤が
示づ吸着選択性に依存し選択性の差が大きい程すぐれた
分離成績、すなわち、高い純度のガスを得ることができ
る。
On the other hand, strongly adsorptive components are recovered after being reduced to a pressure lower than the adsorption pressure. The purity of each of these components depends on the adsorption selectivity exhibited by the adsorbent used, and the larger the difference in selectivity, the better the separation performance, that is, the higher the purity of the gas can be obtained.

要求する製品ガス純度が特に高い場合は、製品ガスの一
部を場内に再送人する工程、いわゆるパージ工程を設け
る。製品ガスが弱吸着性成分である場合はパージ工程は
原料ガス過大の前段階に置かれ、強吸着性成分を製品と
する場合には、一般に製品ガスの回収、すなわち減圧工
程の直前に行なう。いずれの場合もパージに使用した製
品ガスは、もはや製品純度より劣るから、その消@闇は
そのまま製品ロスとなる。
If the required purity of the product gas is particularly high, a so-called purge step is provided in which a portion of the product gas is sent back into the plant. When the product gas is a weakly adsorptive component, the purge step is placed before the raw material gas is excessively supplied, and when the product is a strongly adsorbent component, it is generally performed immediately before the product gas recovery, that is, the depressurization step. In either case, the product gas used for purging is no longer as pure as the product, so its disappearance results in product loss.

高純度製品を得るためには、より多大のパージを要し収
率低下を招くことになる。
In order to obtain a high-purity product, a larger amount of purging is required, resulting in a decrease in yield.

従来技術によって空気か、ら窒素を得る場合、大気圧で
空気を塔に流通したのち、等圧で製品窒素にてパージす
る(持分47−509!16) 、大気)1以上で空気
を送入しひきつづきこの送入をより高い圧力でパージす
る(持分57−42367)などの方法がある。
When obtaining nitrogen from air using conventional technology, air is passed through the tower at atmospheric pressure and then purged with product nitrogen at equal pressure (equity 47-509!16), atmosphere) 1 or more. There are methods such as continuing to purge this feed at higher pressure (share 57-42367).

これらの方法では^純度窒素を得ることができるが、パ
ージに消費される製品ガス量は無視できない量であり充
分に高い収率を得ることがガかしい。
Although these methods can obtain nitrogen with high purity, the amount of product gas consumed in purging is a non-negligible amount, making it difficult to obtain a sufficiently high yield.

本発明では、製品ガス回収率を低減づることなく高純度
の強吸着性成分を得る方法、特に空気などの7累を含む
ガスから窒素ガスを回収する方法を提供するものである
。二種のガスの間の吸着選択性は各成分の吸舛相および
気相への分配割合で計画し、その係数比は選択係数また
は、吸名の比揮発度とよばれ下式で詐出できる。
The present invention provides a method for obtaining a highly pure strongly adsorptive component without reducing the product gas recovery rate, in particular a method for recovering nitrogen gas from a gas containing 7 elements such as air. The adsorption selectivity between two gases is planned by the distribution ratio of each component to the adsorption phase and the gas phase, and the coefficient ratio is called the selectivity coefficient or specific volatility of absorption and is calculated by the following formula. can.

a= ((1+/p+)/(Q2/1)2)ここで a
:選択係数 q;各成分の@W便 p:各成分の分圧 (添字 1:強吸着成分、2:弱@養成分)たとえば、
窒素および酸素のモルデナイト型ゼオライト(吸着剤)
に対するaは、335A型ゼオライトに対するaは 2
8(それぞれ全圧760toor 、25度C)である
。これらの値は全圧によって変動し、5A、型では2に
;/cjGにて23.4にg/l:iGにて20となり
圧力上昇にともないaIIは低下する。
a= ((1+/p+)/(Q2/1)2) where a
: Selectivity coefficient q; @W stool of each component p: Partial pressure of each component (subscript 1: strongly adsorbed component, 2: weakly adsorbed component) For example,
Mordenite-type zeolite (adsorbent) for nitrogen and oxygen
a for 335A type zeolite is 2
8 (total pressure 760 toor, 25 degrees Celsius, respectively). These values vary depending on the total pressure; 2 for 5A type; 23.4 for /cjG; 20 for g/l:iG; aII decreases as pressure increases.

