JPS6084243A - Preparation of unsaturated carboxylic acid - Google Patents
Preparation of unsaturated carboxylic acidInfo
- Publication number
- JPS6084243A JPS6084243A JP59126727A JP12672784A JPS6084243A JP S6084243 A JPS6084243 A JP S6084243A JP 59126727 A JP59126727 A JP 59126727A JP 12672784 A JP12672784 A JP 12672784A JP S6084243 A JPS6084243 A JP S6084243A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- oxidation
- reaction
- stage oxidation
- olefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は不飽和カルボン酸の新規な製造方法に関するも
のであり、特にインブチレンから効率よ(メタクリル酸
を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing unsaturated carboxylic acids, and particularly to a method for efficiently producing methacrylic acid from inbutylene.
本発明で用いる用語の定義は次の通りである。Definitions of terms used in the present invention are as follows.
「オレフィンJ・・・プロピレン、インブチレンなどの
直鎖に5個の炭素原子を有するオレフィ
ン0
「前段酸化」・・・オレフィンを触媒の存在下に高温で
分子状酸素と気相接触反応せしめて、
対応する不飽和アルデヒドを製造する
反応。"Olefin J...Olefin having 5 carbon atoms in a straight chain such as propylene and imbutylene 0 "Preliminary oxidation"...Olefin is subjected to a gas phase catalytic reaction with molecular oxygen at high temperature in the presence of a catalyst. , a reaction that produces the corresponding unsaturated aldehyde.
「後段酸化」・・・前記不飽和アルデヒドを触媒の存在
下に高温で分子状酸素と気相接触反応
せしめて、対応する不飽和カルボン記
音製造する反応。"Sub-stage oxidation": A reaction in which the unsaturated aldehyde is subjected to a gas phase contact reaction with molecular oxygen at high temperature in the presence of a catalyst to produce the corresponding unsaturated carboxyl group.
「前後段直結法」・・・前段酸化で生成するガス状反応
混合物をそのま\後段酸化部に供給し後段
酸化することにより、オレフィンから
不飽和カルボン酸を製造する方法。"Directly connecting the front and rear stages": A method for producing unsaturated carboxylic acids from olefins by supplying the gaseous reaction mixture produced in the first stage oxidation to the second stage oxidation section and oxidizing the second stage.
「オレフィン酸化用触ffj又は「前段酸化触媒」・・
・前段酸化において用いる触媒。"Olefin oxidation catalyst ffj or "first stage oxidation catalyst"...
・Catalyst used in first-stage oxidation.
「後段酸化触媒」・・・後段酸化において用いる触媒。"Late stage oxidation catalyst"...Catalyst used in the stage oxidation.
プロピレン、イソブチレン等のオレフィンをアクロレイ
ン、メタクロレインなどの対応する不飽和アルデヒドに
酸化する前段酸化、該不飽和アルデヒド全アクリル酸、
メタクリル酸などの対応する不飽和カルボン酸に酸化す
る後段酸化は夫々公知である0また、オレフィンから対
応する不飽和カルボン酸全製造する場合、前段酸化で得
られる反応混合物から不飽和アルデヒドを分離精製した
のちに後段酸化を行う方法及び前後段を直結し1行う方
法(英国特訂第939713号)がそれぞれ知られてお
り、後者の方法が前者に比べて不飽和アルデヒドの分離
精製等の処理工程が不用であることによる装置上、操作
上、経済上の利点を有し、工業的にも有利と考えられて
いる。Preliminary oxidation of olefins such as propylene and isobutylene to corresponding unsaturated aldehydes such as acrolein and methacrolein;
The subsequent oxidation to the corresponding unsaturated carboxylic acid such as methacrylic acid is well known.In addition, when producing the corresponding unsaturated carboxylic acid from an olefin, the unsaturated aldehyde is separated and purified from the reaction mixture obtained in the first stage oxidation. Two methods are known: a method in which post-stage oxidation is carried out after oxidation, and a method in which the front and rear stages are directly connected and carried out in one step (British Special Edition No. 939713). It has advantages in terms of equipment, operation, and economy due to the fact that it is unnecessary, and is considered to be advantageous from an industrial perspective.
しかしながら、前後段直結法は一般に精製された不飽和
アルデヒドを原料として後段酸化のみを独立して行う場
合に比較して反応成績が格段に劣り、とくにインブチレ
ンからメタクリル酸を製造する場合にその傾向が顕著で
ある0そのため現在までのところ、前後段直結法による
メタクリル酸の工業的実施を可能ならしめる提案はなさ
れていない。However, in general, the reaction performance of the front-end and front-stage direct coupling method is significantly inferior to that of the case where only the second-stage oxidation is performed independently using purified unsaturated aldehyde as a raw material, and this tendency is particularly high when producing methacrylic acid from imbutylene. Therefore, to date, no proposal has been made to enable industrial production of methacrylic acid by a direct front-to-back process.
その原因は前段酸化において副生する不純物及び残存す
る未反応インブチレンにあると考えられているが、本発
明者等はこの原因について詳細な検討を行った結果、前
段酸化の反応混合物中には未反応イソブチレン及びター
ル状副生物に加えて、ジイソブチレン、ベンゼン、トル
エン、キシレン、エチルベンゼン等の不飽和炭化水素類
が存在し、これらの不飽和炭化水素類が未反応インブチ
レン及びタール状物質と同様に後段酸化の反応成績の低
下をきたす主原因であることを見い出した。The cause is thought to be impurities produced as a by-product in the first-stage oxidation and residual unreacted imbutylene, but the inventors conducted a detailed study on this cause and found that the reaction mixture of the first-stage oxidation contains In addition to unreacted isobutylene and tar-like byproducts, unsaturated hydrocarbons such as diisobutylene, benzene, toluene, xylene, and ethylbenzene are present, and these unsaturated hydrocarbons are combined with unreacted inbutylene and tar-like substances. Similarly, it has been found that this is the main cause of deterioration in reaction performance in post-oxidation.
