JPS6082936A - Device for temperature correction of load cell - Google Patents

Device for temperature correction of load cell

Info

Publication number
JPS6082936A
JPS6082936A JP19100783A JP19100783A JPS6082936A JP S6082936 A JPS6082936 A JP S6082936A JP 19100783 A JP19100783 A JP 19100783A JP 19100783 A JP19100783 A JP 19100783A JP S6082936 A JPS6082936 A JP S6082936A
Authority
JP
Japan
Prior art keywords
load cell
output
temperature
dtheta
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19100783A
Other languages
Japanese (ja)
Inventor
Tadaharu Ko
高 忠晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19100783A priority Critical patent/JPS6082936A/en
Publication of JPS6082936A publication Critical patent/JPS6082936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

PURPOSE:To improve measuring accuracy of a load cell by using the same circuits in the load cell as those of the prior art and adding a correction circuit to the outside so that dirft is adequately compensated even for an abrupt change in temp. CONSTITUTION:A temp. detecting terminal 9 which takes out the forward voltage Ep of an internal diode as a temp. detecting signal is provided in a load cell 1. On the other hand, the extent that the temp. detection voltage Ep changes in certain time is calculated to calculate dtheta/dt and the drift amt. DELTAV that arises according to dtheta/dt is measured by the preliminary experiment. The relation DELTAV=f(dtheta/dt) is preliminarily made and the above-mentioned voltage is converted to the drift amt. DELTAV by a function generating circuit 11 which makes DELTAV=f(dtheta/ dt) with respect to the output dtheta/dt of a differentiating circuit 10. Said value is added as the correction rate for the output 6 to the output V of the load cell 1 by an amplifier 12 by which the said output is corrected.

Description

【発明の詳細な説明】 し発明の技術分野〕 本発明は、ロードセルの温度ドリフトを補正するロード
セルの温度補正装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a load cell temperature correction device that corrects temperature drift of a load cell.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ロードセルは圧延機の圧延圧力測定に使用されることが
多く、この場合は圧延する熱塊のすぐそばに設置される
ので通常の気温の変化以外に、熱塊の影響による温度変
化が加わる。このため圧延mtこ使用されるロードセル
は一10’Q〜+75℃程度の温度範囲でその出力が安
定になるよう考慮する必要がある。
Load cells are often used to measure rolling pressure in rolling mills, and in this case they are installed right next to the hot mass being rolled, so in addition to normal temperature changes, temperature changes due to the influence of the hot mass are added. For this reason, it is necessary to consider that the load cell used in rolling mt will have a stable output within a temperature range of -10'Q to +75°C.

第1図に静電容量式ロードセルの原理ブロック図を示す
FIG. 1 shows a block diagram of the principle of a capacitive load cell.

これは鉄のブロックに円孔をあけその中に平行平板コン
デンサ2を形成し、荷重によって円孔が変形しこれに伴
なって変化するコンデンサ容量を静電容量検出回路3で
検出し、アンプ4で増巾し出力するものである。
This involves making a circular hole in an iron block, forming a parallel plate capacitor 2 in it, deforming the circular hole under load, and detecting the capacitance that changes accordingly with a capacitance detection circuit 3. The width is amplified and output.

この場合、平行平板コンデンサ2、静電容量検出回路3
、アンプ4はそれぞれ温度変化に対して最小の変化とな
るよう設計されており、出力信号Vは温度変化に対して
小さな変化に抑えられている。
In this case, parallel plate capacitor 2, capacitance detection circuit 3
, amplifier 4 are each designed to have a minimum change with respect to temperature change, and the output signal V is suppressed to have a small change with respect to temperature change.

しかし素子のばらつきなどによりある決められこ値以下
にならない場合があるので、温度補正回路5を設けて補
正を行なっている。なお6は出力端子である。
However, since there are cases where the temperature does not fall below a certain threshold value due to variations in elements, etc., a temperature correction circuit 5 is provided to perform correction. Note that 6 is an output terminal.

第2図に上記温度補正回路5の詳細を示す。FIG. 2 shows details of the temperature correction circuit 5.

第2図の回路は温度が上ったとき出力Vがプラス方向に
ドリフトするのを補正するものでダイオード7の順方向
電圧が温度により約2mV/”Qで低くなることを利用
している。
The circuit shown in FIG. 2 corrects the drift of the output V in the positive direction when the temperature rises, and utilizes the fact that the forward voltage of the diode 7 decreases by about 2 mV/''Q depending on the temperature.

すなわち出力Vが温度によりプラス方向にドリフトした
ときアンプ4の非反転入力端子にダイオード7の順方向
電圧を抵抗8で適当に分圧して印加すると出力Vの温度
ドリフト△Vはこの非反転入力によってキャンセルされ
る。
In other words, when the output V drifts in the positive direction due to temperature, if the forward voltage of the diode 7 is appropriately divided by the resistor 8 and applied to the non-inverting input terminal of the amplifier 4, the temperature drift △V of the output V is caused by this non-inverting input. Canceled.

