JPS6084462A - Line pressure control system in infinitely variable transmission for vehicle - Google Patents
Line pressure control system in infinitely variable transmission for vehicleInfo
- Publication number
- JPS6084462A JPS6084462A JP58192582A JP19258283A JPS6084462A JP S6084462 A JPS6084462 A JP S6084462A JP 58192582 A JP58192582 A JP 58192582A JP 19258283 A JP19258283 A JP 19258283A JP S6084462 A JPS6084462 A JP S6084462A
- Authority
- JP
- Japan
- Prior art keywords
- line pressure
- engine
- belt
- controlled
- engine torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims description 7
- 239000000446 fuel Substances 0.000 claims abstract description 36
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 abstract 2
- 238000006731 degradation reaction Methods 0.000 abstract 2
- 238000004904 shortening Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/101—Infinitely variable gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/1819—Propulsion control with control means using analogue circuits, relays or mechanical links
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
- F16H61/66254—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
- F16H61/66259—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、車両の1力伝達装置として用いられる無段変
速機(以下[CVT Jと言う。)のライン圧制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a line pressure control device for a continuously variable transmission (hereinafter referred to as CVT J) used as a single force transmission device for a vehicle.
背景技術
CVTは、速度比e(=出力側回転速度N0uL /入
力側口リム速度N1n)を連続的に制御することができ
、機関を良好な燃料消費2!J率で運転することができ
る1力伝達装置として用いられる。BACKGROUND TECHNOLOGY CVT can continuously control the speed ratio e (=output side rotational speed N0uL/input side rim speed N1n), and maintains the engine with good fuel consumption2! It is used as a single force transmission device that can be operated at J rate.
ベルト式CVTでは機関動力が入力側プーリから1上刃
側プ−リヘベルトを介して伝達され、入力1ijlプー
リおよび出力側プーリの一力によるベルトの押圧力、通
常は出力側プーリによるベルトυ押圧力がライン圧によ
り制御される。ラインH二は、ベルトのン骨りを回避し
つつオイルポンプの駆1m1ilii失を回避すること
ができる値に制御されることが週明であり、ライン圧制
御装置では、スロワ1−ル開度Oと機関回転速度Neと
の関数として機関トルクTeをめ、機関1−ルクTeに
関係してライン圧Plを制御している。しかし、111
両が高地を走行している場合は、空気密度が低下するの
で、同一のスロットル開度θでも、平地の場合に比べて
機関トルクTeが低下する。In a belt type CVT, engine power is transmitted from the input pulley to the 1st upper blade pulley via the belt, and the belt pushing force is generated by the single force of the input 1ijl pulley and the output pulley, and usually the belt υ pushing force by the output pulley. is controlled by line pressure. It is clear that line H2 is controlled to a value that can avoid belt strain and oil pump loss of drive. The engine torque Te is determined as a function of O and the engine rotational speed Ne, and the line pressure Pl is controlled in relation to the engine l-lux Te. However, 111
When both vehicles are traveling on high ground, the air density decreases, so even with the same throttle opening θ, the engine torque Te decreases compared to when the vehicle is on flat ground.
従来のライン圧制御装置では気圧に関係したライン圧P
lの補正が行なわれず、機関トルクTeは平地の場合を
想定して算出されているので、高地における車両の運転
の場合にはライン圧が実際の機関トルクTeに応じた適
切な値より大きくなり、ベルトの押圧力が過大になって
いる。In conventional line pressure control devices, line pressure P related to atmospheric pressure
Since l is not corrected and the engine torque Te is calculated assuming the case on flat ground, when driving the vehicle at high altitudes, the line pressure may be higher than the appropriate value according to the actual engine torque Te. , The pressing force of the belt is excessive.
これは、ベルトの摩擦を増大させて燃料消費力4Sを悪
化させるとともに、ベルト等の部品の寿命を短くする原
因となる。This increases belt friction, worsens fuel consumption 4S, and shortens the life of parts such as the belt.
発明の開示
本発明の目的は、車両の走行する高度に関係なくライン
圧を適切な値に制御することができるCVTの制御方法
を提供することである。DISCLOSURE OF THE INVENTION An object of the present invention is to provide a CVT control method that can control line pressure to an appropriate value regardless of the altitude at which a vehicle travels.