すなわち前後段直結法によりインブチレンからメタクリ
ル酸金製造するに際しては、二律背反的な要求と考えら
れる下記2点の条件を同時に満足する新規な酸化触媒の
開発が要求されるのである。That is, when producing gold methacrylate from inbutylene by the front-back direct coupling method, it is necessary to develop a new oxidation catalyst that simultaneously satisfies the following two conditions, which are considered to be antinomic requirements.
■ インブチレンの転化率が高く、未反応インブチレン
を減少しうろこと。■ High conversion rate of inbutylene, reducing unreacted inbutylene.
■ タール状物質はもちろん、ジイソブチレン、ベンゼ
ン、トルエン、キシレン、エチルベンゼン等の不飽和炭
化水素類の副生が少ないこと0
勿論、これらの条件に加えて、M A、 Lへの選択率
が高いこと(単流収率が品いことに結びつ()、触媒寿
命が長いこと等の工業触tlνどしての条件も満足する
ものでなければならない。■ Low by-products of unsaturated hydrocarbons such as diisobutylene, benzene, toluene, xylene, and ethylbenzene as well as tar-like substances 0 In addition to these conditions, of course, high selectivity to M A and L It must also satisfy the requirements for industrial applications, such as single-stream yield (which is linked to high quality) and long catalyst life.
そこで本発明者らは、かかる従来技術の欠点を改良すべ
く鋭意検討を進めた結果、特定な組成をもつ前段酸化触
媒を使用する場合にケよ、意外にも後段酸化反応を阻害
することなく効率よく前後段直結法が可能どなることを
見い出【7、本発明全完成するに到った。Therefore, the present inventors conducted intensive studies to improve the shortcomings of the prior art, and found that when using a first-stage oxidation catalyst with a specific composition, it was surprisingly possible to do so without inhibiting the second-stage oxidation reaction. It was discovered that efficient direct connection between the front and rear stages was possible [7], and the present invention was fully completed.
而してかかる本発明の目的は、直鎖に!1個の炭素原子
を有するオレフィンと分子状酸素とを下記−膜組成式〔
■〕で表わされる前段酸化触媒を用いて気相接触酸化し
、次いで得られた生成カスを後段酸化触媒を用いて気相
接触酸化することによって達成される。Therefore, the purpose of the present invention is to create a straight chain! An olefin having one carbon atom and molecular oxygen are represented by the following membrane composition formula [
This is achieved by carrying out vapor phase catalytic oxidation using a pre-stage oxidation catalyst represented by [2], and then subjecting the resulting residue to vapor-phase catalytic oxidation using a post-stage oxidation catalyst.
一般組成式〔I〕:
MOa Bib Feo 00d Ni6 A8f R
g 8B。General composition formula [I]: MOa Bib Feo 00d Ni6 A8f R
g8B.
Ti Oj に\で、R1″J:に、 Rb、 Cs及
びTjから選ばれた少なくとも一種の元素を表わし、8
はP、As及びBから選ばれた少な(とも−棟の元素を
表わし、TはOs、 Ti、 To、 Zn、 Go、
Sn、 Or。Ti Oj is \, R1''J: represents at least one element selected from Rb, Cs and Tj, and 8
is a small element selected from P, As, and B; T is Os, Ti, To, Zn, Go,
Sn, Or.
Ga、 La、In、 AJ、 cd、 Pd、 Mn
、 V、 Pb、 Nb、 Zr。Ga, La, In, AJ, cd, Pd, Mn
, V, Pb, Nb, Zr.
Cu及びUから選ばれた少な(とも一種の5’Q素を表
わし、’+ ”+ c* d+ j f+ L J ’
及びjはそれぞれMo、B1.Feo CO* ’L
Ag、 R,S、 T及び0の原子数であり、a=12
とした場合、b = o、 i〜10、c−0,5ん4
0.+1−0〜12.e=0−12、d + e=0.
5−15.fxo、 1〜8.g=0.01〜5.h−
0〜5.x−0〜12の値をとり、jは他の元素の原子
価を満足する酸素の原子数である。)
上記本発明触媒において、好ましい触媒の成分割合はa
=12のとき、b = 0.5〜7 、c = 1〜3
5、a=o〜10.θ=0〜i o、 a+θ=05〜
12.f=0.1〜6.g=0.01〜4.h=。A small number selected from Cu and U (both represent a kind of 5'Q element, '+ ''+ c* d+ j f+ L J '
and j are Mo, B1. Feo CO*'L
The number of atoms of Ag, R, S, T and 0, a=12
In this case, b = o, i~10, c-0,5n4
0. +1-0~12. e=0-12, d+e=0.
5-15. fxo, 1-8. g=0.01-5. h-
0-5. x-0 to 12, and j is the number of oxygen atoms that satisfies the valences of other elements. ) In the above catalyst of the present invention, the preferred component ratio of the catalyst is a
When = 12, b = 0.5~7, c = 1~3
5, a=o~10. θ=0~io, a+θ=05~
12. f=0.1-6. g=0.01-4. h=.
〜4.i=o〜8の値をとり、jは他の元素の原子価を
満足する酸素の原子数でめる0更に好ましい触媒の成分
割合は、a=12のとき、b = 0.5〜7. c
−8P−30,a = 0〜10. e −0〜、10
゜d 十e = 0.5〜12 、 、 f = 0.
1〜4. g=0.01〜3.h=0〜3.i=0〜8
の値をとり、jは他の7c素の原子価を満足する原子数
である0尚、本発明触媒の正確な構造は明らかでないが
、触媒を構成する成分の組成は、基本的に前記の一般式
によって表わされる。~4. i=takes a value of o to 8, and j is determined by the number of oxygen atoms satisfying the valence of other elements.A more preferable catalyst component ratio is when a=12, b=0.5 to 7 .. c.
