JPS6083752A - Production of functional alloy member - Google Patents

Production of functional alloy member

Info

Publication number
JPS6083752A
JPS6083752A JP19054083A JP19054083A JPS6083752A JP S6083752 A JPS6083752 A JP S6083752A JP 19054083 A JP19054083 A JP 19054083A JP 19054083 A JP19054083 A JP 19054083A JP S6083752 A JPS6083752 A JP S6083752A
Authority
JP
Japan
Prior art keywords
capillary
melt
alloy member
alloy
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19054083A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19054083A priority Critical patent/JPS6083752A/en
Publication of JPS6083752A publication Critical patent/JPS6083752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce simply and easily a TiNi functional alloy member by drawing out the melt of an alloy which consists principally of specifically composed Ni and Ti and causes thermoelastic type martensite transformation while solidifying said metal near the outlet of a capillary. CONSTITUTION:The melt 1 of an alloy which causes thermoelastic type martensite transformation and consists of 50-60wt% Ni and the balance Ti or is substd. of a part of said Ni or Ti with >=1 kind among Cu, Al, V, Zr, Mo, Cr, Fe, Co and rare earth element is contained into a vessel 2 consisting of a refractory material which does not react with said melt. The melt is heated and held by a heater 3. A pressure 5 is exerted to the vessel 2 from one end thereof to force the melt 2 to the outlet from the inside of a capillary 4 formed at the other end. The melt is solidified at the solidification boundary 7 near the outlet and is drawn out into a vacuum atmosphere. A TiNi functional alloy member 6 having an optional shape such as a pipe, long-sized material, etc. regulated by the shape of the drawing outlet is continuously obtd.

Description

【発明の詳細な説明】 発明の分野 この発明は、T1Ni系機能合金部材の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method of manufacturing a T1Ni functional alloy member.

先行技術の説明 形状記憶効果(それに付随する超弾性効果、防振効果を
含む)を有する丁INi合金は、一般に、硬くて、耐摩
耗性に優れているので、それに切削等の機械加工を施す
ことは困難である。そのため、パイプ形状やその他の複
雑な形状の部材をに造することは困難である。また、こ
のT1Ni系合金を機械加工すると、加工時の発熱によ
って脆くなる傾向がある。したがって、TI Nl系合
金を、切削、穴あけなどの機械加工に処すれば、加工さ
れた面が割れやすいという問題点があった。
Description of the Prior Art DINi alloys with shape memory effects (including associated superelastic effects and anti-vibration effects) are generally hard and have excellent wear resistance, so they cannot be subjected to machining such as cutting. That is difficult. Therefore, it is difficult to fabricate pipe-shaped or other complicated-shaped members. Furthermore, when this T1Ni alloy is machined, it tends to become brittle due to the heat generated during processing. Therefore, when a TI Nl alloy is subjected to mechanical processing such as cutting or drilling, there is a problem in that the processed surface is likely to crack.

また、上述のようなパイプ形状やその他の複雑な形状で
はなく、線状または板状の部材を得る場合であれば、機
械加工は特に必要でない場合もある。しかしながら、一
般に、TINI系合金から成る特定の形状の部材を得る
には、溶解、均一化焼鈍、熱間圧延、冷間圧延、中間軟
化(この中間軟化工程と冷間圧延工程とは多数回繰返さ
れる。)などの多数の工程が必要であり、その上に、線
または板状の部材を1qるための加工が必要となる。
Furthermore, if a linear or plate-shaped member is obtained instead of the pipe shape or other complicated shapes as described above, machining may not be particularly necessary. However, in general, in order to obtain a member of a specific shape made of TINI alloy, melting, homogenizing annealing, hot rolling, cold rolling, and intermediate softening (this intermediate softening process and cold rolling process are repeated many times) are required. ), and on top of that, it is necessary to process the wire or plate-shaped member by 1q.

このように、その後に切削等の機械加工が行なわれるに
しても、この機械加工を行なう段階に至るまで、多数の
工程が必要であり、したがって製造に時間を要し、コス
トは必然的に高いものとなる。
In this way, even if machining such as cutting is performed afterwards, a large number of processes are required up to the stage where this machining is performed, so manufacturing takes time and costs are inevitably high. Become something.

