JPS608436Y2 - combustion device - Google Patents

combustion device

Info

Publication number
JPS608436Y2
JPS608436Y2 JP4875280U JP4875280U JPS608436Y2 JP S608436 Y2 JPS608436 Y2 JP S608436Y2 JP 4875280 U JP4875280 U JP 4875280U JP 4875280 U JP4875280 U JP 4875280U JP S608436 Y2 JPS608436 Y2 JP S608436Y2
Authority
JP
Japan
Prior art keywords
thermoelectric elements
thermoelectric element
burner
thermoelectric
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4875280U
Other languages
Japanese (ja)
Other versions
JPS56154068U (en
Inventor
隆 中島
誠 鈴木
Original Assignee
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーディーケイ株式会社 filed Critical ティーディーケイ株式会社
Priority to JP4875280U priority Critical patent/JPS608436Y2/en
Publication of JPS56154068U publication Critical patent/JPS56154068U/ja
Application granted granted Critical
Publication of JPS608436Y2 publication Critical patent/JPS608436Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)

Description

【考案の詳細な説明】 本考案は、熱電素子を集熱器に利用しかつ熱電素子の熱
起電力で発電を行うことが可能な燃焼装置に関する。
[Detailed Description of the Invention] The present invention relates to a combustion device that uses a thermoelectric element as a heat collector and is capable of generating electric power with the thermoelectromotive force of the thermoelectric element.

最近、暖房装置や湯沸器等において、ガスバーナーで空
気や水の加熱を行うだけでなく熱電素子を用いて熱の一
部を回収して暖気の強制吹出、排気の強制排出等を行う
送風機の電源として利用することが本出願人によって考
慮されている。
Recently, air blowers have been introduced in heating systems, water heaters, etc. that not only heat air and water using gas burners, but also recover some of the heat using thermoelectric elements to forcefully blow out warm air and forcefully discharge exhaust gas. The applicant is considering using it as a power source.

この場合、熱電素子1個当りの熱起電力は送風機を駆動
するには充分でないため、通常複数の熱電素子をガスバ
ーナーで加熱される位置に配列し、電気的に並列又は直
列に接続して必要とする電力を得ることが考えられてい
る。
In this case, the thermoelectromotive force per thermoelectric element is not sufficient to drive the blower, so multiple thermoelectric elements are usually arranged in the position heated by the gas burner and electrically connected in parallel or series. The idea is to get the power you need.

本考案は、複数の熱電素子をバーナー加熱位置に配列す
る場合において、最も効率よく集熱及び発電を行うこと
が可能なように熱電素子を配列した燃焼装置を提供しよ
うとするものである。
The present invention aims to provide a combustion device in which thermoelectric elements are arranged in such a way that heat collection and power generation can be carried out most efficiently when a plurality of thermoelectric elements are arranged at a burner heating position.

本考案の燃焼装置は、隣り合う熱電素子との間に加熱気
体が通過し得る如く間隔を設けたことを特徴としている
The combustion device of the present invention is characterized in that a space is provided between adjacent thermoelectric elements so that heated gas can pass through them.

熱電素子は、高温端と低温端との温度差ΔTに比例した
熱起電圧を発生するものであり、その発電電力は、ΔT
に比例する開放端電圧V。
The thermoelectric element generates a thermoelectromotive voltage proportional to the temperature difference ΔT between the high temperature end and the low temperature end, and the generated power is ΔT.
The open circuit voltage V is proportional to V.

と熱電素子自体の有する内部抵抗Riとから、負荷抵抗
R1と内部抵抗Riの値が同じ場合に最大出力条件とな
ることを考えて となる。
This is based on the fact that the maximum output condition is reached when the load resistance R1 and the internal resistance Ri have the same value, based on the internal resistance Ri of the thermoelectric element itself.

従って、発電電力は高温端と低温端との温度差ΔTに強
く影響されることが判る。
Therefore, it can be seen that the generated power is strongly influenced by the temperature difference ΔT between the high temperature end and the low temperature end.

さらに、複数本の熱電素子を配列する場合には、高温端
を加熱するバーナーの炎の動きを妨げる可能性があり、
熱電素子高温端の昇温加熱を確実にするためには熱電素
子相互の隣接間隔を適当な値に設定することが重要にな
る。
Furthermore, when arranging multiple thermoelectric elements, there is a possibility that the movement of the flame of the burner that heats the high-temperature end will be hindered.
In order to ensure the heating of the high temperature end of the thermoelectric element, it is important to set the distance between adjacent thermoelectric elements to an appropriate value.