この目的を達成するために本発明のCVTのライン圧制
御装置は、ライン圧1)lを気圧に関係して制御する制
御手段を備える。To achieve this object, the CVT line pressure control device of the present invention comprises control means for controlling the line pressure 1) l in relation to atmospheric pressure.
したがって車両が平地から高地へ移った場合に、ライン
圧Plが実際の機関トルクTeに対応した値よりも過大
となってベルトの過大な押圧力が生しるのが回避され、
燃料消費効率の悪化およびベルト等の部品の寿命の低下
を防止することができる。Therefore, when the vehicle moves from flat ground to high ground, it is avoided that the line pressure Pl becomes excessively large compared to the value corresponding to the actual engine torque Te, causing an excessive pressing force on the belt.
Deterioration of fuel consumption efficiency and reduction in the life of parts such as belts can be prevented.
機関の空燃比フィードバック制御期間では、機関負荷、
例えばQ/Ne(ただしQは吸入空気流潰、Neは機関
回転速度である。)からめた基本燃料噴射量を排気系の
酸素センサからのフィードバック信号に関係して補正し
ている。また、暖機中等の空燃比のオープンループ制御
期間における空燃比を適切値にするために、フィードバ
ック制御1g1間におけるフィードバック信号に因る燃
料補正HAを学習値とし、次のオープンループ制御期間
では燃料噴射量を学習値に基づいて補正している。車両
の高度が上昇して空気密度が低下する稈、燃料噴II+
r mを補正して混合気の空燃比を理論空燃比に維持す
′るためのフィードバック補正量は増大するので、気圧
とフィードバック補正量とは互いに関数関係にある。本
発明の好ましい実施態様では、フィードバック補正11
1、シたがって学習値に関係してライン圧Plを制御す
る。学習値を利用するので、大気圧センサを省略するこ
とができる。During the engine air-fuel ratio feedback control period, the engine load,
For example, the basic fuel injection amount calculated from Q/Ne (where Q is the intake air flow collapse and Ne is the engine rotational speed) is corrected in relation to the feedback signal from the oxygen sensor in the exhaust system. In addition, in order to set the air-fuel ratio to an appropriate value during the air-fuel ratio open-loop control period such as during warm-up, the fuel correction HA based on the feedback signal during feedback control 1g1 is set as a learning value, and in the next open-loop control period, the fuel The injection amount is corrected based on the learned value. Culm, fuel injection II+ where the air density decreases as the vehicle altitude increases
Since the feedback correction amount for correcting r m and maintaining the air-fuel ratio of the air-fuel mixture at the stoichiometric air-fuel ratio increases, the atmospheric pressure and the feedback correction amount have a functional relationship with each other. In a preferred embodiment of the invention, the feedback correction 11
1. Therefore, the line pressure Pl is controlled in relation to the learned value. Since a learned value is used, an atmospheric pressure sensor can be omitted.
さらに本発明の好ましい実施態様によれば、平地、すな
オ〕ち基酩の気圧における機関トルクを坂本値とし、こ
の基本値をスロットル開度0と機関回転速度Neとから
算出し、Φ出した基本値とフィードバック補正’nk、
シたがってI″ff習値ら機関トルクを算出し、この機
関トルクに関係してライン圧を制御する。Furthermore, according to a preferred embodiment of the present invention, the engine torque at a flat ground, that is, the standard atmospheric pressure, is taken as the Sakamoto value, and this basic value is calculated from the throttle opening degree 0 and the engine rotational speed Ne, and the Φ output Basic value and feedback correction 'nk,
Therefore, the engine torque is calculated from the I″ff learning value, and the line pressure is controlled in relation to this engine torque.
実施例 図面を参照して本発明の詳細な説明する。Example The present invention will be described in detail with reference to the drawings.