本発明者らは、吸着剤としてのゼオライトの特性を詳細
に研究し、以下の事実を見出すとともに、ひきつづきこ
れらa値の減少を有効に利用し、窒素濃縮を効率的に達
成する為の研究を行ない、すぐれた窒素分離方法を確立
するにいたった。
The present inventors conducted detailed research on the characteristics of zeolite as an adsorbent, discovered the following facts, and continued research to effectively utilize the decrease in the a value to efficiently achieve nitrogen concentration. This led to the establishment of an excellent nitrogen separation method.

前述のモルデナイト、5A等のせオライドの窒素、酸素
の間のatIiは、大気圧下ではより大きくなる傾向を
があり、モルデナイトを例にとると、400【OQrに
て 31.200toorにて 39となる。しかし、
100t00rでは3.2である。
The atIi between nitrogen and oxygen in the theorides such as mordenite and 5A mentioned above tends to become larger under atmospheric pressure; taking mordenite as an example, it is 31 at 400[OQr] and 39 at 200toor. . but,
At 100t00r, it is 3.2.

製品ガス純度を定めるaltlは、原料ガスの送入圧で
はなく、窒素の減圧回収を開始する直前の塔内圧力に依
存する。従って減圧回収をおこなうにあたり、原料ガス
送人後、何んらかの方法で塔内圧力を大気圧以下、望ま
しくは250〜6ootoorの範囲に減圧することが
好ましい。
altl, which determines the product gas purity, depends not on the feeding pressure of the raw material gas but on the internal pressure of the column immediately before starting vacuum recovery of nitrogen. Therefore, in carrying out vacuum recovery, it is preferable to reduce the internal pressure of the tower to below atmospheric pressure, preferably in the range of 250 to 6 ootoor, by some method after feeding the raw material gas.

塔内圧力を減じる簡便な方法は真空ポンプによる吸引排
気である。この方法は塔内圧力の到達レベルを自由に選
定できる利点はあるが、排気中の窒素の損失を避けるこ
とが困難である。製品ガスの減圧回収が終了した塔に原
石送入する場合、予め塔内圧力を上昇させることが、圧
力差によってもたらされる過大なガス移動を避けるうえ
で有効eある。
A simple method for reducing the pressure inside the column is suction and exhaust using a vacuum pump. Although this method has the advantage of being able to freely select the level of pressure within the column to be achieved, it is difficult to avoid loss of nitrogen during exhaust gas. When the raw ore is delivered to the tower after the reduced pressure recovery of the product gas, it is effective to increase the pressure inside the tower in advance in order to avoid excessive gas movement caused by the pressure difference.

以上のことを前回のうえ、本発明者らは場内圧力低減方
法として、真空減圧された塔との連通によるj5内ガス
移送法を設けlこ。lIハ利ガス送入1」ツノが大気圧
より大きい場合、予め塔内圧を大気圧に低減することは
有効であり、大気圧にある塔と、製品回収のすんだ塔と
の連通で塔内の窒素存在割合はきわめて高くなる。
In view of the above, the present inventors have established a method for transferring gas within J5 through communication with a vacuum-depressurized tower as a method for reducing the pressure in the plant. If the pressure in the tower is higher than atmospheric pressure, it is effective to reduce the pressure inside the tower to atmospheric pressure in advance. The nitrogen abundance ratio of is extremely high.

連通時間を長くとることによって二基は均圧となる。均
圧圧力はモルデナイトの場合、約20011Qll[l
である。
By increasing the communication time, the pressure between the two units becomes equal. In the case of mordenite, the equalization pressure is approximately 20011Qll [l
It is.

塔内圧を目標まで低減した後、なお塔内に残留づる微量
の不純物窒素の追い出しと原料送入に先だつ部分昇圧を
兼ねて、製品窒素による圧張りを行なうことにより、製
品純度の向上と、I+I料送入すべき塔における部分昇
圧時間の短縮、圧張り完了時塔内成分組成の制御を行な
うことができる。
After reducing the internal pressure of the column to the target level, pressurization with product nitrogen is performed to drive out trace amounts of impurity nitrogen still remaining in the column and to partially increase the pressure before feeding the raw material. This improves product purity and improves I+I. It is possible to shorten the partial pressurization time in the column to which the feed is to be fed, and to control the composition of the components in the column when the pressure is completed.

