JPS6083468A - Binary coding device for picture signal - Google Patents

Binary coding device for picture signal

Info

Publication number
JPS6083468A
JPS6083468A JP58191004A JP19100483A JPS6083468A JP S6083468 A JPS6083468 A JP S6083468A JP 58191004 A JP58191004 A JP 58191004A JP 19100483 A JP19100483 A JP 19100483A JP S6083468 A JPS6083468 A JP S6083468A
Authority
JP
Japan
Prior art keywords
average value
value
pixel
deviation
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58191004A
Other languages
Japanese (ja)
Inventor
Tooru Shimotoono
亨 下遠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58191004A priority Critical patent/JPS6083468A/en
Priority to DE19843433493 priority patent/DE3433493A1/en
Publication of JPS6083468A publication Critical patent/JPS6083468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To optimize the binary coding of a part where density variation is large by calculating a threshold value on the basis of the mean density value of picture elements, and correcting the threshold value with the deviation threshold value obtained by deviating the calculated threshold value by the specific number of picture element in the opposite direction of a scanning direction. CONSTITUTION:A picture signal deviation part 2 and a mean value deviation part 3 deviates a density signal Px and a mean value Ma both in a scanning direction by the number of picture elements corresponding to the width of an area A to generate a deviation density signal Pxd and a mean deviation value Mad. A mean value selection part 4 selects a larger value between the mean value Ma and mean deviation value Mad for every picture element to generate a corrected mean value Ms, which is applied to a threshold arithmetic part 5 to calculate the threshold value TH on the basis of the corrected mean value Ms. This threshold value TH is applied to a binary coding circuit 6 and converted into a binary-coded signal SB, which is outputted to a next-stage device.

Description

【発明の詳細な説明】 [技術分野] 本発明は、原稿の地肌の濃度が変化しても、両信号を適
正に2値化する両信号2値化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a dual-signal binarization device that properly binarizes both signals even if the density of the background of a document changes.

[従来技術] 貼り合せ原稿、絵まじり文書およびカラー原稿等、地肌
の色や濃度が部分的に変化している原稿上の画像を画素
に分舒して2値化するためには、2値化のための閾値を
原稿の地肌の色や濃度に応じて変化する必要がある。
[Prior art] In order to divide an image on a document whose background color or density has partially changed, such as a pasted document, a mixed-picture document, or a color document, into pixels and convert it into a binary image, a binary method is required. It is necessary to change the threshold value for image processing according to the background color and density of the document.

そこで従来、各画素の濃度レベル信号を分割抵抗を用い
て所定の割合で分割し、分割した信号を低域ろ波してい
わゆる浮動閾値を形成し、この浮動閾値によって濃度レ
ベル信号を2値化する装置が実用されている。
Conventionally, the density level signal of each pixel is divided at a predetermined ratio using a dividing resistor, the divided signal is low-pass filtered to form a so-called floating threshold, and the density level signal is binarized using this floating threshold. A device that does this is in practical use.

しかしながら、このような従来装置では低域ろ波する手
段に時定数要素を用いているため、原稿の貼り合せ部の
境界等特に地肌の濃度が急激に上昇する部分ではこの濃
度変化に充分追従できず、また、閾値を高精度に設定で
きないという問題があった。
However, since such conventional devices use a time constant element for low-pass filtering, it is not possible to sufficiently follow density changes, especially in areas where the density of the background increases rapidly, such as at the border of the pasted part of the original. Another problem is that the threshold value cannot be set with high precision.

[目的コ 本発明は、上述した従来技術の欠点を解消するためにな
されたものであり、画素の濃度平均値に基づいて閾値を
算出するとともに、この閾値を所定画素数だけ反走査方
向に偏位させた偏位閾値で閾値を修正することで、濃度
が急激に上昇するような部分等、濃度変化が大きい部分
の両信号を適正に2値化できる画信号2値化装置を提供
することを目的とする。
[Purpose] The present invention has been made in order to eliminate the drawbacks of the prior art described above, and it calculates a threshold value based on the average density value of pixels, and biases this threshold value in the anti-scanning direction by a predetermined number of pixels. To provide an image signal binarization device that can appropriately binarize both signals in a part where density changes are large, such as a part where density rapidly increases, by correcting a threshold value with a shifted threshold value. With the goal.