第1図に示すように平行平板コンデンサ2、静電容量検
出回路3、アンプ4、温度補正回路5は同じロードセル
内部に入っているので、それらの温度は周囲温度変化に
対してほぼ同じ速度で追従する。
As shown in Fig. 1, the parallel plate capacitor 2, capacitance detection circuit 3, amplifier 4, and temperature correction circuit 5 are contained within the same load cell, so their temperatures change at almost the same rate as the ambient temperature changes. Follow.

しかし極めてまれな現象としてロードセルに急激な温度
変化、例えば温度上昇40℃/20分があたえられると
、ロードセル内部の平行平板コンデンサ2、静電容量検
出回路3、アンプ4、温度補正回路5はそれぞれ温度時
定数が異なるので、温度に差を生じ、それぞれの温度ド
リフトがちがってきて出力に過渡的なドリフトを生ずる
However, in an extremely rare phenomenon, when a sudden temperature change is applied to a load cell, for example, a temperature rise of 40°C/20 minutes, the parallel plate capacitor 2, capacitance detection circuit 3, amplifier 4, and temperature compensation circuit 5 inside the load cell Since the temperature time constants are different, there will be a difference in temperature, and each temperature drift will be different, causing a transient drift in the output.

例えば平行平板コンデンサ2はロードセル1の鉄のブロ
ックに直接に接触しているので熱伝導が良く周囲温度に
速く追従するが、静電容量検出回路3などは内部の空気
が介在するので温度追従に遅れがでる。
For example, the parallel plate capacitor 2 is in direct contact with the iron block of the load cell 1, so it has good heat conduction and follows the ambient temperature quickly, but the capacitance detection circuit 3 and the like have internal air intervening, so it is difficult to follow the temperature. There will be a delay.

すなわち平行平板コンデンサ2と静電容量検出回路3な
どは周囲の温度変化に対して温度差を生じ、これによっ
て出力にドリフトを生じるという問題がある。
That is, there is a problem in that the parallel plate capacitor 2, the capacitance detection circuit 3, etc. generate a temperature difference in response to changes in ambient temperature, which causes a drift in the output.

〔発明の目的〕[Purpose of the invention]

本発明は、ロードセル内部の回路は従来の−1まとし、
外部に補正回路を追加することによって急激な温度変化
に対しても適正なドリフト補償を行なうロードセルの温
度補正装置を提供することを目的としてし)る。
In the present invention, the circuit inside the load cell is the same as the conventional -1,
It is an object of the present invention to provide a temperature correction device for a load cell that can appropriately compensate for drift even in sudden temperature changes by adding an external correction circuit.

〔発明の概要〕[Summary of the invention]

本発明は、ロードセルの内部温度信号を微分する微分回
路と、あらかじめ実験によってめた温度変化率と所要ド
リフト補正電圧との関係をもち上記微分回路の出力を入
力してドリフト補正電圧を出力する関数発生器と、ロー
ドセルの出力電圧と上記関数発生器の出力するドリフト
補正電圧とを加算する加算回路を備え、上記加算回路の
出力を最終的な検出出力として用い、これによって急激
な温度変化1こ対しても適正なドリフト補償を行なうロ
ードセルの温度補正装置である。
The present invention includes a differentiating circuit that differentiates an internal temperature signal of a load cell, and a function that has a relationship between a temperature change rate and a required drift correction voltage determined by experiment in advance, and inputs the output of the differentiating circuit and outputs a drift correction voltage. It is equipped with a generator and an adder circuit that adds the output voltage of the load cell and the drift correction voltage output from the function generator, and the output of the adder circuit is used as the final detection output. This is a temperature correction device for a load cell that performs appropriate drift compensation even for a load cell.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第4図に示す。 An embodiment of the present invention is shown in FIG.

本発明においては、ロードセル1に第3図に示すように
温度検出端子9を追加しておく。すなわちダイオード7
の順方向電圧EDを温度検出信号として外部へとり出し
ている。
In the present invention, a temperature detection terminal 9 is added to the load cell 1 as shown in FIG. i.e. diode 7
The forward voltage ED of is taken out to the outside as a temperature detection signal.

この順方向電圧EDは第5図に示すように温度θに対し
である関数となり、おおむね−2m V/”Gの傾斜を
もっているので順方向電圧EDを測定することによって
ロードセル内部の温度θがわかる。
As shown in Figure 5, this forward voltage ED is a function of temperature θ and has a slope of approximately -2 mV/''G, so by measuring forward voltage ED, the temperature θ inside the load cell can be determined. .