第1図においてCVTIOは互いに平行な入力軸12お
よび出力軸14を備えている。入力軸12は、機関16
のクランク軸18に対して同軸的に設けられ、クラッチ
20を介してクランク軸18に接続される。入力側プー
リ22a、 22bは互いに対向的に設けられ、一方の
入力側プーリ22aは可動プーリとして軸線方向へ移動
可能に、回転方向へ固定的に、入力軸12に設けられ、
他方の入力側プーリ22bは固定プーリとして入力軸1
2に固定されている。同様に出力側プーリ24a。In FIG. 1, the CVTIO has an input shaft 12 and an output shaft 14 that are parallel to each other. The input shaft 12 is connected to the engine 16
The crankshaft 18 is provided coaxially with the crankshaft 18 , and is connected to the crankshaft 18 via a clutch 20 . The input pulleys 22a and 22b are provided opposite to each other, and one of the input pulleys 22a is provided as a movable pulley on the input shaft 12 so as to be movable in the axial direction and fixed in the rotational direction.
The other input side pulley 22b is a fixed pulley that connects the input shaft 1.
It is fixed at 2. Similarly, the output side pulley 24a.
24bも互いに対向的に設けられ、一方の出力側プーリ
248は固定プーリとして出力軸I4に固定され、他方
の出力側プーリ24bは可動プーリとして軸線方向へ移
動可能に、回転方向へ固定的に、出力軸14に設けられ
ている。入力側プーリ22a、22I〕および出力側プ
ーリ24a、24bの対向面はテーパ状に形成され、等
脚台形断面のベルト26が入力側プーリ22a 、 2
2bと出力側プーリ24a、24bとの間に掛けられて
いる。オイルポンプ28は/dlだめ30のオイルを調
圧弁32へ送る。調用弁32は、電磁リリーフ弁から成
り、ドレン34へのオイルの逃がしt4↓を変化させる
ことにより油路36のライン圧を制御し、油路36のラ
イン圧は出力側プーリ241+の油圧シリンダおよび流
量制御弁38へ送られる。流h↓制御弁38は、入力側
プーリ22aの油圧シリンダへ法統されている油路40
への油路36からのオイルの供給流量、および油路40
からドレン34へのオイルの4Vl出流iuを制御する
。ベルト26に対する入力側プーリ22a、22bおよ
び出力側プーリ24a、24bの押圧力は入力側油圧シ
リンダおよび出力側油圧シリンダの油圧により制御され
、この押圧力に関係して入力側プーリ22a、22bお
よび出力側プーリ24a、24bのテーパ面上のベルト
26の掛かり半径が変化し、この結果、CV’l’IO
の速度比e (=: Nouj/ Nin 、ただしN
outは出力軸14の回りに速度、Ninは入力軸12
の回転速度であり、この実施例ではNin−機関口伝速
度Ncである。)が変化する。出力側油圧シリンダのラ
イン圧は、オイルポンプ28の駆動損失を抑制するため
に、ベルト26の滑りを回避して1力伝達を確保できる
必要最小限の値に制御され、入力側油圧シリンダの油圧
により速度比eが制御される。なお入力側油圧シリンダ
の油圧≦出力側411圧シリンダの油圧であるが、入力
側油圧シリンダの受圧面積〉出力側油圧シリンダの受圧
面積であるので、入力側プーリ22a。24b are also provided opposite to each other, one output side pulley 248 is fixed to the output shaft I4 as a fixed pulley, and the other output side pulley 24b is a movable pulley, movable in the axial direction and fixed in the rotational direction. It is provided on the output shaft 14. The opposing surfaces of the input pulleys 22a, 22I] and the output pulleys 24a, 24b are formed in a tapered shape, and the belt 26 with an isosceles trapezoid cross section is attached to the input pulleys 22a, 22I.
2b and the output pulleys 24a, 24b. The oil pump 28 sends oil from the /dl reservoir 30 to the pressure regulating valve 32. The regulating valve 32 is composed of an electromagnetic relief valve, and controls the line pressure of the oil passage 36 by changing the oil release t4↓ to the drain 34, and the line pressure of the oil passage 36 is controlled by the hydraulic cylinder of the output side pulley 241+ and It is sent to the flow control valve 38. Flow h↓The control valve 38 is connected to an oil passage 40 that is regulated to the hydraulic cylinder of the input pulley 22a.