そこで、本考案では、最適隣接間隔を見出すために、第
1図の如く、複数本の熱電素子IA乃至IJを間隔を変
えて配列し、第2図の如ぐハモニカバーナー2でそれら
の熱電素子1A乃至1Jの高温端を加熱し、熱電素子I
Bt IDt IFt IH,IJの高温端に設
けられた熱電対3A、3B、3C,3D、3Eにより温
度測定を行った。
Therefore, in the present invention, in order to find the optimal adjacent spacing, a plurality of thermoelectric elements IA to IJ are arranged at different intervals as shown in FIG. Heating the high temperature end of 1A to 1J, the thermoelectric element I
Temperature measurements were performed using thermocouples 3A, 3B, 3C, 3D, and 3E provided at the high temperature ends of Bt IDt IFt IH, IJ.

これらの図において、熱電素子IA、IB、ICは隣接
間隔零、熱電素子1Dの両側の隣接間隔a、 bは1m
m、熱電素子IFの両側の隣接間隔C,dは2間、熱電
素子IHの両側の隣接間隔e、 fは3rIr!n1
熱電素子IIとIJとの隣接間隔gは5閣に夫々設定さ
れる。
In these figures, the spacing between thermoelectric elements IA, IB, and IC is zero, and the spacing a and b on both sides of thermoelectric element 1D is 1 m.
m, the adjacent spacings C and d on both sides of the thermoelectric element IF are 2, and the adjacent spacings e and f on both sides of the thermoelectric element IH are 3rIr! n1
The adjacent spacing g between the thermoelectric elements II and IJ is set to five positions, respectively.

また、ノ\モニカバーナー2と各熱電素子との間の間隔
jは8ra、熱電素子先端とハモニカバーナー2との高
さの差りは2.571rIILに夫々設定されている。
Further, the interval j between the nomonica burner 2 and each thermoelectric element is set to 8ra, and the difference in height between the tip of the thermoelectric element and the harmonica burner 2 is set to 2.571rIIL.

なお、熱電素子としては断面5mmX5mm、長さ2−
の積層熱電素子を使用した。
Note that the thermoelectric element has a cross section of 5 mm x 5 mm and a length of 2 mm.
A laminated thermoelectric element was used.

この場合、各熱電素子低温端を長さ100rrrm、幅
10Trr!n1厚さ3間の銅製ヒートシンク板4にセ
ラミック接着剤で固定している。
In this case, each thermoelectric element's low temperature end has a length of 100rrrm and a width of 10Trr! It is fixed to a copper heat sink plate 4 with a thickness of n1 of 3 using a ceramic adhesive.

以下の表1に熱電対3A乃至3Eを利用して測定した熱
電素子IB、ID、IF、IH,IJの高温端の温度と
隣接間隔との関係を示す。
Table 1 below shows the relationship between the temperature at the high temperature end of the thermoelectric elements IB, ID, IF, IH, and IJ measured using thermocouples 3A to 3E and the adjacent spacing.

(但し、熱電素子低温端は第2図の如く銅製ヒートシン
ク板装着) 第3図は熱電素子高温端の温度と時間との関係を示す。
(However, the low-temperature end of the thermoelectric element is attached to a copper heat sink plate as shown in FIG. 2.) FIG. 3 shows the relationship between the temperature at the high-temperature end of the thermoelectric element and time.

この図において、曲線Uは熱電素子IB、曲線Vは熱電
素子ID、曲線Xは熱電素子111曲線Yは熱電素子I
H1曲線2は熱電素子IJの場合を夫々示す。
In this figure, curve U is thermoelectric element IB, curve V is thermoelectric element ID, curve X is thermoelectric element 111, and curve Y is thermoelectric element I.
H1 curve 2 shows the case of thermoelectric element IJ.

上記表1及び第3図によれば、熱電素子相互の隣接間隔
が3mあれば、5間以上離れている場合と差のないこと
が判る。
According to Table 1 and FIG. 3, it can be seen that if the spacing between adjacent thermoelectric elements is 3 m, there is no difference from the case where they are separated by 5 m or more.

