JPS6082849A - Oxygen concentration measuring apparatus - Google Patents

Oxygen concentration measuring apparatus

Info

Publication number
JPS6082849A
JPS6082849A JP58191446A JP19144683A JPS6082849A JP S6082849 A JPS6082849 A JP S6082849A JP 58191446 A JP58191446 A JP 58191446A JP 19144683 A JP19144683 A JP 19144683A JP S6082849 A JPS6082849 A JP S6082849A
Authority
JP
Japan
Prior art keywords
gas
cylinder
signal
measuring
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58191446A
Other languages
Japanese (ja)
Other versions
JPH0412419B2 (en
Inventor
Seisuke Sano
佐野 清助
Shozo Nakano
中野 昭三
Morimichi Iguchi
井口 守道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITAKA KOGYO KK
Yokogawa Electric Corp
Original Assignee
MITAKA KOGYO KK
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITAKA KOGYO KK, Yokogawa Hokushin Electric Corp filed Critical MITAKA KOGYO KK
Priority to JP58191446A priority Critical patent/JPS6082849A/en
Publication of JPS6082849A publication Critical patent/JPS6082849A/en
Publication of JPH0412419B2 publication Critical patent/JPH0412419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enhance measurement accuracy in low cost, by fixing a solid electrolyte in the vicinity of the leading end of a cylinder having piercing holes provided to the wall thereof an forming a negative pressure part in the cylinder provided in the stream of measuring gas while exhausting the gas in the cylinder through the piercing hole. CONSTITUTION:A test tube shaped zirconia element 20 is fixed to the leading end of a cylinder having piercing holes 21 provided to the wall thereof. The element 20 is provided in the stream of measuring gas from the lateral side and the interior thereof is filled with comparative gas from a comparative gas supply means 24. The signal corresponding to the difference between the oxygen concns. of the measuring gas and the comparative gas is outputted through electrodes 7, 8. A signal processing part inputs this signal and the signal of a thermocouple 25 and an oxygen concn. signal is outputted by predetermined operation processing. A negative pressure region is formed in a holding part 23 by the stream of the measuring gas in the outside of the holding part 2 and the gas flowing into this negative pressure region is exhausted to the outside from the piercing hole 21 and, because the comparative gas is not leaked to the side of the measuring electrode 7 and no measuring gas is leaked to the side of a comparison electrode 8, measuring accuracy is enhanced.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、壁に貫通穴を有する筒体の先端又はその近傍
に固定電解質を固定し、該固定電解質及び貫通穴を測定
ガスの流れの中に設置して筒体内に負圧域を形成すると
共に、筒体内の気体を貫通穴を介して外部に排出するよ
うにした酸素濃度測定装置に関する。
Detailed description of the invention [Technical field to which the invention pertains] The present invention fixes a fixed electrolyte at or near the tip of a cylindrical body having a through hole in its wall, and controls the flow of a measurement gas through the fixed electrolyte and the through hole. The present invention relates to an oxygen concentration measuring device that is installed inside a cylinder to form a negative pressure region within the cylinder, and discharges gas inside the cylinder to the outside through a through hole.

〔従来の技術〕[Conventional technology]