The supply flow rate of oil from the oil passage 36 to the oil passage 40
The 4Vl outflow iu of oil from the drain 34 to the drain 34 is controlled. The pressing force of the input pulleys 22a, 22b and the output pulleys 24a, 24b with respect to the belt 26 is controlled by the hydraulic pressure of the input hydraulic cylinder and the output hydraulic cylinder, and the input pulleys 22a, 22b and the output pulley are controlled in relation to this pressing force. The radius of engagement of the belt 26 on the tapered surfaces of the side pulleys 24a, 24b changes, and as a result, CV'l'IO
Speed ratio e (=: Nouj/Nin, where N
out is the speed around the output shaft 14, Nin is the input shaft 12
In this embodiment, it is Nin - engine mouth transmission speed Nc. ) changes. In order to suppress the drive loss of the oil pump 28, the line pressure of the output side hydraulic cylinder is controlled to the minimum necessary value that can avoid belt 26 slippage and ensure single force transmission, and the line pressure of the input side hydraulic cylinder is The speed ratio e is controlled by Note that the hydraulic pressure of the input side hydraulic cylinder ≦ the hydraulic pressure of the output side 411-pressure cylinder, but since the pressure receiving area of the input side hydraulic cylinder>the pressure receiving area of the output side hydraulic cylinder, the input side pulley 22a.
22bの押圧力を出力側プーリ24a、24bの抑圧力
より大きくすることができる。入力側回転角センサ42
および出力側回転角センサ44はそれぞれ入力軸12お
よび出力軸重4の回転速度Nln+Noutを検出し、
水温センサ46は機関16の冷却水温度を検出する。運
転席48には加速ペダル50が設けられ、吸気通路のス
ロットル弁は加速ペダル50に連動し、スロットル開度
センサ52はスロットル開度Oを検出する。シフ1〜位
置上位置54は運転席近傍にあるシフトレバ−のシフ1
−レンジを検出する。The pressing force of the output pulleys 22b can be made larger than the suppressing forces of the output pulleys 24a and 24b. Input side rotation angle sensor 42
and the output side rotation angle sensor 44 detects the rotation speed Nln+Nout of the input shaft 12 and the output shaft load 4, respectively,
Water temperature sensor 46 detects the temperature of the cooling water of engine 16. An accelerator pedal 50 is provided in the driver's seat 48, a throttle valve in the intake passage is interlocked with the accelerator pedal 50, and a throttle opening sensor 52 detects the throttle opening O. Shift 1 to upper position 54 is the shift lever located near the driver's seat.
-Detect range.
第2図は電子制御製画のブロック図である。FIG. 2 is a block diagram of electronically controlled drawing.
アドレスデータバス56はCPU 58. RAM 6
0.ROM62、 I/I: (インタフェース) 6
4. A/D (アナbグ/デジタル変換器)66、お
よびl)/A (デジタル/アナロタ変換器)68を相
互にJl続している。The address data bus 56 is connected to the CPU 58. RAM 6
0. ROM62, I/I: (interface) 6
4. An A/D (analog/digital converter) 66 and an A/A (digital/analog converter) 68 are connected to each other.
1/F 64は、入力側回転角センサ42、出力側回転
角センサ44、およびシフト位1gセンサ54がらのパ
ルス信号を受け、A/D66は、水幅センサ46、スロ
ットル開度センサ52.4R+気系に設けられて排気中
の酸素湿度を検IJjする酸素濃度センサ70、および
吸気通路に設けられて吸入空気流量を検出するエアフロ
ーメータ72からのアナログ信号を受け、D/A68は
調圧弁32および流量制御弁38へパルス信号を出方す
る。1/F 64 receives pulse signals from input side rotation angle sensor 42, output side rotation angle sensor 44, and shift position 1g sensor 54, and A/D 66 receives pulse signals from input side rotation angle sensor 42, output side rotation angle sensor 44, and shift position 1g sensor 54. The D/A 68 receives analog signals from the oxygen concentration sensor 70 that is installed in the gas system and detects the oxygen humidity in the exhaust gas, and the air flow meter 72 that is installed in the intake passage and detects the intake air flow rate. and outputs a pulse signal to the flow rate control valve 38.