-8P-30, a = 0 to 10. e −0~, 10
゜d 10e = 0.5~12, , f = 0.
1-4. g=0.01-3. h=0-3. i=0~8
, and j is the number of atoms that satisfies the valence of the other 7c atoms.0 Although the exact structure of the catalyst of the present invention is not clear, the composition of the components constituting the catalyst is basically as described above. It is represented by a general formula.
かかる前段酸化触媒は、この分野で公知のいろいろの方
法、例えば蒸発乾固法、酸化物混合法、共沈法等によっ
て調製することができるO用いられる各元素の原料物質
は、酸化物のみならず焼成によって本発明の触媒を構成
するものであgばいかなるものでもよく、それらの例と
しては、各元素のアンモニウム塩、硝酸塩、炭酸塩、有
機酸塩、ハロゲン化物等の塩類、遊離酸、酸無水物、縮
合酸、あるいはリンモリブデン酸、ケイ上1ノブデン酸
等のモリブデンを含むヘテロポリ酸又はそのアンモニウ
ム塩、金属塩等のへテロポリ酸塩等を挙げることができ
る。またケイモリブデン酸の如きケイ素を含む化合物を
使用しても触媒活性に悪影響は及はさない0
触媒の調製葦たは活性化等の目的で行う焼成処理は、通
常300〜900℃、好ましくは450〜700°Cで
約4〜16時間行われるが、必要に応じ、この焼成温反
以下の温度で一次焼成処理を施し、その後に上記温度で
焼成処理を行ってもよい。Such pre-oxidation catalysts can be prepared by various methods known in this field, such as evaporation to dryness method, oxide mixing method, coprecipitation method, etc. Any substance that constitutes the catalyst of the present invention by calcination may be used, and examples thereof include ammonium salts of each element, nitrates, carbonates, organic acid salts, salts such as halides, free acids, Examples include acid anhydrides, condensed acids, molybdenum-containing heteropolyacids such as phosphomolybdic acid and silicic monobdic acid, and heteropolyacid salts thereof such as ammonium salts and metal salts. Furthermore, the use of silicon-containing compounds such as silicon molybdic acid does not adversely affect the catalyst activity. The firing process is carried out at 450 to 700°C for about 4 to 16 hours, but if necessary, a primary firing process may be performed at a temperature lower than this firing temperature, followed by a firing process at the above temperature.
1だ触媒はそのま5使用することもできるが、適当な形
状の担体に付着させたり、粉末状、ゾル状、ゲル状等の
状態にした担体(希釈剤)により希釈して使用すること
もできるO担体は公知のものであればいずれでもよく、
例えば二酸化チタン、シリカゲル、シリカゾル、ケイ礫
土、炭化ケイ素、アルミナ、軽石、シリカ−アルミナ、
ベントナイト、ジルコニア、ゼオライト、耐火物等があ
けられ、特にケイ素を含む担体が好ましい。担体の量は
適当に選ぶことができる。触媒は粉状、錠剤などのよう
に適当な形状とし、固定床、移動床、流動床のいずれの
方法においても使用できる。The catalyst can be used as is, but it can also be used by attaching it to a carrier of an appropriate shape, or diluting it with a carrier (diluent) in the form of powder, sol, or gel. Any known O carrier may be used,
For example, titanium dioxide, silica gel, silica sol, diatomaceous earth, silicon carbide, alumina, pumice, silica-alumina,
Bentonite, zirconia, zeolite, refractories, etc. are suitable, and carriers containing silicon are particularly preferred. The amount of carrier can be selected appropriately. The catalyst can be in a suitable form such as powder or tablet, and can be used in any of the fixed bed, moving bed, and fluidized bed methods.
本発明の前段酸化触媒はプロヒレン、インブチレン、イ
ソブチレンなどの酸化、とくにイソブチレンの酸化に有
用であるが、これらのオレフィンは必ずしも高純度であ
る必要はなく、不純物を含むものでもよい。しかし、前
段酸化で得られる反応ガス中に不飽和炭化水素類を含む
可能性のある不純物が多(混入することは好筐しくない
。分子状酸素は勿論これを単独で使用することもできる
が、工業的には空気が実用的でめる0またこの反応にお
いては反応に悪影響を及はさない不活性カス、例えば水
蒸気、窒素、アルゴン、炭酸ガス等で希釈することがで
き、特に水蒸気で希釈することが好ましい。The pre-oxidation catalyst of the present invention is useful for the oxidation of prohylene, imbutylene, isobutylene, etc., particularly for the oxidation of isobutylene, but these olefins do not necessarily have to be highly pure and may contain impurities. However, there are many impurities that may include unsaturated hydrocarbons in the reaction gas obtained in the first-stage oxidation (it is not desirable for them to be mixed in). Of course, molecular oxygen can be used alone, but In addition, in this reaction, it is possible to dilute with inert gas, such as water vapor, nitrogen, argon, carbon dioxide, etc., which does not adversely affect the reaction. Dilution is preferred.
本発明における前段酸化反応の条件は、特定な前段酸化
触媒を用いること以外はと(に制限されるものではなく
、使用する後段酸化触媒が与えられれば実験により容易
に決定することが可能である。従って、前後段直結法に
おける前段酸化の反応条件は一義的には定められないが
、通常反応温度は250〜700°C1好ましくは25
0〜550℃、反応圧力は常圧〜10気圧、全供給原料
ガスのSVは20(]〜10000hr 、好ましくは
30(1−4000hr’−’ 、オレフィン濃度は0
5〜10容量係、好ましく#−i0.5〜8容量チ、オ
レフ容量対酸素比は1 : 1.5〜7、好ましい供給
ガス組成はオレフィン:空気:水蒸気=1ニア、5〜3
0:5〜90(モル)比である。The conditions for the first-stage oxidation reaction in the present invention are not limited to (other than the use of a specific first-stage oxidation catalyst), and can be easily determined by experiment if the second-stage oxidation catalyst to be used is given. Therefore, the reaction conditions for the first stage oxidation in the front and rear direct coupling method are not uniquely determined, but the reaction temperature is usually 250 to 700°C, preferably 25°C.