従来から、固体電解質を備えた酸素濃度測定装置として
、例えば、第1図及び第2図に示すものがある。第1図
において、酸素J度測定装置は、ベース1を先端に固定
する筒体2と、無機質の接着剤3で一体化される金属製
フランジ4を有し、このフランジ4を金属0リング5を
介在して筒体のベース1にボルト締めで固定する試験管
形ジルコニア素子6と、ジルコニア素子6の先端壁両面
に固着する電極7及び8を介して信号を入力し、所定の
処理をし酸素製部信号を出力する信号処理部と(図示せ
ず)、ジルコニア素子5を約700 t:釦制御する温
度制御部(図示せず)を有し、測定ガスの流れの中にジ
ルコニア素子6を挿入設置にシ、筒体2内からジルコニ
ア素子6内部(電極8側)K比較ガス(空気)を流込む
構成となっている。
2. Description of the Related Art Conventionally, as an oxygen concentration measuring device equipped with a solid electrolyte, there are devices shown in FIGS. 1 and 2, for example. In FIG. 1, the oxygen J degree measuring device has a cylindrical body 2 that fixes a base 1 to the tip, a metal flange 4 that is integrated with an inorganic adhesive 3, and this flange 4 is connected to a metal O ring 5. A signal is inputted through a test tube-shaped zirconia element 6 which is bolted to the base 1 of the cylindrical body through the zirconia element 6, and electrodes 7 and 8 which are fixed to both sides of the end wall of the zirconia element 6, and predetermined processing is performed. It has a signal processing section (not shown) that outputs an oxygen part signal, and a temperature control section (not shown) that controls the zirconia element 5 at a temperature of approximately 700 t. When the zirconia element 6 is inserted and installed, a comparison gas (air) is introduced into the zirconia element 6 (electrode 8 side) from inside the cylinder 2.

一方、第2図の酸素濃度測定装置は、Oリング10(有
機質シール材)を介在して一体化されるねじ部11ヲ有
する試験管形ジルコニア素子12と、第1図における同
様な信号処理部及び温度制御部(いずれも図示せず)を
有し、ジルコニア素子12の先端を炉内に挿入し、炉壁
13に設けられている取付口14に有機質のシール材を
介在してねじ部11を螺合して固定し、ジルコニア素子
12内部(電極8側)に比較ガス(空気)を流込む構成
となっている。
On the other hand, the oxygen concentration measuring device shown in FIG. 2 includes a test tube-shaped zirconia element 12 having a threaded portion 11 that is integrated with an O-ring 10 (organic sealing material) interposed therebetween, and a signal processing section similar to that shown in FIG. and a temperature control section (none of which are shown), the tip of the zirconia element 12 is inserted into the furnace, and an organic sealing material is interposed in the mounting opening 14 provided in the furnace wall 13, and the threaded part 11 is inserted into the furnace wall 13. are screwed together and fixed, and a comparison gas (air) is flowed into the inside of the zirconia element 12 (on the electrode 8 side).

尚、一般に1 ジルコニア素子12は、0リング10(
有機質シール利)の設置り箇所における温度を01Jン
グ10の使用温度限度以下に抑えるために、その胴部は
長くなっている。
In addition, generally 1 zirconia element 12 is 0 ring 10 (
In order to keep the temperature at the location where the organic seal is installed below the operating temperature limit of the 01J ring 10, its body is long.

以・上の構成において、ジルコニア素子6や12は、約
yaocの温度下で、かつ、比較ガスと測定ガスとをジ
ルコニア素子等で隔離した中で、両ガスの酸素濃度差に
対応する信号を電極7及び8を介して出力する。そして
、信号処理部は、この信号を入力し9「定の演算をして
酸素濃度信号を出力する。
In the above configuration, the zirconia elements 6 and 12 generate a signal corresponding to the difference in oxygen concentration between the comparison gas and the measurement gas at a temperature of about yaoc and with the comparison gas and the measurement gas isolated by the zirconia element or the like. Output via electrodes 7 and 8. Then, the signal processing section inputs this signal, performs a certain calculation, and outputs an oxygen concentration signal.

しかし、第1図の従来の装置にあっては、ジルコニア素
子6が700Cを超えると、ジルコニア素子6とフラン
ジ4の熱膨張差により接着剤3がひび割れや破損するた
め、比較ガスが測定電極7側に漏出し、測定精度の低下
を招く虞れがある。又、第2図の従来の装置にあっては
、ジルコニア素子12が長い構成となるため、コスト高
となるという問題がある。
However, in the conventional device shown in FIG. 1, when the temperature of the zirconia element 6 exceeds 700C, the adhesive 3 cracks or breaks due to the difference in thermal expansion between the zirconia element 6 and the flange 4. There is a risk of leakage to the side, resulting in a decrease in measurement accuracy. Further, in the conventional device shown in FIG. 2, the zirconia element 12 has a long structure, which causes a problem of high cost.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点に鑑みてなされたものであり、その
目的は、コスト高を招くことなく、測定精度を高めた酸
素濃度測定装置を提供するにある。
The present invention has been made in view of this point, and an object thereof is to provide an oxygen concentration measuring device with improved measurement accuracy without increasing costs.