[構成] 以下、添イ」図面に基づいて本発明の実施例を詳細に説
明する。
[Configuration] Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings.

第1図は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

同図において、平均値演算部1は、スキャナより加わる
画素毎の濃度信号(画信号)Pxに基づき、2値化しよ
うとする画素(以下、注目画素という)周辺の濃度の平
均値Maを次式N)によって算出する。
In the figure, an average value calculation unit 1 calculates the average value Ma of the density around the pixel to be binarized (hereinafter referred to as the pixel of interest) based on the density signal (image signal) Px for each pixel added from the scanner. Calculated using formula N).

Ha = (1m)S o +mMa’ −−(1)た
だし、Soは注目画素の濃度、■1は重み係数、ト1a
′は直前の画素が注目画素であったときの平均値である
Ha = (1m)S o +mMa' --(1) However, So is the density of the pixel of interest, ■1 is the weighting coefficient, and To1a
' is the average value when the immediately previous pixel is the pixel of interest.

この式(1)について以下に説明する。This equation (1) will be explained below.

一般に、注目画素の濃度と、注目画素の近傍に位置する
画素(以下、参照画素という)の濃度の間には相関関係
があり、また、注目画素の近くに位置する参照画素はど
、注目画素に強く関係しており、濃度の相関も強い。
Generally, there is a correlation between the density of a pixel of interest and the density of a pixel located near the pixel of interest (hereinafter referred to as a reference pixel). , and the correlation between concentrations is also strong.

したがって、注目画素からの距離が大きくなるにつれて
指数関数的に減少する重み係数を、おのおのの距離に応
じて各参照画素に割当てて算出した重みづけ平均値は、
注目画素近傍の画像の、濃度分布すなわち地肌濃度を反
映したものとなる。
Therefore, the weighted average value calculated by assigning a weighting coefficient that decreases exponentially as the distance from the pixel of interest increases to each reference pixel according to its distance is:
This reflects the density distribution, that is, the background density of the image near the pixel of interest.

そこで、この重みづけ平均値に所定の演算(例えば1次
関数による変換)を施すことにより、地肌濃度を反映し
た閾値を得ることができる。
Therefore, by performing a predetermined calculation (for example, conversion using a linear function) on this weighted average value, a threshold value that reflects the background density can be obtained.

さて、注目画素の濃度をS、oとし、注目画素から距離
(i X r) (iは整数、rは1画素の幅)だけ煎
れた参照画素の濃度と重み係数をそれぞれSi 、 $
(0<m<1)とすると、注目画素を含む参照画素の重
みづけ平均値Maは次式(n)のようになる。
Now, let the density of the pixel of interest be S and o, and the density and weighting coefficient of the reference pixel that is located a distance (i x r) (i is an integer, r is the width of one pixel) from the pixel of interest are Si and $, respectively.
When (0<m<1), the weighted average value Ma of the reference pixels including the pixel of interest is expressed by the following equation (n).

1++++十+l+2 +・・・・・・十m1この式(
II)を変形すると次式(m)を得る。
1++++10+l+2 +...10m1 This formula (
By transforming II), the following formula (m) is obtained.

ここで、ml−0であるから、上式(III)は次のよ
うになる。
Here, since ml-0, the above formula (III) becomes as follows.

Ma= (1−m)S o 十mMa’このようにして
、上式(1)が得られる。
Ma=(1-m)S o 10 mMa' In this way, the above formula (1) is obtained.

式(1)は漸加式の形をとるため、この式(1)によっ
て平均値Maを算出する平均値演算部1は、その回路溝
成が非常に簡素になる。ところが、各画素の濃度状態が
直接用われないため、ある程度の遅延特性を持つことに
なる。
Since equation (1) takes the form of an incremental equation, the average value calculation section 1 that calculates the average value Ma using equation (1) has a very simple circuit configuration. However, since the density state of each pixel is not directly used, it has some delay characteristics.

例えば、第2図(a)に実線で示したような濃度信号P
xが加えられたとすると、平均値演算部1は同図に1点
鎖線で示したような平均値Maを出力する。
For example, the concentration signal P shown by the solid line in FIG. 2(a)
If x is added, the average value calculation section 1 outputs the average value Ma as shown by the dashed line in the figure.

