JPS6082758A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6082758A
JPS6082758A JP19117583A JP19117583A JPS6082758A JP S6082758 A JPS6082758 A JP S6082758A JP 19117583 A JP19117583 A JP 19117583A JP 19117583 A JP19117583 A JP 19117583A JP S6082758 A JPS6082758 A JP S6082758A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator compartment
temperature
compressor
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19117583A
Other languages
Japanese (ja)
Other versions
JPH0515948B2 (en
Inventor
宏 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP19117583A priority Critical patent/JPS6082758A/en
Publication of JPS6082758A publication Critical patent/JPS6082758A/en
Publication of JPH0515948B2 publication Critical patent/JPH0515948B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍室用蒸発器と冷蔵室用蒸発器とを備えた
2温度式冷蔵庫等の冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigeration system, such as a two-temperature refrigerator, equipped with an evaporator for a freezer compartment and an evaporator for a refrigerator compartment.

従来例の構成とその問題点 従来の一般的な2温度式冷蔵庫の冷媒回路は、第1図に
示す様に、圧縮機aからの冷媒を、凝縮器b、毛細管C
を介し、冷凍室用蒸発器d、冷蔵室用蒸発器eに供給し
てこれらを同時に冷却し、庫内温度制御は、圧縮機aを
冷蔵室に設けられたサーモスタット(図示せず)により
0N10FF制御を行なうものである。ここで上記圧縮
機aが外2 ベージ 殻内高圧型のものであれば圧縮機aが停止時に圧縮機a
内の高温高圧ガスが冷凍室用蒸発器d及び冷蔵室用蒸発
器a内へ逆流するため、これを防止すべくサクションラ
インqと圧縮機aとの間に逆止弁fが配設される。iは
同じく圧縮機a停止時、高温高圧ガスをカットする電磁
弁である。
Structure of conventional example and its problems As shown in Fig. 1, the refrigerant circuit of a conventional general two-temperature refrigerator transfers refrigerant from compressor a to condenser b and capillary tube C.
The compressor a is supplied to the freezer compartment evaporator d and the refrigerator compartment evaporator e to cool them simultaneously. It is for controlling. Here, if the compressor a is an external high-pressure type in a beige shell, when the compressor a is stopped, the compressor a
Since the high-temperature, high-pressure gas inside flows back into the evaporator d for the freezer compartment and the evaporator a for the refrigerator compartment, a check valve f is installed between the suction line q and the compressor a to prevent this. . Similarly, i is a solenoid valve that cuts off high-temperature, high-pressure gas when compressor a is stopped.

このような冷媒回路において冷蔵室用蒸発器eの除霜は
、圧縮機aの停止時、毎サイクル行なうのが一般的とな
っており、従来は冷蔵室用蒸発器近傍に設けられた除霜
ヒータhにより圧縮機aの停止時に毎サイクル除霜して
いた。
In such a refrigerant circuit, defrosting of the refrigerator compartment evaporator e is generally performed every cycle when the compressor a is stopped, and conventionally, the defrosting of the refrigerator compartment evaporator e is performed in the vicinity of the refrigerator compartment evaporator. The heater h was used to defrost the air every cycle when the compressor a was stopped.

しかしながら、昨今の様な省エネルギー化指向が進む環
境化にあっては、このようなヒータhによる電力消費が
無視できなくなってきた。またこのヒータhの通電によ
る庫内温度上昇も無視できないものであった。
However, in the current environment where energy conservation is becoming more and more oriented, the power consumption by the heater h can no longer be ignored. Furthermore, the rise in temperature inside the refrigerator due to the energization of the heater h could not be ignored.

発明の目的 そこで本発明の目的は、前記従来例の欠点である圧縮機
停止時の除霜ヒータの消費電力の削減と、庫内温度の上
がりすぎを防止することである。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to reduce the power consumption of the defrosting heater when the compressor is stopped and to prevent the temperature inside the refrigerator from rising too high, which are the drawbacks of the conventional example.