発明の目的 それゆえに、この発明の目的は、種々の形状のTiN1
系機能合金部材を、大幅に削減された工程数で容易に製
造することができる方法を提供することである。
OBJECTS OF THE INVENTION Therefore, it is an object of the present invention to provide various shapes of TiN1
It is an object of the present invention to provide a method for easily manufacturing a functional alloy member using a significantly reduced number of steps.

発明の概要 この発明の機能合金部材の製造方法では、熱弾性型マル
テンサイト変態をするN150〜60重量%、残部T1
よりなる合金、またはN1もしくはTiの一部をC’ 
+ A ’ 、V、 Z r 、 MO。
Summary of the Invention In the method for manufacturing a functional alloy member of the present invention, 150 to 60% by weight of N, which undergoes thermoelastic martensitic transformation, and the balance T1.
or a part of N1 or Ti is C'
+ A', V, Z r, MO.

Cr、l”e、Qo、希土類元素からなるグループから
選ばれた1種以上の元素で置換されてなる合金の溶湯を
、加圧下で、該合金と反応しない耐火物質よりなるキャ
ピラリ内より出口方向へ至らせ、キャピラリの出口近傍
で凝固させながらキャピラリから引出すことが特徴とな
っている。このことを、第1図を参照して、より具体的
に説明する。
A molten alloy made of an alloy substituted with one or more elements selected from the group consisting of Cr, l"e, Qo, and rare earth elements is heated under pressure from the inside of a capillary made of a refractory material that does not react with the alloy toward the outlet. It is characterized in that it is allowed to reach a temperature of 50% and is solidified near the exit of the capillary while being pulled out from the capillary.This will be explained in more detail with reference to FIG.

Tzyt系合金の溶湯1は、この溶湯1と反応しない耐
火物質よりなる容器2内に収納された状態で、ヒータ3
による加熱下に置かれる。容器2の一方端には、キャピ
ラリ4が形成され、容器2の他方端側には、圧力5が与
えられる。この圧力5によって、[11は、キャピラリ
4の出口方向へ至る。そして、この出口近傍において、
溶湯1は凝固されながらキャピラリ4から引出され、所
望の機能合金部材6が得られる。なお、第1図において
、凝固界面は、参照数字7で示されている。
The molten metal 1 of the Tzyt alloy is stored in a container 2 made of a refractory material that does not react with the molten metal 1, and is heated to a heater 3.
placed under heat. A capillary 4 is formed at one end of the container 2, and a pressure 5 is applied to the other end of the container 2. This pressure 5 causes [11 to move towards the exit of the capillary 4. And near this exit,
The molten metal 1 is drawn out from the capillary 4 while being solidified, and a desired functional alloy member 6 is obtained. In addition, in FIG. 1, the solidification interface is indicated by the reference numeral 7.

上述した説明から明らかにように、この発明によれば、
溶湯から、直接、最終形状(またはRI?形状に近い形
状)を得ることができるので、機械加工を伴う場合に比
べて、工程数を大幅に削減することができる。そのため
、歩留りも向上する。
As is clear from the above description, according to the present invention,
Since the final shape (or a shape close to the RI shape) can be obtained directly from the molten metal, the number of steps can be significantly reduced compared to when machining is involved. Therefore, the yield is also improved.

また、キャピラリの形状を変えることによって、得よう
とする部材の断面形状を容易に変更することができ、任
意の断面形状、たとえば異型断面であっても、またバイ
ブのような中空体であっても、さらには長尺体であって
も、能率的に製造することができる。
In addition, by changing the shape of the capillary, the cross-sectional shape of the desired member can be easily changed. Even long bodies can be manufactured efficiently.