〔発明の構成〕[Structure of the invention]

上記目的を達成した本発明の酸素濃度測定装置は、酸素
櫻度差のある2種のガスを遮ぎる固体電解質を備えた酸
素濃度測定装置において、該固体電解質を先端又はその
近傍に固定する筒体であって、前記固体電解質の固定位
置より筒体の後端側の壁に貫通穴を有する固体電解質保
持部と、比較ガスを前記固体電解質の筒体内側の壁近傍
に連続供給する手段を備え、前記貫通穴を測定ガスの流
れの中にして前記固体電解質保持部を設置したとき、筒
体内に負圧域を作ると共に1筒体内の気体を前記貫通穴
から筒体外に排出する流れを形成するように構成されて
いる。
The oxygen concentration measuring device of the present invention, which has achieved the above object, is an oxygen concentration measuring device equipped with a solid electrolyte that blocks two types of gases having different oxygen concentrations. a solid electrolyte holding portion having a through hole in a wall on a rear end side of the cylinder body from the fixed position of the solid electrolyte, and means for continuously supplying a comparison gas to the solid electrolyte near the inner wall of the cylinder body. When the solid electrolyte holding part is installed with the through hole in the flow of the measurement gas, a negative pressure region is created in the cylinder and the gas in the cylinder is discharged from the through hole to the outside of the cylinder. configured to form.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照し本発明について詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は、本発明の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

酸素濃度測定装置は、試験管形ジルコニア素子20を先
端に固定する筒体であって、ジルコニア素子20の固定
位置より筒体の後端側の壁に貫通穴21(貫通穴21に
はフィルタ22が設置されている)を有するジルコニア
素子保持部23と、比較ガスをジルコニア素子20の筒
体内側の壁近傍に連続供給する手段24と、ジルコニア
素子20の先端壁両面に固着する電極7及び8を介し、
該壁画面圧おける酸素濃度差に対応する信号及び熱電対
25で検出するジルコニア素子20近傍の温度信号を入
力し、所定の処理をして測定ガスの酸素濃度信号を出力
する信号処理部(図示せず)を有する。保持部23の先
端ハ、ジルコニア素子20の設置基盤となるベース26
及びこのベース26にジルコニア素子10を設置して固
定する略円筒形のキャップ27で構成される。ベース2
6は、比較ガス供給手段24を挿通する貫通穴28と、
熱電対25ヲ挿通する貫通穴z9と、校正ガス供給パイ
プ30に結合する貫通穴31と、ベース26の内と外を
連通ずる貫通穴52とを有する。父、キャンプ27け、
底部に形成する貫通大兄と、側壁に形成する貫通穴34
及び35を有し、・(ノキング36及び37を介在して
ジルコニア素子20ヲベース26に固定し、筒体23と
一体構成となっている。この一体化は、比較ガス供給手
段z4の先端をジルコニア素子20の中に挿入すると共
に、貫通穴29と34、貫通穴31と35夫々を結合し
て行われる。この構成にあっては、貫通穴32は、ジル
コニア素子20の外側(測定ガスと接触する1llil
)と筒体23との連通孔となっている。
The oxygen concentration measuring device is a cylindrical body with a test tube-shaped zirconia element 20 fixed at its tip, and a through hole 21 (a filter 22 a zirconia element holding section 23 having a zirconia element holding section 23 (wherein a zirconia element is installed), a means 24 for continuously supplying a reference gas near the inner wall of the cylindrical body of the zirconia element 20, and electrodes 7 and 8 fixed to both sides of the tip wall of the zirconia element 20. Through
A signal processing section (Fig. (not shown). The tip of the holding part 23 is the base 26 that serves as the installation base for the zirconia element 20.
The base 26 includes a substantially cylindrical cap 27 on which the zirconia element 10 is installed and fixed. base 2
6 is a through hole 28 through which the comparison gas supply means 24 is inserted;
It has a through hole z9 through which the thermocouple 25 is inserted, a through hole 31 connected to the calibration gas supply pipe 30, and a through hole 52 through which the inside and outside of the base 26 are communicated. My father, 27 years old at camp.
A large through hole formed on the bottom and a through hole 34 formed on the side wall.
and 35, the zirconia element 20 is fixed to the base 26 with knockings 36 and 37 interposed, and is integrated with the cylinder body 23. This integration means that the tip of the comparison gas supply means z4 is This is done by inserting it into the element 20 and connecting the through holes 29 and 34 and the through holes 31 and 35, respectively.In this configuration, the through hole 32 is inserted into the outside of the zirconia element 20 (in contact with the measurement gas 1llil to do
) and the cylindrical body 23.