第4図において、温度検出出力FiDはある時間例えば
10秒でどの程度変化するかを演算しこれによってdθ
/d tを!出する。
In FIG. 4, the temperature detection output FiD is calculated by calculating how much it changes over a certain period of time, for example, 10 seconds, and then dθ
/d t! put out

すなわちあらかじめ実験によりdθ/diに応じて生じ
るドリフト量ΔVを測定し、第6図に示すよdθ うR: do/dt 、!:△V (7)関係式△V=
1 (−aT) e作成シ′〔おき、微分回路lOの出
力d 79/d tに対して△V−/(44−)となる
関数発生回路11により△Vに変換しこの値を出力6の
補正量としてアンプ12でロードセルの出力Vに加算し
て補正を行なう。
That is, the amount of drift ΔV that occurs depending on dθ/di is measured in advance through experiments, and as shown in FIG. 6, dθ R: do/dt , ! :△V (7) Relational expression △V=
1 (-aT) e-creation si' The amplifier 12 adds the amount of correction to the output V of the load cell to perform correction.

筐だ上記補正演算にはマイコンを利用するのが便利であ
る。そのブロック図の一例を第7図に示し、第8図にそ
の基本的なフローチャートを示す。
It is convenient to use a microcomputer for the above correction calculations. An example of the block diagram is shown in FIG. 7, and FIG. 8 shows its basic flowchart.

dθ 第6図に示す関数△V=fCi>はベースとなる温度に
より異なるので例えばO”Gから5℃毎に周囲温度をパ
ラメータにしたデータを作成しその時dθ の温度に対する△V=/(7ρを用いる。
dθ The function △V=fCi> shown in Figure 6 differs depending on the base temperature, so for example, if you create data with the ambient temperature as a parameter every 5℃ from O”G, then △V=/(7ρ Use.

通常の現象である急激な温度変化がなく第1図に示す各
ブロックが同等tこ温度変化に追従している場合はdO
/dt = Oとみなされ、第2図で説明したドリフト
補正が温度補正回路5で行なわれる。
If each block shown in Figure 1 follows the same temperature change without a sudden temperature change, which is a normal phenomenon, then dO
/dt = O, and the temperature correction circuit 5 performs the drift correction described in FIG.

以上の方法jこよればロードセル内部の構成は従来のも
のをその捷ま適用でき、ダイオード7の順方向電圧出力
端子9を追加するだけで実現できる。
According to the above method, the internal structure of the load cell can be modified from the conventional one, and can be realized by simply adding the forward voltage output terminal 9 of the diode 7.

またロードセル内の温度検出をダイオードの代りに熱心
対、ザーシスタ、温度センサ用IC(アナログデバイス
AD590・・・アナログ形、AD537・・・周波数
変換形)などを用いて行なうことも可能であり、この場
合は第9図のフローチャートに示すように第8図にd0
/dt = Qの時の絶対温度に対するドリフト量の補
正を追加し第2図の温度補正回路5の役割もマイコン処
理で行なわせればよい。
It is also possible to detect the temperature inside the load cell using a diode, a thermal resistor, a temperature sensor IC (analog device AD590...analog type, AD537...frequency conversion type), etc. instead of a diode. In this case, as shown in the flowchart of FIG. 9, d0 is shown in FIG.
The correction of the amount of drift with respect to the absolute temperature when /dt=Q may be added, and the role of the temperature correction circuit 5 in FIG. 2 may be performed by microcomputer processing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明lこよれば、ロードセル自身
は従来のままでロードセルの急激な温度変化によって生
ずる過渡的な温度ドリフトを適正に補正してロードセル
の測定精度を向上する合理的なロードセルの温度補正装
置が得られる。
As explained above, the present invention provides a rational load cell that improves the measurement accuracy of the load cell by appropriately correcting the transient temperature drift caused by sudden temperature changes of the load cell, while leaving the load cell itself unchanged. A temperature compensation device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のロードセルの一般的な構成を示す内部回
路図、第2図は第1図における温度補正回路の詳細図、
第3図は本j発明jこ用いられるロードセルの内部回路
図、第4図は本発明の一実施例を示す系統図、第5図は
ダイオードの順方向電圧と温度との関係を示す特性図、
第6図は温度変化率とドリフト補正値との関係を示す特
性図、第7図はマイコンを用いた本発明の一実施例を示
す系統図、第8図および第9図はそれぞれ本発明におけ
るマイコンの動作を示すフローチャートである。 ■ ロードセル 2 平行平板コンデンサ 3 静電容量検出回路 4.12 アンプ 5 温度補正回路 7 ダイオード 10 微分回路 11 関数発生回路 13人+13B A/D変換回路 14 マイクロコンピュータ 15 D/A変換回路 第 1 図 第2因 第3図 第 4 図 第 5 図 ρ 第 6 図 t
Figure 1 is an internal circuit diagram showing the general configuration of a conventional load cell, Figure 2 is a detailed diagram of the temperature correction circuit in Figure 1,
Fig. 3 is an internal circuit diagram of a load cell used in this invention, Fig. 4 is a system diagram showing an embodiment of the invention, and Fig. 5 is a characteristic diagram showing the relationship between diode forward voltage and temperature. ,
Fig. 6 is a characteristic diagram showing the relationship between the temperature change rate and the drift correction value, Fig. 7 is a system diagram showing an embodiment of the present invention using a microcomputer, and Figs. It is a flowchart showing the operation of the microcomputer. ■ Load cell 2 Parallel plate capacitor 3 Capacitance detection circuit 4.12 Amplifier 5 Temperature correction circuit 7 Diode 10 Differentiation circuit 11 Function generation circuit 13 + 13B A/D conversion circuit 14 Microcomputer 15 D/A conversion circuit Figure 1 2 causes Figure 3 Figure 4 Figure 5 Figure ρ Figure 6 t