第3図は空燃比制御の学習値算出ルーチンのフローチャ
ートである。このルーチンは、暖機後の定常時における
空燃比のフィードバック制御101間に行なわれる。ス
テップ70では吸入空気流ff1Qを検出する。ステッ
プ78ではQと所定値Q]、Q2 (ただしQl<02
)とを比較し、Ql≦Q≦02であれば、すなわち学習
値の算出に適した領域であればステップ8oへ進み、そ
の他の領域であればルーチンを終了する。ステップ8゜
では燃料咄射量のフィードバック補正係数Kfと所定値
Klとを比較し、Kf≧Klであればステップ82へ進
み、Kf<旧であればルーチンを終了する。フィードバ
ック制aKA間における燃料噴射弁からの1回の燃料噴
射量たりの燃料噴射jltQfは例えば次式から計算さ
れる。FIG. 3 is a flowchart of a learned value calculation routine for air-fuel ratio control. This routine is performed during air-fuel ratio feedback control 101 in a steady state after warm-up. In step 70, the intake air flow ff1Q is detected. In step 78, Q and the predetermined value Q], Q2 (however, Ql<02
), and if Ql≦Q≦02, that is, if the area is suitable for calculating the learned value, the process proceeds to step 8o, and if the area is other than that, the routine ends. In step 8°, the feedback correction coefficient Kf of the fuel injection amount is compared with a predetermined value Kl, and if Kf≧Kl, the process proceeds to step 82, and if Kf<old, the routine ends. The fuel injection jltQf per one fuel injection amount from the fuel injection valve during the feedback control aKA is calculated, for example, from the following equation.
q+ =(++Kt)・qb ・・・(])ただしQl
+はQ/Neから算出される基本燃籾噴射量であり、K
f・Qbは燃料噴射量のフィードバック補正量である。q+ = (++Kt)・qb ... (]) However, Ql
+ is the basic fuel injection amount calculated from Q/Ne, and K
f·Qb is a feedback correction amount of the fuel injection amount.
Kf<KIであれば、燃料噴射量のフィードバック補正
量がわずかであるので、特に学習値を検出しない。ステ
ップ82では学習値KgにKfを代入する。空燃比のオ
ーブンループ制御エリ1間では燃料噴射弁からの1回の
燃料噴射量たりの燃料噴射量Qfは例えば次式から割算
される。If Kf<KI, the feedback correction amount of the fuel injection amount is small, so no learning value is detected. In step 82, Kf is substituted for the learned value Kg. During oven loop control area 1 of the air-fuel ratio, the fuel injection amount Qf per one fuel injection amount from the fuel injection valve is divided, for example, from the following equation.
Qf =(1十Kg −1−Kx )・gb ・・・
(2)ただしl(xは冷却水湿度等の他のパラメータか
ら算出される補正係数である。Qf = (10Kg -1-Kx)・gb...
(2) However, l(x is a correction coefficient calculated from other parameters such as cooling water humidity.
(1)式において基本燃′B噴射1r↓Qbは空気密ノ
艮に独Mであるので、気圧がイル下して全気密度が低下
するにもかかわらす空燃比を理論空燃比に維持するため
には最終的な燃刺噴射槍Qfを減少させなければならず
、したがってKf、Kgは減少する。第4図は学習値K
gと気圧Paとの関係を示している。学習値Kgは気圧
Paが低下するに連れて低下し、学習値Kgと気圧Pa
とは相互に関数関係にあることが分かる。In equation (1), the basic fuel injection 1r↓Qb is M for airtightness, so the air-fuel ratio is maintained at the stoichiometric air-fuel ratio even though the air pressure drops and the total airtight density decreases. In order to achieve this, the final fuel injection spear Qf must be reduced, and therefore Kf and Kg are reduced. Figure 4 shows the learning value K
It shows the relationship between g and atmospheric pressure Pa. The learned value Kg decreases as the atmospheric pressure Pa decreases, and the learned value Kg and the atmospheric pressure Pa
It can be seen that there is a mutual functional relationship.