さらに、この発明によれば、必要とあれば、単結晶化さ
れた機能合金部材を得ることも容易である。一般に、銅
系機能合金等では、単結晶化すれば、耐疲労特性の改善
や形状回復変形量の増大などを図ることができることが
知られている。このように単結晶を得る方法としては、
帯溶融法(ゾーンメルト法)や、ブリッジマン法などが
あるが、帯溶融法では異型断面の部材を製造するのが不
可能であり、他方、ブリッジマン法においても、パイプ
などの中空体を製造卑優ことができない。しかしながら
、1−iNi系合金は、多結晶状態であっても、耐疲労
特性が優れ、形状回復変形量が大きいので、敢えて単結
晶化するメリットはない。
Further, according to the present invention, if necessary, it is easy to obtain a single-crystal functional alloy member. In general, it is known that for copper-based functional alloys, if they are made into single crystals, it is possible to improve fatigue resistance and increase the amount of shape recovery deformation. The method for obtaining single crystals in this way is as follows:
There are zone melting methods (zone melting method) and the Bridgman method, but with the zone melting method it is impossible to manufacture parts with irregular cross sections. Manufacturer cannot be inferior. However, even in a polycrystalline state, the 1-iNi alloy has excellent fatigue resistance and a large amount of shape recovery deformation, so there is no advantage in intentionally turning it into a single crystal.

したがって、このように単結晶化する必要がなければ、
上述した凝固部分(凝固界面、固液界面)の温度!+J
御を厳密にする必要がない。
Therefore, if there is no need for single crystallization in this way,
The temperature of the solidification part (solidification interface, solid-liquid interface) mentioned above! +J
There is no need to be strict about control.

なお、上述した第1因に示す一興体例では、溶湯1の引
出し方向は上方であり、別に圧力5を付与して、溶湯1
に対して辻力なかけた状態で実施されたが、引出し方向
を下方としながら、溶湯の自重と表面張力をバランスさ
せて、溶1を引下げてもよい。なお、このことは、後述
する説明において、第3図を参照して明らかにされる。
In addition, in the case of the one-shot body shown in the first factor mentioned above, the drawing direction of the molten metal 1 is upward, and a pressure 5 is applied separately to draw out the molten metal 1.
Although this was carried out in a state where a slight force was applied to the melt 1, the melt 1 may be pulled down while the drawing direction is set downward and the weight of the melt and the surface tension are balanced. Note that this will be made clear with reference to FIG. 3 in the explanation to be described later.

また、好ましい実施例では、溶湯の引出しは、非酸化ま
たは還元雰囲気で実施される。しかしながら、7−nの
ような蒸気圧の高い金属を含有していないので、高価な
ガス雰囲気を用いる必要がなく、単なる真空雰囲気で十
分である。
Also, in preferred embodiments, the withdrawal of the molten metal is performed in a non-oxidizing or reducing atmosphere. However, since it does not contain a metal with a high vapor pressure like 7-n, there is no need to use an expensive gas atmosphere, and a simple vacuum atmosphere is sufficient.

なお、この発明では、熱弾性型マルテンサイト変態をす
る合金は、N+ 50〜60重量%、残部T1よりなる
組成とされる。N1を上述の範囲内に限定したのは、こ
の範囲を外れると、形状記憶効果を現出し難いからであ
る。
In the present invention, the alloy that undergoes thermoelastic martensitic transformation has a composition of 50 to 60% by weight of N+ and the balance T1. The reason why N1 is limited within the above-mentioned range is that outside this range, it is difficult to exhibit the shape memory effect.

実施例の説明 実施例1 実施例1においては、第1図に示す![を用いた。そし
て、第1図におけるキャピラリ4として、第2図に示す
形状のものが選ばれた。すなわち、直径aが3 +n、
長さbが2511のキャピラリを用いて、真空雰囲気で
、Ti−50,0原子%Ni合金の多結晶のフィラメン
ト状の機能合金部材6を作製した。なお、キャピラリ4
には、■INをコーティングしたグラファイトを用いた
。得られたフィラメントは連続的に巻取られ、200m
まで断線することなく、製造でき、変態点は60℃±2
℃以内に制御できた。
DESCRIPTION OF EMBODIMENTS Example 1 Example 1 is shown in FIG. 1! [was used. As the capillary 4 in FIG. 1, one having the shape shown in FIG. 2 was selected. That is, the diameter a is 3 + n,
A polycrystalline filament-shaped functional alloy member 6 of Ti-50,0 atomic % Ni alloy was produced in a vacuum atmosphere using a capillary with a length b of 2511 mm. In addition, capillary 4
Graphite coated with ■IN was used. The obtained filament was continuously wound up to 200 m
It can be manufactured without disconnection up to 60°C ± 2.
It was possible to control the temperature within ℃.