以下に本発明の全工程に関し具体的に説明覆る。All steps of the present invention will be explained in detail below.

図−1は本発明の装置の関係をしめす図である。FIG. 1 is a diagram showing the relationship of the apparatus of the present invention.

2基の吸着jM io、20に、ゼオライト、たとえば
モルデナイ1−を充填する。吸着塔はそれぞれ二つのガ
ス出入管11.+2.21.22をもつ、、窒素を含む
原料ガス送入管1から弁13、管11を介し、原料ガス
を10に送入し、所定の圧ツノに昇圧する。ひきつづき
弁13をとじ、弁14をひらき、笛12より弁14、排
気管2を経て処理ガスを排出し塔10を大気圧とする、
このときの排出ガスはlli素にとんでいる。
Two adsorption groups jM io, 20 are filled with a zeolite, for example mordenai 1-. Each adsorption tower has two gas inlet and outlet pipes 11. +2.21.22, the raw material gas is fed from the nitrogen-containing raw material gas feed pipe 1 to 10 via the valve 13 and the pipe 11, and the pressure is increased to a predetermined pressure point. Subsequently, the valve 13 is closed, the valve 14 is opened, and the process gas is discharged from the whistle 12 through the valve 14 and the exhaust pipe 2 to bring the tower 10 to atmospheric pressure.
The exhaust gas at this time reaches the lli element.

一方、吸着塔20は予め管21、弁26を介し、真空回
収管3をつうじ真空減圧され、塔内圧力は50〜60t
00「にして買く。
On the other hand, the adsorption tower 20 is previously vacuum depressurized through the pipe 21, the valve 26, and the vacuum recovery pipe 3, and the pressure inside the tower is 50 to 60 tons.
00" and buy it.

大気圧に到達した塔10、真空減圧された塔20は次に
弁15を介して連通される。このとき他の弁+atべて
とじており、塔10の塔内ガスは管12弁+stg2+
によって塔20へ移送される。連通前のj’iiOの中
のガス組成は窒素に富むものの僅かに@索が残存する。
The column 10 that has reached atmospheric pressure and the column 20 that has been evacuated are then communicated via a valve 15. At this time, all other valves +at are closed, and the gas inside the column 10 is pipe 12 valve +stg2+
is transferred to the tower 20 by. Although the gas composition in j'iiO before communication is rich in nitrogen, a slight amount of @ wire remains.

しかし、j”IOから塔20へ酸素がし先約に移動する
結果、塔10内の吸着ガスおよび吸着剤間の空隙に存在
ブるガスは非常に高濃度の窒素となる。
However, as a result of the forward movement of oxygen from the IO to the column 20, the adsorbed gas in the column 10 and the gas present in the interstices between the adsorbents have a very high concentration of nitrogen.

吸着塔10は連通により大気圧以下に減圧される。The adsorption tower 10 is depressurized to below atmospheric pressure through communication.

塔20は移送ガスで昇圧される。連通を充分長時間つづ
けた場合、塔10と塔20の圧力は等くなる。連通期間
を短縮し、塔10から塔20への移送を中途で停止する
ことも可能であり、連通移送量をどの程度とりるかは充
填した吸着剤の窒素および酸素に対する平衡関係に依存
し、また製品窒素の所望純度に応じて決定づる。
Column 20 is pressurized with transfer gas. If communication is continued for a sufficiently long time, the pressures in columns 10 and 20 will become equal. It is also possible to shorten the communication period and stop the transfer from the column 10 to the column 20 midway through, and the amount of communication transfer to be taken depends on the equilibrium relationship of the packed adsorbent with respect to nitrogen and oxygen. It is also determined depending on the desired purity of the product nitrogen.