上記ジルコニア素子20I′i、保持部(筒体)230
貫通穴21を600〜+001:Fの測定ガスの流れの
中に位置させ、保持部26(フランジと一体構成の場合
フランジ)を#5@の取伺口に固定して設置される。
The above zirconia element 20I'i, holding part (cylindrical body) 230
The through hole 21 is positioned in the flow of the measurement gas at 600 to +001:F, and the holding part 26 (flange if integrated with the flange) is fixed to the receiving port #5@.

以上の構成において、ジルコニア素子20は、第4図で
示す矢印X方向の測定ガスの流れの中にあって(第4図
における各符号は第5図に付したものと同じ)、その内
部は比較ガス供給手段24からの比較ガスで満たされる
。そして、測定ガスと比較ガスの酸素濃度差に対応する
信号、即ち、ネルンストの式に基づく信号を電極7及び
8を介して出力する。信号処理部は、この信号と熱電対
25による信号を入力し、所定の演算をして酸素濃度信
号を出力する。
In the above configuration, the zirconia element 20 is in the flow of the measurement gas in the direction of the arrow X shown in FIG. It is filled with a comparison gas from the comparison gas supply means 24. Then, a signal corresponding to the oxygen concentration difference between the measurement gas and the comparison gas, that is, a signal based on the Nernst equation, is outputted via the electrodes 7 and 8. The signal processing section inputs this signal and the signal from the thermocouple 25, performs predetermined calculations, and outputs an oxygen concentration signal.

一方、保持部23の外側を流れる測定ガスの流れは、貫
通穴21近傍の気体をまき込んで流れるため、ベルヌー
イの法則により保持部23の内部に負圧域が形成される
。本考案者らの実験によれば、第5図に示す測定点P1
及びP2における圧力P1及びP2と測定ガスの流速V
の関係は第5図に示す結果となった。このため、この負
圧域に向けて流れ込む気体は、貫通穴21から保持部2
3の外に向けた流れとなって排出される。即ち、ジルコ
ニア素子20内の比較ガスは、圧力測定点P1への流れ
となって貫通穴21から排出されると共に、圧力測定点
P2の測定ガスは、貫通穴32や34(29)を介して
圧力測定点P1への流れとなって貫通穴21から排出き
れる。従って、比較ガスが測定電極7側に、又、測定ガ
スが比較電極8側に漏出することがない。
On the other hand, since the flow of the measurement gas flowing outside the holding part 23 entrains the gas near the through hole 21, a negative pressure region is formed inside the holding part 23 according to Bernoulli's law. According to experiments by the present inventors, measurement point P1 shown in FIG.
and the pressures P1 and P2 at P2 and the flow rate V of the measurement gas
The results of the relationship are shown in Figure 5. Therefore, the gas flowing toward this negative pressure area is transferred from the through hole 21 to the holding part 2.
It is discharged as an outward flow of 3. That is, the comparison gas in the zirconia element 20 flows to the pressure measurement point P1 and is discharged from the through hole 21, and the measurement gas at the pressure measurement point P2 flows through the through holes 32 and 34 (29). It becomes a flow to the pressure measurement point P1 and is completely discharged from the through hole 21. Therefore, the comparison gas will not leak to the measurement electrode 7 side, and the measurement gas will not leak to the comparison electrode 8 side.