なお、フィラメント等の機能合金部材を一度にlJl造
できる長さは、キャピラリと溶湯との反応性に左右され
るもので、その意味で、キャピラリには溶湯と反応しな
い物質が用いられる。
Note that the length of functional alloy members such as filaments that can be produced at one time depends on the reactivity between the capillary and the molten metal, and in this sense, a substance that does not react with the molten metal is used for the capillary.

実施例2 この実施例2では、第3図に示す装置が用いられ、特に
第4図に示すキャピラリを適用して、条を得ようとする
ものである。
Example 2 In this Example 2, the apparatus shown in FIG. 3 is used, and in particular, the capillary shown in FIG. 4 is applied to obtain stripes.

第3図を参照して、溶′a8を収納する容器9は、ヒー
タコイル10をもつて構成されたヒータによる加熱を受
ける状態に配置される。この容器9の下端部にキャピラ
リ11が下方に向けて形成される。このキャピラリ11
が位置する周囲には、凝固部m痕微sl′a用ヒータコ
イル12が配置される。
Referring to FIG. 3, a container 9 containing melt a8 is placed in a state where it is heated by a heater having a heater coil 10. As shown in FIG. A capillary 11 is formed at the lower end of this container 9 so as to face downward. This capillary 11
A heater coil 12 for the fine coagulation part m mark sl'a is arranged around the area where is located.

キャピラリ11は、第4図に拡大されて示されている。Capillary 11 is shown enlarged in FIG.

キャピラリ11は、厚みCが0.51−であり、幅dが
20111である。
The capillary 11 has a thickness C of 0.51 - and a width d of 20111.

第3図に示すように、溶湯8は、それ自身の自重と表面
張力がバランスされた状態で、キャピラリ11から引出
される。第3図および第4図において、凝固界面が13
で示されていて、この凝固界面13より下方に、条14
が形成される。
As shown in FIG. 3, the molten metal 8 is drawn out from the capillary 11 in a state where its own weight and surface tension are balanced. In Figures 3 and 4, the solidification interface is 13
Below this solidification interface 13, there is a strip 14.
is formed.

このような装置を用いて、真空中にて、T1−48、O
W、子%Ni−2原子%l”a合金の単結晶の条14を
作製した。この条14を直線状態に拘束したまま、50
0℃で15分間熱処理した後、この拘束を外すと、室温
で良好な超弾性挙動を示した。
Using such a device, T1-48, O
A single-crystal strip 14 of W, %Ni-2 atomic%l''a alloy was produced.While this strip 14 was restrained in a straight state, it was
After heat treatment at 0° C. for 15 min, this restraint was removed and it showed good superelastic behavior at room temperature.

実施例3 この実施例3では、再び第1図に示す装置が用いられる
とともに、第5図ないし第7図に示すキャピラリが用い
られた。なお、第5図はキャピラリ4の先端における凝
固界面7付近を一部所面で示す斜視図である。第6図は
キャピラリ4の上面う図であり、第7図は第6図の1v
y−■に沿う断面図である。
Example 3 In this Example 3, the apparatus shown in FIG. 1 was used again, and the capillaries shown in FIGS. 5 to 7 were used. Note that FIG. 5 is a perspective view partially showing the vicinity of the solidification interface 7 at the tip of the capillary 4. FIG. 6 is a top view of the capillary 4, and FIG. 7 is a top view of the capillary 4, and FIG.
It is a sectional view along y-■.

これらの図面に示されるギヤピラリ4は、第5図にその
一部が示されているように、断面円形かつ中空のパイプ
状とされた機能合金部材6を得るように設計されている
。キャピラリ4には、第6図および第7図に示すように
、容器2(第1図)内に連通ずる複数個の通1s15が
形成されていて、この通路15の上方に、機能合金部材
6の断面形状を与える成形空間16が形成される。
The gear pillar 4 shown in these drawings is designed to obtain a functional alloy member 6 having a circular cross-section and a hollow pipe shape, as partially shown in FIG. As shown in FIGS. 6 and 7, the capillary 4 is formed with a plurality of passages 1s15 that communicate with the inside of the container 2 (FIG. 1), and above the passages 15, a functional alloy member 6 is formed. A molding space 16 having a cross-sectional shape is formed.