従って本実験に用いたノ\モニカバーナーの実験例では
隣接間隔を3rIrIft以上に設定すれば熱電素子高
温端と低温端との間の温度差を最大にすることができ、
発電電力も最大とすることができる。
Therefore, in the experimental example of the Monica burner used in this experiment, if the adjacent spacing is set to 3rIrIft or more, the temperature difference between the high temperature end and the low temperature end of the thermoelectric element can be maximized.
The generated power can also be maximized.

第4図は本考案を燃焼装置、とくに液体加熱装置に適用
した場合の実施例を示す。
FIG. 4 shows an embodiment in which the present invention is applied to a combustion device, particularly a liquid heating device.

この図において、水等の液体の通路を構成する熱伝導の
良好な金属パイプ10には絶縁性で耐熱性を有する接着
剤11を介して複数の熱電素子12が配列固定される。
In this figure, a plurality of thermoelectric elements 12 are arrayed and fixed via an insulating and heat-resistant adhesive 11 to a metal pipe 10 with good thermal conductivity that constitutes a passage for liquid such as water.

この場合、熱電素子12は断面5問×5閑、長さ20r
rrrnの積層熱電素子であり、低温側端にて金属パイ
プ10に電気的に絶縁されて取付けられ、高温側はバー
ナー13の燃焼炎14で直接加熱されるようになってい
る。
In this case, the thermoelectric element 12 has a cross section of 5 x 5 squares and a length of 20 r.
rrrn laminated thermoelectric element, which is electrically insulated and attached to the metal pipe 10 at the low temperature side end, and the high temperature side is directly heated by the combustion flame 14 of the burner 13.

そして、各熱電素子12は約3rIgItの隣接間隔k
を有するように配列される。
Each thermoelectric element 12 has an adjacent spacing k of approximately 3rIgIt.
are arranged so as to have

第4図の構成において、各熱電素子12の高温端及びそ
れらの周囲はバーナー13の燃焼炎14で直接加熱され
、この結果、各熱電素子12は集熱器として働き金属パ
イプ10内の液体を加熱する。
In the configuration of FIG. 4, the hot end of each thermoelectric element 12 and its surroundings are directly heated by the combustion flame 14 of the burner 13, so that each thermoelectric element 12 acts as a heat collector and drains the liquid in the metal pipe 10. Heat.

このとき、熱電素子12の隣接間隔kを約3閑としたの
で、その高温端は効果的に加熱され800℃程度となる
At this time, since the spacing k between adjacent thermoelectric elements 12 was set to about 3 spaces, the high temperature end of the thermoelectric element 12 was effectively heated to about 800°C.

一方、熱電素子12の低温端は金属パイプ10に熱的に
結合されているから実質的に大容量のヒートシンクを装
着したのと同じことになり、例えば液体が水であれば1
00乃至120℃に保たれることになる。
On the other hand, since the low-temperature end of the thermoelectric element 12 is thermally coupled to the metal pipe 10, it is essentially the same as installing a large-capacity heat sink.For example, if the liquid is water, 1
The temperature will be maintained at 00 to 120°C.

この結果、熱電素子による発電は最も効率的に行われ、
大きな熱起電力が得られる。
As a result, power generation by thermoelectric elements is performed most efficiently,
A large thermoelectromotive force can be obtained.

なお、暖房装置の如く空気加熱を目的とする場合には、
第4図の金属パイプ10の代りに多数の放熱ひれを備え
た放熱器を用いればよい。
In addition, when the purpose is to heat air such as a heating device,
Instead of the metal pipe 10 shown in FIG. 4, a heat radiator having a large number of heat radiating fins may be used.