尚、本発明は、上配実N’r例に限定するものではなく
、保持部の貫通穴21の数をより多く、逆に少なくして
もよく、フィルタ22d、必要に応じて設置すればよい
。父、ジルコニア素子20ヲ保持部の先端よりやや中に
入れて(後端側建移動)固定してもよい。更に、ジルコ
ニア素子を1114の同体電解質に代えてもよい。
Note that the present invention is not limited to the upper mounting N'r example, and the number of through holes 21 in the holding part may be increased or decreased, and the filter 22d may be installed as necessary. good. Alternatively, the zirconia element 20 may be fixed by being inserted slightly into the tip of the holding portion (moved to the rear end side). Furthermore, the zirconia element may be replaced with a 1114 isoelectrolyte.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の酸素濃度測定装置によれば
、壁に貫通穴を有する筒体(保持部)の先端又はその近
傍に固体電解質を同定し、該固体電解質及び貫通穴を測
定ガスの流れの中に設置して筒体内に負圧域を形成する
と共に、筒体内の気体を貫通穴を介して外部に排出する
ようにしたため、固体電解質の長さや形状に関係なく、
又、比スが比較電極側に漏出することを防ぐことができ
る。従って、コスト高を招くことなく、測定精度を高め
ることができる。
As explained above, according to the oxygen concentration measuring device of the present invention, a solid electrolyte is identified at or near the tip of a cylindrical body (holding part) having a through hole in the wall, and the solid electrolyte and the through hole are connected to the measuring gas. Because it is installed in a flow to create a negative pressure region inside the cylinder, and the gas inside the cylinder is discharged to the outside through a through hole, it can be used regardless of the length or shape of the solid electrolyte.
Furthermore, it is possible to prevent the ratio from leaking to the comparison electrode side. Therefore, measurement accuracy can be improved without increasing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来例を示す図、第3図は、本発
明の一実施例を示す図、第4図は、測定ガスの流れを示
す図、第5図は、保持部(筒体)内の圧力と測定ガスの
流速の関係を示す図である。 7・・測定電極、8・・・比較電極、2o・・・ジルコ
ニア素子、21・・・筒体の壁に設けた貫通穴、25・
・・保持部(筒体)、24・・・比較ガス供給手段、2
6・・・ベース、27・・ギャップ、28.29.3+
、 32 、53 、54 、35・・・貫通穴、36
.57−・・バソキ/グ。 第1図 i、−t iu
1 and 2 are diagrams showing a conventional example, FIG. 3 is a diagram showing an embodiment of the present invention, FIG. 4 is a diagram showing the flow of measurement gas, and FIG. 5 is a diagram showing a holding section. FIG. 3 is a diagram showing the relationship between the pressure inside the cylinder (cylindrical body) and the flow rate of the measurement gas. 7... Measuring electrode, 8... Reference electrode, 2o... Zirconia element, 21... Through hole provided in the wall of the cylinder, 25...
...Holding part (cylindrical body), 24...Comparison gas supply means, 2
6...Base, 27...Gap, 28.29.3+
, 32 , 53 , 54 , 35 ... through hole, 36
.. 57-...basoki/gu. Figure 1 i, -t iu

Claims (1)