0 to 550°C, reaction pressure is normal pressure to 10 atm, SV of total feed gas is 20 (] to 10,000 hr, preferably 30 (1 to 4,000 hr'-'), olefin concentration is 0
5 to 10 volume ratio, preferably #-i 0.5 to 8 volume ratio, olefin volume to oxygen ratio of 1:1.5 to 7, preferred feed gas composition: olefin:air:steam = 1, 5 to 3
The ratio is 0:5 to 90 (mol).
本発明においては、後段酸化反応の阻害要因となる未反
応オレフィンが実質的に残存しない程度、すなわちオレ
フィンの転化率が100%またはそれに近い程度になる
ような条件下で前段酸化反応が行われるが、その場合で
あっても不飽和アルデヒドが高収率、高選択率で得られ
、後段酸化反応を阻害するような副生物を生成すること
がない。In the present invention, the first-stage oxidation reaction is carried out under conditions such that substantially no unreacted olefin remains, which would be a factor inhibiting the second-stage oxidation reaction, that is, the olefin conversion rate is at or close to 100%. Even in that case, unsaturated aldehydes can be obtained in high yield and high selectivity, and by-products that would inhibit the subsequent oxidation reaction are not produced.
とくに、オレフィンとじ1イソブチレンヲ使用する場合
には、前段反応成績のみについてみても公知触媒には見
られないよう々高収率、高選択案でM 、A Lが得ら
れる。In particular, when using isobutylene as an olefin, M and AL can be obtained in high yield and with high selectivity, which is not seen with known catalysts, even if only the results of the first stage reaction are considered.
本発明におけろかかる利点は前段酸化触媒成力中にAg
ff1含有することによって特異的に君1られるもので
あり、これらの成分が存在しないy4合には触媒の活性
が低(、しかも不飽和炭化水素類のMll生が激しい。This advantage of the present invention is that Ag during formation of the first stage oxidation catalyst is
This is specifically controlled by the presence of ff1, and in the absence of these components, the catalyst has low activity (and moreover, Mll formation of unsaturated hydrocarbons is intense).
また類似した一般組成式を翁づる公知触媒の場合には、
一般にν012としたときにFeの組成比が05〜3と
きわめて狭い範囲で良好な性能を示す(例えば、特公昭
48−17253号公報)のに対し、本発明の前段酸化
触媒におりては05〜40と広い範囲にわたって高活性
を示し、とくにF eの組成比が8〜30と比較的高い
範囲においてもつとも優れた性能を示す。In addition, in the case of known catalysts with similar general composition formulas,
In general, when ν012 is set, good performance is shown in a very narrow range of Fe composition ratio of 05 to 3 (for example, Japanese Patent Publication No. 17253/1983), whereas in the first stage oxidation catalyst of the present invention, the Fe composition ratio is 05 to 3. It shows high activity over a wide range of 40 to 40, and particularly shows excellent performance even when the Fe composition ratio is in a relatively high range of 8 to 30.
前段酸化反応で得られた生成ガスは、次いで凝縮される
ことなく後段酸化反応に供せられ、ここで不飽和カルボ
ン酸に酸化される。The generated gas obtained in the first stage oxidation reaction is then subjected to the second stage oxidation reaction without being condensed, where it is oxidized to an unsaturated carboxylic acid.
使用する後段酸化触媒は、不飽和アルデヒドを不飽和カ
ルボン酸に酸化する触媒能を有するものであればいずれ
でもよく、必要に応じ担体に担持して又は希釈剤で希釈
して使用される。該触媒の例としては、(1)P−Mo
−R(RはTj、アルカリ又はアルカリ土類金属元素の
少なくとも一種を示す)系又はこれに更にSi、 Or
、 Aj、 Go、 Ti、 V、 W。The post-oxidation catalyst used may be any catalyst as long as it has a catalytic ability to oxidize unsaturated aldehyde to unsaturated carboxylic acid, and it may be used supported on a carrier or diluted with a diluent, if necessary. Examples of the catalyst include (1) P-Mo
-R (R represents Tj, at least one alkali or alkaline earth metal element) system, or further Si, Or
, Aj, Go, Ti, V, W.
Bi、 Nb、 B、 Ga、 Pb、 En、 Co
、 Pa、 As、 ’Zr、 Sb。Bi, Nb, B, Ga, Pb, En, Co
, Pa, As, 'Zr, Sb.
To、 Fn、 Ni、In、 Cu、 Ag、 Mn
、 La、 Nd、 Ta及びf3rn等から選ばれた
少なくとも一種の元素を含有する酸化触媒、f21 P
−M o −A e系酸化触媒、(3)P−M’o−
As−アルカリ金属元素系又はこれに更にV、 W、
Cu、 Fe、 Mn、 Sn等の少なくとも一種のノ
c素を含有する酸化触媒、(41P−M o−8b 光
重たはこれに更にW、 Fe、 C!o、 V、 Aj
、 Pb、 Or、 sn、 Bi。To, Fn, Ni, In, Cu, Ag, Mn
, an oxidation catalyst containing at least one element selected from La, Nd, Ta, f3rn, etc., f21P
-M o -A e-based oxidation catalyst, (3) P-M'o-
As-alkali metal element system or further V, W,
An oxidation catalyst containing at least one type of carbon atoms such as Cu, Fe, Mn, Sn, etc.