第5図は本発明の機能ブロック図である。目標深間回転
速度算出手段86は機関の目標機関回転速度Ne’を算
出する。第6図は定常時におけるスロットル開度Oと目
標機関回転速度Ne’との関係を示している。スロワ1
−ル開度0の関数として機関の要求出力馬力を設定し、
各要求出力馬力を最小燃料消費率(単位+ g/psh
)で生しることができる機関回転速度Ncを]コ標機
関回転速度Ne’として設定している。流量制御弁用制
作1電圧算出手段88は、目標機関回転速度速度Ne’
、CVTIOの入力側回転速度N1n(−=Ji%関回
転速度Nc)、および出力側口I駅速度Nout(c/
−重速V)から流量制御弁38の制御電圧fを算出する
。詳細に説明すると、目5標速度比e′をe’==No
ut/Ne’から算出し、実際の速度比eをe=Nou
t/Ninから算出し、目標速度比e′と実際の速度比
eとの偏差Δe=e’−eに基づいて制御電圧fを変更
する。こうしてCVTIOの速度比eの制御1を介して
機関回転速度Neがフィードバック制御される。基本機
関トルク算出手段9oは、スロワ1ヘル開度0と機関回
転速度Neとから機関トルクの基本値Tbを算出する。FIG. 5 is a functional block diagram of the present invention. The target deep rotational speed calculation means 86 calculates the target engine rotational speed Ne' of the engine. FIG. 6 shows the relationship between the throttle opening degree O and the target engine rotational speed Ne' in steady state. Thrower 1
- Set the required output horsepower of the engine as a function of the opening degree of 0,
Each required output horsepower is calculated by the minimum fuel consumption rate (unit + g/psh
) is set as the engine rotation speed Ne'. The flow rate control valve production 1 voltage calculation means 88 calculates the target engine rotational speed Ne'
, CVTIO input side rotation speed N1n (-=Ji% rotation speed Nc), and output side exit I station speed Nout (c/
- Calculate the control voltage f of the flow rate control valve 38 from the heavy speed V). To explain in detail, the target speed ratio e' is set to e'==No
Calculate from ut/Ne' and calculate the actual speed ratio e as e=Nou
It is calculated from t/Nin, and the control voltage f is changed based on the deviation Δe=e'-e between the target speed ratio e' and the actual speed ratio e. In this way, the engine rotational speed Ne is feedback-controlled through the control 1 of the speed ratio e of the CVTIO. The basic engine torque calculating means 9o calculates the basic value Tb of the engine torque from the thrower 1 hell opening degree 0 and the engine rotational speed Ne.
第7図は機関回転速度Neおよびスロットル開度0と機
関トルクの基本値Tbとの関係を示している。基本値T
bは平地の原車気圧においてスロットル開度0に対応す
る機関1−ルクとして設定されている。車両の走行高度
の上昇に伴って空気密度が低下すると、同一のスロット
ル開度における機関トルクが低下する。学習値算出手段
92は第3図のフローチャートに従って学習値l(gを
算出する。トルク補正係数算出手段94は学習値Kgか
ら補正係数Ktを算出する。第8図は気圧Paと補正係
数Ktの関係を示している。気圧Paは学習値Kgの関
数F (K g)としてめることができ、したがってト
ルク補正係数Ktを学習(11′L1(gの関数として
算出することができる。磯関I−ルク算出手段96は機
関トルク゛I’cをTe=Kt・1bの弐から算出する
。調圧弁用制御電圧算出手段98は調圧弁32の制御電
圧gをre−Nin/N o u tの関数として計算
する。第9図は調圧弁′32の制御電圧gとライン圧1
)lとの関係を示している。こうして学習値Kgの関数
として算出された機関トルクTeに関係してライン圧1
〕lが制御され、気圧の低下にもかかわらずベルト26
の抑圧力が過大となることが防止され、これによりg8
打消費効率の悪化およびベル1へ26のか命低下等の不
具合が防止される。FIG. 7 shows the relationship between the engine rotational speed Ne, the throttle opening degree 0, and the basic value Tb of the engine torque. Basic value T
b is set as engine 1-lux corresponding to a throttle opening of 0 at the original car pressure on a flat ground. When the air density decreases as the vehicle travel altitude increases, the engine torque at the same throttle opening decreases. The learning value calculation means 92 calculates the learning value l(g) according to the flowchart in FIG. 3. The torque correction coefficient calculation means 94 calculates the correction coefficient Kt from the learning value Kg. FIG. The relationship is shown. The atmospheric pressure Pa can be calculated as a function F (K g) of the learning value Kg, and therefore the torque correction coefficient Kt can be calculated as a function of learning (11'L1 (g). The I-luke calculating means 96 calculates the engine torque I'c from Te=Kt・1b. The pressure regulating valve control voltage calculating means 98 calculates the control voltage g of the pressure regulating valve 32 from re-Nin/Nout. It is calculated as a function. Figure 9 shows the control voltage g of the pressure regulating valve '32 and the line pressure 1.