3・(、ジ 発明の構成 この目的を達成するために、本発明は冷蔵室用蒸発器の
中途部に逆止弁を設け、圧縮機停止時に圧縮機内の高温
高圧冷媒を逆止却下流側の冷蔵室用蒸発器部分に導き、
前記冷媒が冷蔵室用蒸発器内で凝縮する際に放出する熱
量により除霜を行ない、冷蔵室用蒸発器の除霜用ヒータ
を廃止して電力消費を減少すると共に冷蔵室用蒸発器の
温度も逆止弁の位置の設定で最適にするものである。
3. (Constitution of the Invention In order to achieve this object, the present invention provides a check valve in the middle of the evaporator for a refrigerator compartment, and when the compressor is stopped, the high-temperature, high-pressure refrigerant inside the compressor is diverted to the downstream side of the evaporator. lead to the evaporator part for the refrigerator compartment,
Defrosting is performed using the amount of heat released when the refrigerant condenses in the refrigerator compartment evaporator, and the defrosting heater of the refrigerator compartment evaporator is eliminated to reduce power consumption and to reduce the temperature of the refrigerator compartment evaporator. It is also possible to optimize the position of the check valve.

実施例の説明 以下に本発明の一実施例について図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図において、1は回転式圧縮機(外殻内高圧型圧縮
機)、2は凝縮器、3は毛細管、4は冷凍室用蒸発器、
6は回転式圧縮機1内の高温高圧冷媒が冷凍室用蒸発器
4内と冷蔵室用蒸発器6の上流つまり後述する冷蔵室用
上流蒸発器6aに逆流するのを阻止する逆止弁であり、
これは冷蔵室用蒸発器6の中途部に設置されている。7
は凝縮器2内の高温高圧冷媒が冷凍室用蒸発器4内と冷
蔵室用蒸発器6の上流に流入するのを阻止する電磁弁で
ある。また上記冷蔵室用蒸発器6は逆止弁6にて区分さ
れ冷蔵室用上流蒸発器6aと冷蔵室用下流蒸発器6bと
で構成されている。冷媒回路は、これらを順次接続して
構成され冷蔵室用蒸発器6には除霜用ヒータを使用して
いない。
In Fig. 2, 1 is a rotary compressor (high-pressure compressor in the outer shell), 2 is a condenser, 3 is a capillary tube, 4 is an evaporator for the freezer compartment,
6 is a check valve that prevents the high-temperature, high-pressure refrigerant in the rotary compressor 1 from flowing back into the freezer compartment evaporator 4 and upstream of the refrigerator compartment evaporator 6, that is, to the refrigerator compartment upstream evaporator 6a to be described later. can be,
This is installed in the middle of the refrigerator compartment evaporator 6. 7
is a solenoid valve that prevents the high-temperature, high-pressure refrigerant in the condenser 2 from flowing into the evaporator 4 for the freezer compartment and upstream of the evaporator 6 for the refrigerator compartment. Further, the evaporator 6 for the refrigerator compartment is divided by a check valve 6 and is composed of an upstream evaporator 6a for the refrigerator compartment and a downstream evaporator 6b for the refrigerator compartment. The refrigerant circuit is constructed by sequentially connecting these, and no defrosting heater is used in the refrigerator compartment evaporator 6.

この様な構成において動作を説明する。庫内温度制御は
、冷蔵室内に設けられたサーモスタット(図示せず)に
より行なわれるが、冷蔵室温度と冷蔵室用蒸発器6との
相関関係で回転式圧縮機1が0N10FF 制御される
The operation in such a configuration will be explained. The temperature inside the refrigerator is controlled by a thermostat (not shown) provided in the refrigerator compartment, and the rotary compressor 1 is controlled to 0N10FF depending on the correlation between the refrigerator compartment temperature and the refrigerator compartment evaporator 6.

サーモスタットがON時、冷媒は回転圧縮機1により、
凝縮器2.電磁弁71毛細管3を介して冷凍室用蒸発器
4に供給され、冷蔵室用上流蒸発器6a、逆止弁5.冷
蔵室用下流蒸発器6bに供給され、冷凍室、冷蔵室のそ
れぞれを冷却する。
When the thermostat is ON, the refrigerant is supplied by the rotary compressor 1.
Condenser 2. The electromagnetic valve 71 is supplied to the freezer compartment evaporator 4 via the capillary tube 3, and is supplied to the refrigerator compartment upstream evaporator 6a, check valve 5. It is supplied to the downstream evaporator 6b for the refrigerator compartment, and cools each of the freezing compartment and the refrigerator compartment.