, Pb, Or, sn, Bi.
Ou、 Ni、 Mg、 Oa、 Ba、 Zn なと
の少な(とも一種の元素を含有する酸化触媒、f51P
−Mo−Pd 系酸化触媒、tel P−Pa−s b
系又はこれに更にBi。Oxidation catalyst containing a small amount of Ou, Ni, Mg, Oa, Ba, Zn, etc.
-Mo-Pd based oxidation catalyst, tel P-Pa-s b
system or further Bi.
pb、Or、Fe、Ni、Co、Mn、Sn、U、Ba
などの少なくとも一種の元素を含有する酸化触媒、又り
これらの触媒において更にアンモニウノ・基を含有ブる
触媒などの公知触媒が挙けられる。pb, Or, Fe, Ni, Co, Mn, Sn, U, Ba
Examples of known catalysts include oxidation catalysts containing at least one element such as oxidation catalysts, and catalysts containing ammonium groups.
後段酸化は上記前段酸化とほぼ同様の条件下で実施され
るが、使用する触媒によって具体的な条件が選択される
。好芽しくけ前述の反応条件下で得られた前段配化反応
混合物を供給原料としてイの使用触媒に適した反応条件
によって行われる。The second stage oxidation is carried out under substantially the same conditions as the first stage oxidation, but the specific conditions are selected depending on the catalyst used. The germination process is carried out using the pre-arrangement reaction mixture obtained under the above-mentioned reaction conditions as a feedstock and under reaction conditions suitable for the catalyst used in (a).
かかる本発明によれば、オレフィンの転化率を。According to the present invention, the conversion rate of olefin can be increased.
高くしても不飽和アルデヒド力綿カ収率、高選択率で得
られ、月つジインブチレン、ベンゼン、1′ルエン、キ
シレン、エチルベンセン等の不飽和炭化水素類の副生が
非常に少ない。Jのため前段6.化で生成した不飽和ア
ルデヒドを単離することな(直接不飽和カルボン酸とす
ることができ、しかも後段酸化反応における不飽和アル
デヒドの転化率、不飽和カルボン酸の選択不及O収宗ケ
実質的に損なうことがない〇
以I・に実施例を以って本発明を具体的に説明するが、
実施例中の反応率、選択率、単流収率は次式の通りであ
ろ0分析は全てガスクロマトグラフによった。また触媒
成分中の酸素の表示については簡略のため省略する。Even if the concentration of unsaturated aldehyde is increased, the yield and selectivity of unsaturated aldehyde can be obtained with very little by-product of unsaturated hydrocarbons such as diynebutylene, benzene, 1' toluene, xylene, and ethylbenzene. First stage 6 for J. The unsaturated aldehyde produced in the oxidation reaction can be directly converted into an unsaturated carboxylic acid without isolating it, and the conversion rate of the unsaturated aldehyde in the subsequent oxidation reaction, the selection of the unsaturated carboxylic acid, and the convergence are substantially reduced. The present invention will be explained in detail with reference to Examples below.
The reaction rate, selectivity, and single flow yield in the examples are as shown in the following formula. All analyzes were performed by gas chromatography. Furthermore, the representation of oxygen in the catalyst components is omitted for the sake of brevity.
また記号の意味は、i−Bはインブチレン、MALiメ
タクロレイン、MAAはメタクリル酸を表わす0またイ
ンブチレンの代りにゾロビレンを使用した場合の反応成
績の計算は、次式の中で1−B ヲプロピレン、MAL
kアクロレイン、MAAをアクリル酸と読み換えた式
によった。The meanings of the symbols are: i-B is inbutylene, MALi is methacrolein, and MAA is methacrylic acid.0 Also, when using zolobylene instead of inbutylene, the reaction results are calculated using the following formula: 1-B Wopropylene, MAL
k Acrolein, based on the formula where MAA is read as acrylic acid.
不飽和炭化水素類生成率(%)
〔後段酸化反応成績計算式〕
不飽和炭化水素類転化率(%)
MAA単流収率(1−B基準)(%)
実施例1
A、触媒の調製
硝酸ビスマス48.5 F、 硝rRコバルM16.5
グ、硝酸ニッケル291♂、硝酸第二鉄4 B 4.8
11硝酸銀1Z01、硝fij< カリウム10.IS
’f−150dの水に加えて加温俗解し、これiA液と
した。一方、モリブデン酸アンモニウム212y−f4
00mlの水に加湿済j9’l L、更に85%リン酸
5767を加えて、これff3液とした。A液を加温攪
拌しながらB液を加え、充分攪拌しながら蒸発乾固し、
これを120°Cで8時間乾燥した後、600°Cで1
6時間マツフル炉で焼成し、イqられた固形物を粉砕し
て4〜8メツシユに111別した0こうしてR1,4製
された触媒の組成は、
MO12BiI Fe12 C04N’l Ag1 p
tts Klで示される。Unsaturated hydrocarbons production rate (%) [Sub-stage oxidation reaction result calculation formula] Unsaturated hydrocarbons conversion rate (%) MAA single flow yield (1-B standard) (%) Example 1 A, Preparation of catalyst Bismuth nitrate 48.5 F, Nit rR Kobal M16.5
Nickel nitrate 291♂, Ferric nitrate 4B 4.8
11 Silver nitrate 1Z01, Nitrate fij < Potassium 10. IS
'f-150d was added to water and heated to obtain liquid iA. On the other hand, ammonium molybdate 212y-f4
The humidified j9'l L and 85% phosphoric acid 5767 were added to 00 ml of water to make an ff3 liquid. Add solution B while heating and stirring solution A, evaporate to dryness while stirring thoroughly,
After drying this at 120°C for 8 hours, it was dried at 600°C for 1 hour.