Claims (1)

【特許請求の範囲】[Claims] ロードセルの内部温度信号を微分する微分回路と、あら
かじめ実験によってめた温度変化率と所要ドリフト補正
電圧との関係をもち上記微分回路の出力を入力してドリ
フト補正電圧を出力する関数発生器と、ロードセルの出
力電圧と上記関数発生器の出力するドリフト補正電圧と
を加算する加算回路を備え、上記加算回路の出力を温度
補正した検出信号として用いることを特徴とするロード
セルの8反補正装置。
a differentiating circuit that differentiates an internal temperature signal of the load cell; a function generator that has a relationship between a temperature change rate and a required drift correction voltage determined in advance through experiments; and that inputs the output of the differentiator circuit and outputs a drift correction voltage; An 8-inverter correction device for a load cell, comprising an adder circuit that adds the output voltage of the load cell and the drift correction voltage output from the function generator, and uses the output of the adder circuit as a temperature-corrected detection signal.
JP19100783A 1983-10-14 1983-10-14 Device for temperature correction of load cell Pending JPS6082936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19100783A JPS6082936A (en) 1983-10-14 1983-10-14 Device for temperature correction of load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19100783A JPS6082936A (en) 1983-10-14 1983-10-14 Device for temperature correction of load cell

Publications (1)

Publication Number Publication Date
JPS6082936A true JPS6082936A (en) 1985-05-11

Family

ID=16267318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19100783A Pending JPS6082936A (en) 1983-10-14 1983-10-14 Device for temperature correction of load cell

Country Status (1)

Country Link
JP (1) JPS6082936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250583A1 (en) * 2022-05-16 2023-11-17 Cosesy As A fire extinguisher, a system for monitoring a fire extinguisher, and methods for detecting leakage from a fire extinguisher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250583A1 (en) * 2022-05-16 2023-11-17 Cosesy As A fire extinguisher, a system for monitoring a fire extinguisher, and methods for detecting leakage from a fire extinguisher
EP4279149A1 (en) * 2022-05-16 2023-11-22 Dafo Brand AB A fire extinguisher, a system for monitoring a fire extinguisher, and methods for detecting leakage from a fire extinguisher

Similar Documents

Publication Publication Date Title
US4334186A (en) Apparatus for driving hot-wire type flow sensor
US4010644A (en) Method for compensation of the electrochemical perturbing direct current potential in inductive flow measurement with a periodically switched uniform field
WO1998044321A1 (en) Time-based temperature sensor system and method therefor
GB2201791A (en) Transducer signal conditioner
US20190107581A1 (en) Advanced fuel gauge
JPS6082936A (en) Device for temperature correction of load cell
US11422016B2 (en) Thermal flow rate meter
JPS62218813A (en) Pressure detector
JP2801124B2 (en) Correction method for zero error of torque sensor
US11163020B2 (en) Sensor circuit with offset compensation
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JP2953950B2 (en) Output signal generator
JPS5825217B2 (en) Electric dynamometer torque measurement method
CN117490859B (en) Ambient temperature compensation method and device for radiation thermometer
JPH06265565A (en) Current speed detector for gas
JP4156962B2 (en) Weighing device
JPS6111837Y2 (en)
JPS5896399A (en) Measuring circuit with compensating function
JPWO2020047194A5 (en)
CN107809216A (en) A kind of pressure-sensitive compensation circuit of OCXO and OCXO frequency pressure-sensitive character ameliorative ways
JPH0215197Y2 (en)
CN115752783A (en) Automatic error compensation method for transistor temperature measurement system
JPH07139985A (en) Thermal air flow measuring instrument
JPH04118573A (en) Temperature compensation to semiconductor sensor
SU378731A1 (en) METHOD OF MEASURING THE SPEED CHANGE OF TEMPERATURE