この例では、濃度信号Pxが立ち上がる図の領域Aの部
分で平均値Maの遅延の影響が最も強くあられれ、この
平均値Maを用いて閾値を算出した場合この部分が全黒
に判断されることがある。
In this example, the influence of the delay of the average value Ma is strongest in the area A in the figure where the density signal Px rises, and if the threshold value is calculated using this average value Ma, this area will be judged as completely black. Sometimes.

そこで1本実施例では、まず画信号偏位部2および平均
値偏位部3により、濃度信号Pxと平均値Maをともに
領域Aの幅に対応した画素数だけスキャすの走査方向に
偏位させ、第2図(b)に示したような偏位濃度信号P
xdと偏位平均値Madを形成する。
Therefore, in this embodiment, first, the image signal deviation section 2 and the average value deviation section 3 scan the density signal Px and the average value Ma by the number of pixels corresponding to the width of the area A. and the deviation concentration signal P as shown in FIG. 2(b)
xd and a deviation average value Mad.

そして、平均値選択部4により平均値Maと偏位平均値
Madのうち大きい方を各画素について選択し、第2図
(c)に示したような修正平均値Msを形成する。
Then, the average value selection unit 4 selects the larger of the average value Ma and the deviation average value Mad for each pixel to form a corrected average value Ms as shown in FIG. 2(c).

この修正平均値MSは閾値演算部5に加えられる。This corrected average value MS is added to the threshold calculation section 5.

閾値演算部5は、次式(IV)により、修正平均値Ms
に基づいて閾値Tllを算出する。
The threshold calculation unit 5 calculates the corrected average value Ms by the following equation (IV).
The threshold value Tll is calculated based on.

TH=k 1・Ma+k 2 ・・・−(IV)ただし
、k+、に2は係数である。
TH=k1・Ma+k2...-(IV) However, 2 is a coefficient in k+.

閾値THは2値化回路6に加えられる。これによって、
偏位濃度信号P’x dは閾値THで2値化されて2値
化信号S8に変換さ九、次段装置(図示せず)に出力さ
れる。
The threshold value TH is applied to the binarization circuit 6. by this,
The deviation concentration signal P'xd is binarized using a threshold value TH, converted into a binarized signal S8, and outputted to a next-stage device (not shown).

したがって、2値化信号SBは上述した領域Aにおける
不都合を解消したものになる。
Therefore, the binarized signal SB becomes one in which the above-described disadvantages in area A are resolved.

以上述べた実施例では、平均値Maと濃度信号Pxをと
もにスキャナの走査方向に偏位させ、平均値Maと偏位
平均値Madにより修正平均値Msを形成し、この修正
平均値Msに基づいて閾値T11を算出しているが、こ
れに限らない。
In the embodiment described above, both the average value Ma and the density signal Px are deviated in the scanning direction of the scanner, a modified average value Ms is formed from the average value Ma and the deviation average value Mad, and based on this modified average value Ms. Although the threshold value T11 is calculated using the above method, the present invention is not limited to this.

例えば、平均値Maのみをスキャナの反走査方向に偏位
させて修正平均値を形成してもよい。また、平均値14
aを用いて閾値をます算出し、この閾値を反走査方向に
偏位させて修正閾値を形成してもよし)+ 第3図は、本発明の他の実施例を示すブロック図である
For example, only the average value Ma may be shifted in the counter-scanning direction of the scanner to form a modified average value. Also, the average value is 14
3 is a block diagram showing another embodiment of the present invention.

この実施例では、平均値演算部1により算出された平均
値Maは直接閾値演算部5に加えられる。
In this embodiment, the average value Ma calculated by the average value calculation section 1 is directly added to the threshold value calculation section 5.

閾値演算部5は上式(IV)に基づいて閾値TH+(第
4図(a)参照)を算出し、これを閾値偏位部7および
閾値修正部8に加える。
The threshold calculation unit 5 calculates the threshold TH+ (see FIG. 4(a)) based on the above formula (IV), and applies this to the threshold deviation unit 7 and the threshold correction unit 8.