【特許請求の範囲】[Claims] 酸素濃度差のある2種のガスを遮ぎる固体電解質を備え
た酸素濃度測定装置において、該固体電解質を先端又は
その近傍に固定する筒体であって、前記固体電解質の固
定位置より筒体の後端側の壁に貫通穴を有する固体電解
質保持部と、比較ガスを前記固体電解質の筒体内側の壁
近傍に連続供給する手段を備え、前記貫通穴を測定ガス
の流れの中にして前記固体電解質保持部を設置したとき
、筒体内に負圧域を作ると共に、筒体内の気体を前記貫
通穴から筒体外に排出する流れを形成することを特徴と
する酸素濃度測定装置。
In an oxygen concentration measuring device equipped with a solid electrolyte that blocks two gases with different oxygen concentrations, the solid electrolyte is fixed at or near the tip of the cylinder, and the solid electrolyte is fixed at the tip of the cylinder. A solid electrolyte holding part having a through hole in a wall on the rear end side, and a means for continuously supplying a comparison gas to the vicinity of the inner wall of the cylinder of the solid electrolyte, the through hole being included in the flow of the measurement gas. An oxygen concentration measuring device characterized in that, when the solid electrolyte holding part is installed, a negative pressure region is created within the cylinder and a flow is formed to discharge gas within the cylinder to the outside of the cylinder through the through hole.
JP58191446A 1983-10-13 1983-10-13 Oxygen concentration measuring apparatus Granted JPS6082849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191446A JPS6082849A (en) 1983-10-13 1983-10-13 Oxygen concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191446A JPS6082849A (en) 1983-10-13 1983-10-13 Oxygen concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6082849A true JPS6082849A (en) 1985-05-11
JPH0412419B2 JPH0412419B2 (en) 1992-03-04

Family

ID=16274754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191446A Granted JPS6082849A (en) 1983-10-13 1983-10-13 Oxygen concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6082849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237765U (en) * 1985-08-24 1987-03-06
JPS6358152A (en) * 1986-08-28 1988-03-12 Ngk Insulators Ltd Industrial oxygen concentration measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237765U (en) * 1985-08-24 1987-03-06
JPS6358152A (en) * 1986-08-28 1988-03-12 Ngk Insulators Ltd Industrial oxygen concentration measuring apparatus

Also Published As

Publication number Publication date
JPH0412419B2 (en) 1992-03-04

Similar Documents

Publication Publication Date Title
JPH0579931B2 (en)
KR970001554B1 (en) Connection between the outlet of a metallugical vessel and a protective tube or immersion nozzle
JP2010276549A (en) Exhaust gas analyzer and probe unit
US4736618A (en) Sensor probe
JP2003139744A5 (en)
KR920701810A (en) Detector of disposable molten metal inclusion
US4462872A (en) Method of operating a gas analyzer and solid electrolyte gas sensing apparatus
JPS6082849A (en) Oxygen concentration measuring apparatus
JP2005537488A (en) Gas supply adapter
KR840006371A (en) System to control the delivery of solid material by blowing lance
US3603134A (en) Detector arrangements for analytical apparatus
US4152111A (en) Furnace for treatment of material at high temperature and pressure
KR102600381B1 (en) Probe device, analysis apparatus for exhaust gas and correction method
US5478053A (en) Refractory gas purging device
US3656339A (en) Glow discharge detector
JP2009156684A (en) Apparatus and method for carrying out airtight test of sealing member
US5596149A (en) Pressure measurement tap for a pressurized fluidized bed
JP2000074799A (en) Oxygen concentration measuring apparatus in furnace
CN212378781U (en) Sensor protector
SU693217A1 (en) Electrochemical sensor of oxygen with solid electrolyte
SU1193563A1 (en) Oxygen solion
JPS6367853B2 (en)
JPS5742846A (en) Zirconia oxygen sensor
USRE29209E (en) Method and apparatus for continuously sensing the condition of a gas stream
JPH0714877Y2 (en) Combustion air analyzer