Calcined in a Matsufuru furnace for 6 hours, the equated solid was pulverized and divided into 4 to 8 meshes.The composition of the catalyst thus produced R1,4 was MO12BiI Fe12 C04N'l Ag1 p
Indicated by tts Kl.
次いで同一の手順に従って表1に示すごとき組成比の異
なる種々の触媒乏・調製した。Next, various catalysts having different composition ratios as shown in Table 1 were prepared according to the same procedure.
B0反応方法
次の様にして前後段直結方法により反応を行った0
(1)if鍛撤化反応力方
法記の触媒100m、lf内径2.5偏長さ60ate
のステンレス製反応管に充填し、金属浴で加熱し、これ
にインブチレン:を気:水蒸気のモル比が4:55:4
1である供給ガスを空間速度2DOOhr’で通過させ
た。B0 reaction method The reaction was carried out by the front and rear direct connection method as follows. (1) If forging reaction force method, catalyst 100 m, lf inner diameter 2.5, eccentric length 60 ate.
was charged into a stainless steel reaction tube and heated in a metal bath, and the molar ratio of inbutylene:air:steam was 4:55:4.
A feed gas of 1 was passed at a space velocity of 2DOOhr'.
(2)後段酸化反応方法
後段ら・)化触媒として、特公昭50−10846公報
1j/fil+ %の実施例1に記載のMo−P−Ol
l−Cr触媒[Mo:P:Os:Cr =l : U、
16 : 0.16 :016(原子比)、450℃焼
成、触媒径4〜8メツシュ)1oomgl内径2.5イ
鶏長さ60礪のステンレス製反応管に充填し、金属i?
; T加熱し、これに上記の前段酸化によってイ(fら
れた反応ガスをその1ま通過させた。(2) Post-stage oxidation reaction method As the post-oxidation catalyst, Mo-P-Ol described in Example 1 of Japanese Patent Publication No. 50-10846 1j/fil+%
l-Cr catalyst [Mo:P:Os:Cr=l:U,
16:0.16:016 (atomic ratio), calcined at 450°C, catalyst diameter 4-8 mesh) 10mgl inner diameter 2.5cm x 60cm long stainless steel reaction tube was filled with metal i?
; The reactant gas which had been oxidized by the above-mentioned first stage oxidation was passed through it.
得られた前段酸化反応成績及び後段酸化反応成績の結果
を表1に示10表1中反応温度は一定に保持された金属
浴温で示される(以下同じ)0
比較のため八g’に含有しない触媒(実験番号8及び9
)及び前段酸化触媒として公知の特公昭47−3204
4号公報明細書の実施例1に記載の触媒(実験番号10
)、特公昭47−32043−+j公報明細書の実施例
1に記載の触媒(実験番号11)、特公昭47−428
13号公報明細書の実施例3に記載の触媒(実験番号1
2)、及び特公昭48−17253号公報明細書の実施
例1に記載の触媒(実験番号13)全それぞれの明細書
の記載に従って調製しく触媒径4〜8メツシュ)、これ
らの触媒を前段酸化反応に用いること以外、実験番号1
〜7と同材にして前後段直結反応を行った。The results of the obtained first-stage oxidation reaction and second-stage oxidation reaction are shown in Table 1.10 In Table 1, the reaction temperature is shown as the metal bath temperature held constant (the same applies hereinafter). No catalyst (experiment numbers 8 and 9)
) and Japanese Patent Publication No. 47-3204 known as a first-stage oxidation catalyst
Catalyst described in Example 1 of Publication No. 4 (Experiment No. 10)
), Catalyst described in Example 1 of the specification of Japanese Patent Publication No. 47-32043-+j (Experiment No. 11), Japanese Patent Publication No. 47-428
Catalyst described in Example 3 of Publication No. 13 (Experiment No. 1
2), and the catalyst described in Example 1 of the specification of Japanese Patent Publication No. 48-17253 (Experiment No. 13) prepared according to the description of each specification (catalyst diameter 4 to 8 mesh), these catalysts were subjected to pre-oxidation. Experiment number 1 except for use in reaction
A direct connection reaction between the front and rear stages was performed using the same material as in ~7.
更に後段酸化触媒について予め精製されたメタクロレイ
ン(純度995重′5i−%)を供給して空1uj速度
2000 hr 、供給ガス組成全メタクロレイン=0
2:N2:H20=1:1.5:15.0:17.5(
モル比〕として反応を行い、その結果を表1に併記した
(実験番号14)。Furthermore, pre-purified methacrolein (purity 995 wt'5i-%) was supplied to the second stage oxidation catalyst, and the emptying rate was 2000 hr, and the total methacrolein composition was 0.
2:N2:H20=1:1.5:15.0:17.5(
molar ratio], and the results are also listed in Table 1 (Experiment No. 14).
表1の結果から、Agを含有する前段酸化触媒を使用す
る場合には前段酸化反応成績に優れているばかりか、後
段酸化反応においても精製されたメタクロレインを使用
する場合に匹敵する好結果を与えることがわかる。−万
、Agが存在しない触媒の場合には前段酸化反応成績に
大きな差が生じ、後段酸化反応成績も劣っている。また
、本発明の前段酸化触媒は類似の組成を有する公知の触
媒に比較してはるかに優れた性能を示すことがわ実施例
2
実施例1に示したそれぞれの触媒に更に任意のT成分と
してCe、 Zn、 Or、 An、 Q6及びw6加
えること以外はもとの触媒と同様の方法によって触媒を
調製し、実施例1と同様な方法で前後段直結反応を行っ
た。結果を表2に示す。From the results in Table 1, it can be seen that when using a first-stage oxidation catalyst containing Ag, not only is the first-stage oxidation reaction excellent, but also the second-stage oxidation reaction has good results comparable to when purified methacrolein is used. I know how to give. - In the case of a catalyst that does not contain Ag, there is a large difference in the performance of the first-stage oxidation reaction, and the performance of the second-stage oxidation reaction is also poor. Furthermore, it has been found that the pre-oxidation catalyst of the present invention exhibits far superior performance compared to known catalysts having similar compositions. A catalyst was prepared in the same manner as the original catalyst except for adding Ce, Zn, Or, An, Q6, and w6, and a front and rear direct coupling reaction was performed in the same manner as in Example 1. The results are shown in Table 2.