閾値偏位部7は、閾値Ttl+をスキャナの反走査方向
に所定画素数だけ偏位して、第4図(b)に示したよう
な偏位閾値r++dを形成し、これを閾値修正部8に加
える。
The threshold deviation unit 7 deviates the threshold Ttl+ by a predetermined number of pixels in the counter-scanning direction of the scanner to form a deviation threshold r++d as shown in FIG. Add to.

閾値修正部8は、閾値TH+と偏位閾値TI(dを画素
毎に比較して大きい方を選択し、これを修正閾値THm
 (第4図(c)参照)として2値化回路6に出力する
The threshold correction unit 8 compares the threshold TH+ and the deviation threshold TI(d for each pixel, selects the larger one, and sets this as the correction threshold THm.
(See FIG. 4(c)) is output to the binarization circuit 6.

したがって、濃度信号Pxの立ち上がり縁の部分が全黒
と判別される不都合が解消する。
Therefore, the inconvenience that the rising edge portion of the density signal Px is determined to be completely black is resolved.

なお、以上述べた2つの実施例は、マイクロコンピュー
タを用いてソフト的に実現することもできる。
Note that the two embodiments described above can also be realized in software using a microcomputer.

[効果コ 以上説明したように、本発明によれば各画素の周辺濃度
の平均値を用いて閾値を算出するとともに、この閾値を
スキャナの反走査方向に偏位した偏位閾値を形成し、こ
の偏位閾値によって閾値を修正するようにしているため
、濃度が急激に大きくなる部分を適正に2値化できると
いう利点を得る。
[Effects] As explained above, according to the present invention, a threshold value is calculated using the average value of the peripheral density of each pixel, and a deviation threshold value is formed by shifting this threshold value in the counter-scanning direction of the scanner, Since the threshold value is corrected using this deviation threshold value, there is an advantage that a portion where the density suddenly increases can be binarized appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図(
a)は濃度信号と平均値を例示した波形図、同図(b)
は平均値、偏位平均値および偏位濃度信号を例示した波
形図、同図(c)は修正平均値および濃度信号を例示し
た波形図、第3図は本発明の他の実施例を示すブロック
図、第4図(a)は濃度信号と閾値を例示した波形図、
同図(b)は濃度信号と閾値と偏位閾値を例示した波形
図、同図(c)は修正閾値と濃度信号を例示した波形図
である。 1・・・平均値演算部、2・・・画信号偏位部、3・・
 平均値偏位部、4・・・平均値選択部、5・・閾値演
算部、6・・・2値化回路、7・・・閾値偏位部、8・
・・閾値修正部。 〔i 第2図 第4図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
(a) is a waveform diagram illustrating the concentration signal and average value; (b)
3 is a waveform diagram illustrating the average value, deviation average value, and deviation concentration signal; FIG. 3(c) is a waveform diagram illustrating the corrected average value and concentration signal; FIG. Block diagram, FIG. 4(a) is a waveform diagram illustrating the concentration signal and threshold value,
FIG. 5B is a waveform diagram illustrating a density signal, a threshold value, and a deviation threshold value, and FIG. 1... Average value calculation section, 2... Image signal deviation section, 3...
Average value deviation section, 4... Average value selection section, 5... Threshold value calculation section, 6... Binarization circuit, 7... Threshold value deviation section, 8.
...Threshold correction section. [i Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 (]) 画素分解形スキャナから順次出力される画信号
を白黒画素に2値化する画信号2値化装置において、2
値化される注目画素およびこの注目画素に連続した複数
の参照画素の濃度の平均値を算出する平均値演算手段と
、この平均値演算手段が算出した平均値および画信号を
所定画素数だけスキャナの走査方向に偏位させた偏位平
均値および偏位画信号を形成する信号偏位手段と、上記
平均値と偏位平均値のうち大きい方を画素毎に選択する
平均値選択手段と、この平均値選択手段の出力に基づい
て画素毎の閾値を算出する閾値演算手段を備え、上記偏
位画信号を上記閾値によって2値化することを特徴とし
た画信号2値化装置。 (2、特許請求の範囲第1項記載において、前記平均値
演算手段は、前記注目画素からの距踵に応じて指数関数
的に小さくなる重み係数を前記各参照画素に割り当てた
重みづけ平均値演算をすることを特徴とする画信号2値
化装置。 (3) 画素分解形スキャナから順次出力される画信号
を白黒画素に2値化する画信号2値化装置において、2
値化される注目画素およびこの注目画素に連続した複数
の参照画素の濃度の平均値を算出する平均値演算手段と
、この平均値演算手段が算出した平均値に基づいて画素
毎の閾値を算出する閾値演算手段と、上記閾値を画信号
に対して所定画素数だl−1スキヤナの反走査方向に偏
位させた偏位閾値を形成する閾値偏位手段と、」二記閾
値および上記偏位閾値に基づいて修正閾値を演算する閾
値修正手段を備えたことを特徴とした画信号2値化装置
[Claims] (]) In an image signal binarization device that binarizes an image signal sequentially output from a pixel decomposition type scanner into black and white pixels,
an average value calculation means for calculating the average value of the density of a pixel of interest to be converted into a value and a plurality of reference pixels consecutive to the pixel of interest; and a scanner that uses the average value and image signal calculated by the average value calculation means for a predetermined number of pixels. signal deflection means for forming a deviation average value and a deviation image signal shifted in the scanning direction; and average value selection means for selecting the larger of the average value and deviation average value for each pixel; An image signal binarization device comprising threshold calculation means for calculating a threshold value for each pixel based on the output of the average value selection means, and for binarizing the deviation image signal using the threshold value. (2. In claim 1, the average value calculating means is configured to calculate a weighted average value by assigning to each reference pixel a weighting coefficient that becomes exponentially smaller depending on the distance from the pixel of interest. An image signal binarization device characterized by performing calculations. (3) In an image signal binarization device that binarizes an image signal sequentially output from a pixel decomposition type scanner into black and white pixels,
an average value calculation means for calculating the average value of the density of a pixel of interest to be converted into a value and a plurality of reference pixels consecutive to the pixel of interest; and a threshold value for each pixel is calculated based on the average value calculated by the average value calculation means. a threshold calculation means for calculating the threshold value by a predetermined number of pixels with respect to the image signal in the anti-scanning direction of the scanner; An image signal binarization device characterized by comprising a threshold value correction means for calculating a corrected threshold value based on a position threshold value.
JP58191004A 1983-09-12 1983-10-14 Binary coding device for picture signal Pending JPS6083468A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58191004A JPS6083468A (en) 1983-10-14 1983-10-14 Binary coding device for picture signal
DE19843433493 DE3433493A1 (en) 1983-09-12 1984-09-12 System for digitising picture signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191004A JPS6083468A (en) 1983-10-14 1983-10-14 Binary coding device for picture signal