特に高純度窒素を製造する場合、塔10および塔20の
圧ツノが等くなるまで連通移送し、ひきつづき弁15を
ひらいた状態で製品窒素帰還@4、弁11を介し管11
より肖よ度窒素ガス、例えば製品窒素を送入する。所定
量を送入する開弁15を経てさらに塔10から塔20ヘ
ガス移送が行なわれるわ製品窒素の塔10への移送と、
これにともなう連通移送をおえた後片15.11がとじ
られ、ひきつづさ塔20は1.23.21を経て原料ガ
ス送入により昇圧される。
Particularly when producing high-purity nitrogen, the towers 10 and 20 are communicated and transferred until the pressure angles become equal, and then the product nitrogen is returned @ 4 through the valve 11 to the pipe 11 with the valve 15 open.
A more suitable nitrogen gas, such as product nitrogen, is introduced. Further gas transfer from the column 10 to the column 20 is carried out through the opening valve 15 for introducing a predetermined amount of nitrogen product.Transfer of the product nitrogen to the column 10;
After completing the communication transfer associated with this, the rear piece 15.11 is closed, and the pressure of the continuation tower 20 is increased by feeding the raw material gas through the passage 1.23.21.

一方塔10内のガスは弁16、管3を経て真空ポンプに
より減圧される。抜き出されたガスは高MIRの製品窒
素ガスである。以下塔10.20の間で交nに一連の工
程をくりかえすことにより、菅3から高純度窒素を得る
ことができる。
On the other hand, the gas in the column 10 passes through the valve 16 and the pipe 3 and is reduced in pressure by a vacuum pump. The extracted gas is a high MIR product nitrogen gas. By repeating the series of steps between the columns 10 and 20, high purity nitrogen can be obtained from the tube 3.

次に実施例で本発明を詳述づる。Next, the present invention will be explained in detail with reference to Examples.

本発明で用いる吸着剤は、通常の結晶性アルミノシリケ
ート、即ち、ゼオライトが好適である。
The adsorbent used in the present invention is preferably a common crystalline aluminosilicate, ie, zeolite.

本発明は、簡便な方法により高収率で高純度窒素を得る
The present invention obtains high purity nitrogen in high yield by a simple method.