実施例6
実施例1及び実施例2に示したそれぞれの触媒について
S成分をヒ素又はホウ素とした場合、及びR成分をルビ
ジウム、セシウムまたはタリウムとした場合についても
との触媒と同様の方法で調製し、実施例1と同様な方法
で前後段直結反応を行った。結果全表3に示す〇
実施例4
実施例1〜6に示した前後段直結反応を同一の反応条件
に維持して1000時間反応を継続し、反応成績の変化
を調べた。結果を表4に示す。Example 6 Each of the catalysts shown in Example 1 and Example 2 was prepared in the same manner as the original catalyst when the S component was arsenic or boron, and when the R component was rubidium, cesium, or thallium. Then, in the same manner as in Example 1, a direct reaction between the front and rear stages was carried out. All results are shown in Table 3. Example 4 The front and rear direct reactions shown in Examples 1 to 6 were maintained under the same reaction conditions and continued for 1000 hours, and changes in reaction results were investigated. The results are shown in Table 4.
表4の結果か−ら、Agを含有する前段酸化触媒は、前
段酸化における転化率、選択率がともに高(、しかも不
飽和炭化水素類の副生がきわめて少ないため、前後段直
結法用の触媒として好適であることがわかる。−万、上
記成分を含有しない触媒(実験番号4)は、前段酸化に
おける性能が劣るうえに不飽和炭化水素類の副生が多く
、そのためかかる触媒を前段酸化触媒とする前後段直結
法では後段酸化触媒の寿命が低下することがわかる。From the results in Table 4, it can be seen that the Ag-containing pre-oxidation catalyst has a high conversion rate and high selectivity in the pre-oxidation (and produces very little unsaturated hydrocarbon by-products, so it is suitable for the direct coupling method). It can be seen that it is suitable as a catalyst.-The catalyst that does not contain the above components (Experiment No. 4) has poor performance in the pre-oxidation stage and produces many by-products of unsaturated hydrocarbons. It can be seen that in the method of directly connecting the front and rear stages as a catalyst, the life of the rear stage oxidation catalyst is shortened.
実施例5
実施例1〜3で使用した前段酸化触媒を用いて、インブ
チレンの代りにフロピレンとした以外は実施例1と全く
同様の方法で前後段直結反応を行った。得られた反応成
績を表5に示す0
比較のため、実施例1で使用した後段酸化触媒についで
、後段酸化部に供給されるアクロレインとして精製され
たアクロレイン(純度qq、6M景%)1用いで、空間
速度2000 hr 、供給カス組成をアクロレイン:
02 : N2 : H20=1 : 1.5 :1
3.0:17.5(モル比)とし、実施例1と同様の後
段酸化反応方法で反応を行い、その結果を表5に併記し
た(実験番号4)0Example 5 A direct reaction between the front and rear stages was carried out in exactly the same manner as in Example 1, using the front-stage oxidation catalyst used in Examples 1 to 3, except that inbutylene was replaced with furopylene. The obtained reaction results are shown in Table 5. For comparison, in addition to the post-oxidation catalyst used in Example 1, purified acrolein (purity qq, 6M %) was used as acrolein to be supplied to the post-oxidation section. At a space velocity of 2000 hr, the feed gas composition is acrolein:
02: N2: H20=1: 1.5:1
3.0:17.5 (molar ratio), and the reaction was carried out using the same post-oxidation reaction method as in Example 1, and the results are also listed in Table 5 (Experiment No. 4)0
Claims (1)
状酸素とを下記−膜組成式CI]で表わされる前段酸化
触媒を用いて気相接触酸化し、次いで得られた生成ガス
を後段酸化触媒を用いて気相接触酸化せしめることを特
徴とする不飽和カルボン酸の製造方法。 一般組成式〔I〕: Mo、Bib Fe、cod Nio AgfRg 5
hT1 0j に\で、Rはに、 Rb、 Co及びT
jから選ばれた少なくとも一種の元素を表わし、SはP
、All及びBから選ばれた少な(とも一種の元素を表
わし、TはOe、 Ti、 Te、 Zn、 Ge。 Sn、 Or、 Ga、 La、In、 Aj、 Od
、 P(1,Mn、 V。 Pb、 Nb、 Zr、 C!u及びUから選ばれた少
な(とも一種の元素を表わし、’+ b+ c + d
+ e 、 f 、 g 、 h rl及びjはそれぞ
れMo、 Bi、 Fe、 Co、 Ni、 Ag。 R,8,T及びOの原子数であり、a−12とした場合
、b = o、 i〜10.e−0,5〜40.d=0
〜12、e =(1−12,d+o=0.5〜15.
f=o、IP−8,g=0.01へ5. h=0ん5.
i=0〜12の値をとり、jは他のフし素の原子価を
満足する酸素の原子数である。) 2、 オレフィンが70ピレンまたはイソブチレンであ
る特許請求の範囲第1項記載の触媒。 6 後段酸化触媒がリン、モリブデンまたはリン、パラ
ジウムを必須成分とするものである特許請求の範囲第1
項記載の方法。 4、前段酸化触媒の組成が、a−12とした場合、b−
[1,5へ7.e=1〜35.d二〇〜10゜e =
O= 10 、6 + e = 0.5−12 、 f
= 0.1〜6.g=o、01〜4.h=o〜4.i
=o〜8の値をとり、jii他の元素の原子価を満足す
る酸素の原子数である特許請求の範囲第1項記載の方法
。 5、前段酸化触媒の組成が、a=12とした場合、b
= 0.5−7 、c = 8 A−り 0 、 6
= O−10。 e = 0−−1 0 、 6 + e = 0.5〜
1 2 、f = 0.1A−4,g=0.01〜5.