叙上のように、本考案によれば、バーナーで複数の熱電
素子を加熱する場合において各熱電素子を隣接間隔をあ
けて設けることにより、熱電素子の発電効率の向上を図
ることを可能にした燃焼装置を得る。
As mentioned above, according to the present invention, when multiple thermoelectric elements are heated with a burner, each thermoelectric element is provided with a space between adjacent thermoelectric elements, thereby making it possible to improve the power generation efficiency of the thermoelectric elements. Get a combustion device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案において熱電素子の最適な隣接間隔を見
いだすための各熱電素子の配列を示す概略平面図、第2
図は第1図の配列において熱電素子とハモニカバーナー
との位置関係を示す概略側面図、第3図は熱電素子高温
端の加熱時間に対する温度上昇を示すグラフ、第4図は
本考案を燃焼装置とくに液体加熱装置に適用した場合の
実施例を示す断面図である。 1A乃至IJ、12・・・・・・熱電素子、2・・◆・
・・ハモ 二カバーナー、10・・・・・・金属パイプ、11・・
・・・・接着剤、13・・・・・・バーナー、14・・
・・・・燃焼炎。
Figure 1 is a schematic plan view showing the arrangement of thermoelectric elements to find the optimal spacing between thermoelectric elements in the present invention;
The figure is a schematic side view showing the positional relationship between the thermoelectric element and the harmonica burner in the arrangement shown in Fig. 1, Fig. 3 is a graph showing the temperature rise at the high temperature end of the thermoelectric element with respect to heating time, and Fig. 4 is a combustion apparatus of the present invention. FIG. 3 is a cross-sectional view showing an example in which the present invention is particularly applied to a liquid heating device. 1A to IJ, 12...Thermoelectric element, 2...◆・
...Harmonica bunner, 10...Metal pipe, 11...
...Adhesive, 13...Burner, 14...
... Combustion flame.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] バーナーの熱の一部を回収して送風機等の電力を得るよ
うに複数の積層型熱電素子を電気的に接続し、該複数の
熱電素子の先端の高温側端部と前記バーナーとが高さの
差を有するように設置し、前記バーナーの燃焼炎で前記
複数の熱電素子の高温側端部を加熱するようにした燃焼
装置において、前記複数の熱電素子の低温側端部を板状
、パイプ状等のヒートシンクに接着固定して、当該複数
の熱電素子を3簡以上の隣接間隔をあけて配列し、加熱
気体が前記熱電素子の間隔を通過するごとく前記バーナ
ーの炎の通路を構成したことを特徴とする燃焼装置。
A plurality of laminated thermoelectric elements are electrically connected so that a part of the heat of the burner is recovered to obtain electric power for a blower, etc., and the high temperature side end of the plurality of thermoelectric elements is at a height with the burner. In the combustion apparatus, the low temperature side ends of the plurality of thermoelectric elements are arranged in a plate shape, a pipe shape, etc., and the high temperature side ends of the plurality of thermoelectric elements are heated by the combustion flame of the burner. The plurality of thermoelectric elements are arranged with adjoining intervals of 3 or more by adhering and fixing to a heat sink such as a shape, and the flame path of the burner is configured so that the heated gas passes through the spacing between the thermoelectric elements. A combustion device featuring:
JP4875280U 1980-04-10 1980-04-10 combustion device Expired JPS608436Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4875280U JPS608436Y2 (en) 1980-04-10 1980-04-10 combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4875280U JPS608436Y2 (en) 1980-04-10 1980-04-10 combustion device

Publications (2)

Publication Number Publication Date
JPS56154068U JPS56154068U (en) 1981-11-18
JPS608436Y2 true JPS608436Y2 (en) 1985-03-25

Family

ID=29643744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4875280U Expired JPS608436Y2 (en) 1980-04-10 1980-04-10 combustion device

Country Status (1)

Country Link
JP (1) JPS608436Y2 (en)

Also Published As

Publication number Publication date
JPS56154068U (en) 1981-11-18

Similar Documents

Publication Publication Date Title
JPH04165234A (en) Thermoelectric conversion device
CA2613300A1 (en) Heating apparatus comprising a thermoelectric device
JP4178746B2 (en) Industrial furnace thermoelectric generator
JP2002171776A5 (en)
RU2345294C1 (en) Cooling unit for heat-producing hardware
JPS608436Y2 (en) combustion device
US20060112687A1 (en) Stirling engine assembly
CN112164746B (en) Thermoelectric power generation device
KR101679954B1 (en) Thermoelectric generator
JP2004156811A (en) Combustion room heating apparatus
RU2814205C1 (en) Thermoelectric device for heat removal from rea elements
RU2799706C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2797713C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2797714C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2814203C1 (en) Thermoelectric device for heat removal from rea elements
RU2799496C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2797712C1 (en) Thermoelectric device for heat removal from electronic equipment elements
JP2535842B2 (en) Ceramics heat exchanger
RU2795504C1 (en) Thermoelectric device for heat removal from rea elements
RU2796625C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2803819C1 (en) Thermoelectric device for heat removal from radioelectronic equipment elements
RU2800230C1 (en) Thermoelectric device for heat removal from radioelectronic equipment elements
RU2796626C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2796624C1 (en) Thermoelectric device for heat removal from electronic equipment elements
RU2800004C1 (en) Thermoelectric device for heat removal from electronic equipment elements