Publications (1)

Publication Number Publication Date
JPS6083468A true JPS6083468A (en) 1985-05-11

Family

ID=16267266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191004A Pending JPS6083468A (en) 1983-09-12 1983-10-14 Binary coding device for picture signal

Country Status (1)

Country Link
JP (1) JPS6083468A (en)

Similar Documents

Publication Publication Date Title
JPH08172532A (en) Image reader and read method
JPS6083468A (en) Binary coding device for picture signal
JPH04293359A (en) Picture reader
JPH05199414A (en) Picture signal binarizing device
JPS6080368A (en) Binary coding device of picture signal
JPH0521386B2 (en)
JPS6255348B2 (en)
JPS59123367A (en) Picture reading system
JPS6080369A (en) Binary coding device of picture signal
JPH02254864A (en) Image input device
JPH07177321A (en) Picture reader
JP2757868B2 (en) Image information binarization processing circuit
JPS60178775A (en) Picture conversion processor
JPH0649012Y2 (en) Picture signal correction device
JPH05316343A (en) Picture reader
JPS60196072A (en) Production of dot picture signal
JPS61147670A (en) Video signal binarization system
JPS6083469A (en) Binary coding device for picture signal
JPS594272A (en) Uneven density correcting system
JPS6016768A (en) Binary-coding system of picture signal
JPS6143078A (en) Processing system of original picture
JPH01170271A (en) Picture correcting method
JPH027669A (en) Binarization processing circuit
JPH0636023A (en) Image signal processor
JPS60220661A (en) Picture signal processing system