) shows the relationship with l. In relation to the engine torque Te calculated as a function of the learned value Kg, the line pressure 1
] l is controlled, and the belt 26
This prevents the suppressing force of g8 from becoming excessive.
Problems such as deterioration of batting consumption efficiency and loss of life of Bell 1 to 26 are prevented.
第1図は本発明が適用されるcv’rの全体の概略図、
第2図は電子制御装置1Hのブロック図、第3図は空燃
比制御の学習値「1Φルーチンのフローチャート、第4
図は学習値と気圧との関係を示すグラフ、第5図は本発
明の機能ブロック図、第6図は定常時におけるスロット
ル開度と目標機関回転速度との関係を示すグラフ、第7
図は機関トルクの基本値と機関回転速度およびスロワ1
−ルrフ11度との関係を示すグラフ、第8図は気圧と
トルク補正係数との関係を示すグラフ、第9図は調圧弁
用制御電圧とライン圧との関係を示すグラフである。
10 ・−CVT 、 22a、22b −入力端プー
リ、24a、24b・・・出力側プーリ、26・・・ベ
ルト、32・・・調圧弁、92・・・学習値算出手段、
94・・・1−ルク補正係数算出手段、96・・・機関
トルク算出手段。
第1図
10
て zi+a 乙叶υ
第2図
第3図
学習値に9
第6図
スロットル開度θ
第7図
機関回転速度NeFIG. 1 is a schematic diagram of the entire cv'r to which the present invention is applied;
Fig. 2 is a block diagram of the electronic control unit 1H, Fig. 3 is a flowchart of the learned value "1Φ routine" for air-fuel ratio control, and Fig.
Figure 5 is a graph showing the relationship between learned value and atmospheric pressure, Figure 5 is a functional block diagram of the present invention, Figure 6 is a graph showing the relationship between throttle opening and target engine speed in steady state, and Figure 7
The figure shows the basic value of engine torque, engine rotation speed, and thrower 1.
FIG. 8 is a graph showing the relationship between atmospheric pressure and torque correction coefficient, and FIG. 9 is a graph showing the relationship between pressure regulating valve control voltage and line pressure. 10 - CVT, 22a, 22b - input end pulley, 24a, 24b... output side pulley, 26... belt, 32... pressure regulating valve, 92... learning value calculation means,
94...1-Luke correction coefficient calculation means, 96... Engine torque calculation means. Fig. 1 10 te zi+a Otokan υ Fig. 2 Fig. 3 Learned value 9 Fig. 6 Throttle opening θ Fig. 7 Engine rotation speed Ne
Claims (1)
を介して伝達し、入力側ブーりおよ 3び出力側プーリ
の一方によるベルトの押圧力がライン圧により制御され
るdi両用jl(段■速磯のライン圧制御装置において
、ライン圧を気圧に関係して制御する制御手段を(if
+えていることを特徴とする、車両用無段変速機のライ
ン圧制御装置に?。 2 機関の空燃比フィードバック制御期間における燃料
噴射用のフィードバック補正iIiを検出し、気圧と相
互に関数関係にあるこのフィードバック補正量に関係し
てライン圧を制御することを特徴とする特許請求の範囲
第1項記載のライン圧制御装置。 3 基準の気圧における機関トルクを基本値とし、この
基本値をスロツl−ル開度と機関回転速度とから算出し
、算出した基本値と前記フィードバック補正量とがら機
関1−ルクを算出し、この機関トルクに関係してライン
圧を制御することを特徴とする特許請求の範囲第2項記
載のライン圧制御装置。[Scope of Claims] 1) A dual-use engine in which engine power is transmitted from the input pulley to the output pulley via a belt, and the belt pressing force by either the input pulley or the output pulley is controlled by line pressure. (If
For line pressure control devices for continuously variable transmissions for vehicles, which are characterized by . 2. Claims characterized in that the feedback correction ii for fuel injection during the air-fuel ratio feedback control period of the engine is detected, and the line pressure is controlled in relation to this feedback correction amount that has a mutual functional relationship with the atmospheric pressure. The line pressure control device according to item 1. 3 Taking the engine torque at the standard atmospheric pressure as the basic value, calculate this basic value from the throttle opening and the engine rotational speed, calculate the engine torque using the calculated basic value and the feedback correction amount, and calculate this basic value. 3. The line pressure control device according to claim 2, wherein the line pressure is controlled in relation to engine torque.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58192582A JPS6084462A (en) | 1983-10-17 | 1983-10-17 | Line pressure control system in infinitely variable transmission for vehicle |