実施例 図−1に示t VRWを用いて、モルデナイト型ゼオラ
イトを塔10、塔20に各9kll充填した。1よりボ
ンへ空気を2k(1/ cmG 1’ 13 (りこみ
、まず10をシフ圧した。序で弁13をとじ弁14をひ
らき大気へ解放し大気圧とした。既に50toorに減
)■されているj1320に対し弁15より塔10のガ
スを移送し両塔を均圧とした。到達圧力は一47cmH
q′C−あった。序で、弁15をひらいたまま4.17
を経て11がら製品窒素を336シ送入した。堝10の
圧力が一28clIIHgにたつした後、弁15をとじ
連通を停止した。ついで弁16をひらき管13から塔1
0のガスを引出したどころ、794[のガスを得た。こ
のガスの酸素濃度はO,+Xであった。窒素は収率47
χの好成績で回収された。
Example Using the VRW shown in Figure 1, mordenite type zeolite was packed into towers 10 and 20 in an amount of 9 kll each. Pour 2k of air into the bong from 1 (1/cmG 1' 13) (First, shift pressure of 10 was applied. At the beginning, close valve 13 and open valve 14 to release it to the atmosphere to make atmospheric pressure. Already reduced to 50 toor) The gas in column 10 was transferred from valve 15 to J1320, which equalized the pressure in both columns.The ultimate pressure was -47 cmH.
There was q'C-. 4.17 with valve 15 open.
After 11 hours, 336 hours of product nitrogen was delivered. After the pressure in the basin 10 reached 128 clIIHg, the valve 15 was closed to stop communication. Then, open the valve 16 and connect the pipe 13 to the column 1.
Instead of drawing out 0 gas, 794 gas was obtained. The oxygen concentration of this gas was O,+X. Nitrogen has a yield of 47
It was recovered with good results of χ.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は、本発明を尖にづる装置uの1例で、1゜、2
0は吸@塔1,2□3は、ガス出入口を夫々示づ。 特許出願人 東洋費達工業株式会着
Figure 1 shows an example of the device u for attaching the present invention to the tip.
0 indicates the suction tower 1, 2□3 indicates the gas inlet/outlet, respectively. Patent applicant: Toyo Kaidat Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1 複数の吸着塔を用いる圧力変動吸着:去により、窒
素を含むガス中の窒素を分離・濃縮するにあたり、(1
)原料ガスで第一の塔を昇圧する工程、(2)並流的に
第一塔内ガスを排出し塔内圧を降下させる工程、(3)
第一塔とこれより低い圧力にある第二の吸着塔を連通し
ガスの一部を第一塔から第二基へ移送する工程、(4)
第一塔と第二基との連通を保ちつつ富窒素ガスを第一塔
へ送入し第一塔と第二基の塔内圧力を上昇させる工程、
(5)第一塔と第二基との連通をとめ第一塔のガスを製
品として回収し第二基を原料ガスで昇圧する工程がらな
り、順次これらの工程を繰り返すことを特徴とする方法 2 第一塔と第二基を連通しガスの一部を第一塔から第
二基へ移送する工程の終末期に第一塔の圧を250〜6
ootoorとする特許請求の範囲1 に記載の方法
[Claims] 1. In separating and concentrating nitrogen in a nitrogen-containing gas by pressure fluctuation adsorption using a plurality of adsorption towers, (1
) Step of pressurizing the first column with raw material gas, (2) Step of discharging the gas inside the first column in parallel flow to lower the pressure inside the column, (3)
(4) a step of communicating a first tower and a second adsorption tower at a lower pressure and transferring a part of the gas from the first tower to the second adsorption tower;
A step of supplying nitrogen-rich gas to the first tower while maintaining communication between the first tower and the second tower to increase the pressure inside the first tower and the second tower;
(5) A method characterized by the steps of stopping the communication between the first column and the second column, recovering the gas in the first column as a product, and pressurizing the second column with raw material gas, and repeating these steps in sequence. 2 At the end of the process of communicating the first column and the second unit and transferring a part of the gas from the first column to the second unit, the pressure of the first column is increased to 250 to 6
The method according to claim 1, which is ootoor.
JP58194203A 1983-10-19 1983-10-19 Concentration of nitrogen Granted JPS6086010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194203A JPS6086010A (en) 1983-10-19 1983-10-19 Concentration of nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194203A JPS6086010A (en) 1983-10-19 1983-10-19 Concentration of nitrogen

Publications (2)

Publication Number Publication Date
JPS6086010A true JPS6086010A (en) 1985-05-15
JPH0356769B2 JPH0356769B2 (en) 1991-08-29

Family

ID=16320665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194203A Granted JPS6086010A (en) 1983-10-19 1983-10-19 Concentration of nitrogen

Country Status (1)

Country Link
JP (1) JPS6086010A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155475A (en) * 1974-05-15 1975-12-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155475A (en) * 1974-05-15 1975-12-15

Also Published As

Publication number Publication date
JPH0356769B2 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
EP0085160B1 (en) Improved rpsa process
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
US4070164A (en) Adsorption-desorption pressure swing gas separation
EP0714690B1 (en) Pressure swing adsorption process
EP0579289B1 (en) Separation of gas mixtures
JPH0477681B2 (en)
EP1371407A2 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
GB1559325A (en) Gas separation
EP1101522B1 (en) Pressure swing adsorption process
JPH0244569B2 (en)
GB2055610A (en) Adsorptive separation of gas containing nitrogen and oxygen
JPH0321207B2 (en)
GB2335378A (en) Two stage pressure swing adsorption
JPS6238014B2 (en)
US4848985A (en) Separation of gas mixtures
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JPS6086010A (en) Concentration of nitrogen
EP0314040B1 (en) Method for removing carbon dioxide gas and moisture in a city gas production
JPH04227018A (en) Manufacture of inert gas of high purity
JPS6238281B2 (en)
JP3889125B2 (en) Gas separation method
GB2161717A (en) Improved apparatus for the separation of a gaseous mixture
JPS62247818A (en) Psa multicomponent separation utilizing equalizing tank pressure
GB2195097A (en) Separation of gas mixtures by pressure swing adsorption
JPH0994424A (en) Gaseous mixture separator