このような装置を用いて、Tl−50,8原子%N1合
金の多結晶のバイブロを作成した。このバイブロに、第
8図に示すようなスリット17を設け、そのときの径に
保持したまま、450℃で30分間、熱処理(記憶処理
)した。次に、(ドライアイス+アルコール)中で内径
を4%広げた後に、室温に戻すと、内径は記憶された状
態に縮んだ。
Using such an apparatus, a polycrystalline vibro of Tl-50, 8 atomic % N1 alloy was created. A slit 17 as shown in FIG. 8 was provided in this vibro, and the slit was heat-treated (memory treated) at 450° C. for 30 minutes while maintaining the diameter at that time. Next, after expanding the inner diameter by 4% in (dry ice + alcohol) and returning to room temperature, the inner diameter shrank to the memorized state.

以上、この発明を実施例1〜3に関連して説明したが、
この発明によって得られた機能合金部材は、たとえば、
コネクタ、アクチュエータなどの種々の用途に向けるこ
とができる。そして、形状記憶効果、超弾性効果、防振
効果の少なくとも1つの機能を有する部材であればよい
This invention has been explained above in relation to Examples 1 to 3, but
The functional alloy member obtained by this invention is, for example,
It can be used for various purposes such as connectors and actuators. Any member may be used as long as it has at least one of a shape memory effect, a superelastic effect, and a vibration damping effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例において用いられる装置
を示し、実施例1および3に対応する。 第2図は、実施例1において用いられるキャピラリ4を
示し、キャピラリ4の先端における凝固界面7付近を示
している。第3図および第4図は、実施例2に対応する
もので、第3図は装置全体を示し、第4図はキャピラリ
11の先端における凝固界面13付近を示す斜視図であ
る。第5図ないし第8図は、実施例3に対応するもので
、第5図はキャピラリ4の先端における凝固界面7付近
を示す斜視図であり、第6図はキャピラリ4の上面図で
あり、第7図は第6図の線■−yHに)aう断面図であ
り、第8図はスリット17が形成されたバイブロを示す
斜視図である。 図において、1,8は溶湯、4,11はキャピラリ、5
(よ圧力、6は観能合金部材(フィラメントまたはパイ
プ)、7.13は凝固界面、14は条である。 箔1 図 嵩20 第3図 第5゜ 第6図
FIG. 1 shows an apparatus used in one embodiment of the invention, and corresponds to embodiments 1 and 3. FIG. 2 shows the capillary 4 used in Example 1, and shows the vicinity of the solidification interface 7 at the tip of the capillary 4. 3 and 4 correspond to Example 2, with FIG. 3 showing the entire device and FIG. 4 being a perspective view showing the vicinity of the solidification interface 13 at the tip of the capillary 11. 5 to 8 correspond to Example 3, FIG. 5 is a perspective view showing the vicinity of the solidification interface 7 at the tip of the capillary 4, and FIG. 6 is a top view of the capillary 4, FIG. 7 is a sectional view taken along the line (--yH) in FIG. 6, and FIG. 8 is a perspective view showing the vibro in which the slit 17 is formed. In the figure, 1 and 8 are molten metal, 4 and 11 are capillaries, and 5
(6 is the viewing alloy member (filament or pipe), 7.13 is the solidification interface, and 14 is the strip. Foil 1 Figure Volume 20 Figure 3 Figure 5゜ Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1) 熱弾性型マルテンサイト変態をするNi 50
〜60重量%、残部T1よりなる合金、またはN1もし
く ハ’T’ iの一部をC0,AI、V、zr s 
Mo 、Qr %Fe % co %希土類元素からな
るグループから選ばれた1種以上の元素で置換されてな
る合金のr8槽を、加圧下で、該合金と反応しない耐火
物質よりなるキャピラリ内より出口方向に至らせ、キャ
ピラリの出口近傍で凝固させながらキャピラリから引出
すことを特徴とする、機能合金部材の製造方法。
(1) Ni 50 undergoes thermoelastic martensitic transformation
~60% by weight, the balance is T1, or a part of N1 or C'T' i is C0, AI, V, zr s
An R8 tank made of an alloy substituted with one or more elements selected from the group consisting of Mo, Qr%Fe%co%rare earth elements is exposed under pressure from the inside of a capillary made of a refractory material that does not react with the alloy. 1. A method for manufacturing a functional alloy member, the method comprising: drawing the functional alloy member from the capillary while solidifying it near the exit of the capillary.
(2) 前記引出し方向は上方であり、前記加圧は前記
溶湯に別に圧力を付与することにより行なわれる、特許
請求の範囲第1項記載の機能合金部材の製造方法。
(2) The method for manufacturing a functional alloy member according to claim 1, wherein the drawing direction is upward, and the pressurization is performed by separately applying pressure to the molten metal.
(3) 前記引出し方向は下方であり、前記加圧は前記
溶湯の自重、または溶湯に圧力をかけること、または凝
固部を下方に引出すことにより与えられる、特許請求の
範囲第1項記載の機能合金部材の製造方法。
(3) The function according to claim 1, wherein the drawing direction is downward, and the pressurization is applied by the weight of the molten metal, by applying pressure to the molten metal, or by drawing the solidified part downward. Method for manufacturing alloy parts.
(4) 前記引出しは、真空中で実施される、特許請求
の範囲第1項ないし第3項のいずれかに記載の機能合金
部材の製造方法。
(4) The method for manufacturing a functional alloy member according to any one of claims 1 to 3, wherein the drawing is performed in a vacuum.
(5) 前記機能合金部材は、長尺である、特許請求の
範囲第1項ないし第4項のいずれかに記載の機能合金部
材の製造方法。
(5) The method for manufacturing a functional alloy member according to any one of claims 1 to 4, wherein the functional alloy member is elongated.
JP19054083A 1983-10-11 1983-10-11 Production of functional alloy member Pending JPS6083752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19054083A JPS6083752A (en) 1983-10-11 1983-10-11 Production of functional alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19054083A JPS6083752A (en) 1983-10-11 1983-10-11 Production of functional alloy member