US06/654,025 US4642068A (en) | 1983-09-28 | 1984-09-25 | Apparatus for controlling continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58192582A JPS6084462A (en) | 1983-10-17 | 1983-10-17 | Line pressure control system in infinitely variable transmission for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6084462A true JPS6084462A (en) | 1985-05-13 |
Family
ID=16293677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58192582A Pending JPS6084462A (en) | 1983-09-28 | 1983-10-17 | Line pressure control system in infinitely variable transmission for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6084462A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624645A (en) * | 1985-06-29 | 1987-01-10 | Fuji Heavy Ind Ltd | Hydraulic pressure control device of continuously variable speed change gear |
JPH03121350A (en) * | 1989-09-30 | 1991-05-23 | Suzuki Motor Corp | Control device for continuously variable transmission |
-
1983
- 1983-10-17 JP JP58192582A patent/JPS6084462A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624645A (en) * | 1985-06-29 | 1987-01-10 | Fuji Heavy Ind Ltd | Hydraulic pressure control device of continuously variable speed change gear |
JPH0548381B2 (en) * | 1985-06-29 | 1993-07-21 | Fuji Heavy Ind Ltd | |
JPH03121350A (en) * | 1989-09-30 | 1991-05-23 | Suzuki Motor Corp | Control device for continuously variable transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0559342B1 (en) | A method and an apparatus for controlling a car equipped with an automatic transmission having a lockup clutch | |
US5136495A (en) | Speed ratio control system and method for a continuously variable transmission for a vehicle | |
US6181020B1 (en) | Integrated driving torque control system for automotive vehicles with continuously variable automatic transmission | |
JPS59217048A (en) | Control of stepless speed change gear for car | |
US4771656A (en) | Cruise control method and apparatus for a vehicle with a continuously variable transmission | |
JPH07277038A (en) | Vehicle control device | |
JPH07102791B2 (en) | Control device for continuously variable transmission for vehicle | |
JPS60256662A (en) | Stepless speed change gear controlling device for car | |
US6533702B1 (en) | Shift control system of hydraulic continuously variable transmission for vehicle | |
US4880094A (en) | Control system for a clutch for a vehicle | |
JP4161120B2 (en) | Method and apparatus for controlling continuously variable transmission | |
KR930004583B1 (en) | Continuous speed variable transmission control apparatus | |
US4642068A (en) | Apparatus for controlling continuously variable transmission | |
US6368247B1 (en) | Speed ratio control system for continuously variable transmission | |
JPS6084462A (en) | Line pressure control system in infinitely variable transmission for vehicle | |
JPS62299442A (en) | Control device for automatic clutch for vehicle | |
JPS632745A (en) | Continously variable transmission control vehicle | |
JPS60111029A (en) | Automobile's power controller | |
JP4735668B2 (en) | Vehicle control device | |
JP3427736B2 (en) | Transmission control device for continuously variable transmission | |
JPS58193961A (en) | Automatic transmission for automobile | |
JPS59217050A (en) | Control of stepless speed change gear for vehicle | |
JPH0450440A (en) | Engine control method for vehicle equipped with cvt system | |
JPS60164056A (en) | Control device of continuously variable transmission for vehicle | |
JPH09269024A (en) | Clutch controller for continuously variable transmission |