hヰ0〜5.i−0へ8の値をとり、jは他の元素の
原子価を満足する酸素の原子数でめる特F1f+77求
の範囲第1項記載の方法。[Claims] 1. An olefin having three carbon atoms in a linear chain and molecular oxygen are oxidized in a vapor phase using a pre-oxidation catalyst represented by the following membrane composition formula CI], and then the obtained A method for producing an unsaturated carboxylic acid, the method comprising oxidizing the produced gas in a vapor phase catalytic manner using a post-oxidation catalyst. General composition formula [I]: Mo, Bib Fe, cod Nio AgfRg 5
hT1 0j \, R is Rb, Co and T
represents at least one element selected from j, S represents P
, All, and B (both represent a type of element, T is Oe, Ti, Te, Zn, Ge, Sn, Or, Ga, La, In, Aj, Od
, P(1, Mn, V. Pb, Nb, Zr, C! A small number selected from u and U (both represent a type of element, '+ b+ c + d
+ e, f, g, h rl and j are respectively Mo, Bi, Fe, Co, Ni, Ag. It is the number of atoms of R, 8, T and O, and when a-12, b = o, i~10. e-0,5~40. d=0
~12, e = (1-12, d+o = 0.5 ~ 15.
f=o, IP-8, g=0.015. h=0n5.
i=0 to 12, and j is the number of oxygen atoms satisfying the valences of other fluorine atoms. 2. The catalyst according to claim 1, wherein the olefin is pyrene or isobutylene. 6 Claim 1 in which the post-oxidation catalyst contains phosphorus, molybdenum, or phosphorus and palladium as essential components.
The method described in section. 4. When the composition of the first stage oxidation catalyst is a-12, b-
[Go to 1, 5 7. e=1-35. d20~10°e =
O = 10, 6 + e = 0.5-12, f
=0.1~6. g=o, 01-4. h=o~4. i
2. The method according to claim 1, wherein the number of oxygen atoms takes a value from 0 to 8 and satisfies the valences of other elements. 5. When the composition of the first stage oxidation catalyst is a=12, b
= 0.5-7, c = 8 A-ri 0, 6
= O-10. e = 0--1 0, 6 + e = 0.5~
1 2 , f = 0.1A-4, g = 0.01-5.
hi 0-5. The method according to item 1, in which a value of 8 is taken for i-0, and j is determined by the number of oxygen atoms satisfying the valences of other elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59126727A JPS6084243A (en) | 1984-06-20 | 1984-06-20 | Preparation of unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59126727A JPS6084243A (en) | 1984-06-20 | 1984-06-20 | Preparation of unsaturated carboxylic acid |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51149596A Division JPS5945415B2 (en) | 1976-08-06 | 1976-12-13 | Olefin oxidation catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6084243A true JPS6084243A (en) | 1985-05-13 |
JPS616055B2 JPS616055B2 (en) | 1986-02-24 |
Family
ID=14942373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59126727A Granted JPS6084243A (en) | 1984-06-20 | 1984-06-20 | Preparation of unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6084243A (en) |
-
1984
- 1984-06-20 JP JP59126727A patent/JPS6084243A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS616055B2 (en) | 1986-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4155938A (en) | Oxidation of olefins | |
US3972920A (en) | Process for producing unsaturated aldehydes, unsaturated fatty acids or conjugated dienes | |
US4162234A (en) | Oxidation catalysts | |
US3875220A (en) | Process for the preparation of methacrylic acid from methacrolein | |
US4652673A (en) | Process for producing methacrylic acid | |
US3825600A (en) | Process for the preparation of unsaturated carbonyl compounds | |
US4052450A (en) | Catalytic oxidation of α-olefins | |
US4272637A (en) | Catalyst for oxidation of isobutylene | |
US4111984A (en) | Process for producing unsaturated aldehydes, and unsaturated fatty acids | |
US4186152A (en) | Oxidation of olefins | |
RU2036888C1 (en) | Method of synthesis of ethylene and/or acetic acid and catalytic composition for its realization | |
US4012449A (en) | Production of methacrolein and oxidation catalyst used therefor | |
EP0425666A1 (en) | Process for producing methacrylic acid and methacrolein | |
US4380664A (en) | Process for producing unsaturated aldehydes, and unsaturated fatty acids | |
US4316856A (en) | Molybdenum-promoted antimony phosphate oxide complex catalysts also containing at least one of bismuth and tellurium | |
JP2011178719A (en) | Process for producing butadiene | |
JPH0686399B2 (en) | Method for producing acrylic acid | |
US4746753A (en) | Preparation of acrylonitrile from propylene, oxygen and ammonia in the presence of an alkali metal promoted bismuth, cerium, molybdenum, tungsten catalyst | |
US4316855A (en) | Multiply promoted Sn-Sb oxide catalysts | |
JPS5950667B2 (en) | A method for producing unsaturated nitriles using catalysts with various metals as co-catalysts | |
US3907712A (en) | Catalyst composition for the preparation of unsaturated carbonyl compounds | |
US4209640A (en) | Catalysts for the oxidation of unsaturated aldehydes | |
US4245118A (en) | Oxidation of unsaturated aldehydes | |
US4939286A (en) | Promoted bismuth cerium molybdate catalysts | |
JPS5824417B2 (en) | Propylene Mataha Isobutylene Color Acrylic Sant Methacrylic Sanno Seizouhou |