Publications (1)

Publication Number Publication Date
JPS6083752A true JPS6083752A (en) 1985-05-13

Family

ID=16259782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19054083A Pending JPS6083752A (en) 1983-10-11 1983-10-11 Production of functional alloy member

Country Status (1)

Country Link
JP (1) JPS6083752A (en)

Similar Documents

Publication Publication Date Title
US6875293B2 (en) Method of forming molded articles of amorphous alloy with high elastic limit
US3975219A (en) Thermomechanical treatment for nickel base superalloys
US6799357B2 (en) Manufacture of metal tubes
EP1861515A1 (en) Metal composites and methods for forming same
JP6560252B2 (en) Oligocrystalline shape memory alloy wire produced by melt spinning
EP2491148B1 (en) Process for continuous production of ductile microwires from glass forming systems
JP3822573B2 (en) Shape memory alloy and manufacturing method thereof
US4337886A (en) Welding with a wire having rapidly quenched structure
JP2019104058A (en) Methods and compositions for making near net shape article
IL113060A (en) Process for the manufacture of metal tube
JPS6083752A (en) Production of functional alloy member
US6248192B1 (en) Process for making an alloy
JPS6082648A (en) Process for forming material having high strength and difficult processability
CN108884517A (en) The manufacturing method of titanium alloy, clock exterior member material
US5534083A (en) Method for producing a reinforcing stainless steel wire-aluminum alloy composite structure and a product thereof
JP4099535B2 (en) Processed cast iron part and method of processing cast iron part
JPS6083753A (en) Production of functional alloy member
JP4845074B2 (en) Guide wire
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
US20230127567A1 (en) Superelastic and Shape-Memory Fe-Based Wire and Direct Wire Casting Thereof
JPS63140072A (en) Production of shape memory alloy
WO1980002123A1 (en) Wire with rapidly quenched structure
JPS6256393A (en) Metallic filament having bamboo-like structure and its production
JPS61567A (en) Treatment of grain oriented growth of crystal grain
JPS59185743A (en) Production of functional alloy wire