サーモスタットがOFF時、回転圧縮機1が停止すると
、電磁弁7が閉成されると共に、圧縮機1内で運転中保
たれていた高低圧の気密性が破れ、外殻内の高温高圧冷
媒がサクションライン8の方5ベージ゛ へ逆流し、逆止弁5の所まで高温高圧冷媒で充たされる
。この逆流する高温高圧冷媒により冷蔵室用下流蒸発器
6bが温度上昇し、冷蔵室用蒸発器6全体の除霜を行々
う。尚逆止弁5の配設位置により冷蔵室用蒸発器6の温
度上昇を制御でき庫内温度への影響も少なく制御すると
共に冷凍室用蒸発器4への逆流を防止し、冷凍室温度上
昇を防止し、圧縮機1の運転負荷も少なくできる。
When the rotary compressor 1 stops when the thermostat is OFF, the solenoid valve 7 is closed, and the high-low pressure airtightness maintained within the compressor 1 during operation is broken, causing the high-temperature and high-pressure refrigerant in the outer shell to leak. The refrigerant flows back toward the suction line 8 and is filled up to the check valve 5 with high-temperature, high-pressure refrigerant. The temperature of the downstream evaporator 6b for the refrigerator compartment rises due to this high-temperature, high-pressure refrigerant flowing back, and the entire refrigerator compartment evaporator 6 is defrosted. In addition, the temperature rise of the refrigerator compartment evaporator 6 can be controlled by the installation position of the check valve 5, which has less influence on the temperature inside the refrigerator, and also prevents backflow to the freezer compartment evaporator 4, thereby increasing the temperature of the freezer compartment. This also reduces the operating load on the compressor 1.

高温高圧冷媒による除霜が進行し、冷蔵室用蒸発器6の
温度が設定温度になると、再びサーモスタットがON 
l、、除霜が終了すると共に、回転型圧縮機1が冷却運
転を再開する。
When defrosting with the high-temperature, high-pressure refrigerant progresses and the temperature of the refrigerator compartment evaporator 6 reaches the set temperature, the thermostat is turned on again.
1. When the defrosting is completed, the rotary compressor 1 restarts the cooling operation.

発明の効果 以上の説明から明らかな様に、本発明は、外殻内高圧型
の圧縮機を用い、凝縮器9毛細管、冷凍室用蒸発器、冷
蔵室用蒸発器等を順次接続配管し゛てなり、冷蔵室用蒸
発器の中途部に逆止弁を配設しているので、毎サイクル
圧縮機OFF時に高温高圧冷媒を逆止弁下流側の冷蔵室
用蒸発器に逆流させて除霜を行なうため、従来の如の除
霜ヒータ6ベー、ミす の電力消費がなく、逆止弁の配設位置の調整により冷蔵
室用蒸発器の温度上昇を制御でき毎除鞘時の庫内温度を
最適に調整できる。
Effects of the Invention As is clear from the above explanation, the present invention uses a high-pressure compressor in the outer shell, and connects the condenser 9 capillary tubes, the evaporator for the freezer compartment, the evaporator for the refrigerator compartment, etc. in sequence. A check valve is installed in the middle of the refrigerator compartment evaporator, so when the compressor is turned off every cycle, high-temperature, high-pressure refrigerant flows back into the refrigerator compartment evaporator downstream of the check valve to defrost. This eliminates the power consumption of conventional defrosting heaters, and the temperature rise of the refrigerator compartment evaporator can be controlled by adjusting the check valve installation position, making it possible to control the temperature inside the refrigerator each time it is defrosted. can be adjusted optimally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置の冷媒回路図、第2図は本発明
一実施例の冷凍装置の冷媒回路図である。 1・・・・・・圧縮機、2・・・・・・凝縮器、4・・
・・・・冷凍室用蒸発器、6・・・・・・逆止弁、6・
・・・・・冷蔵室用蒸発器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名丙1
図 C 第2図 /
FIG. 1 is a refrigerant circuit diagram of a conventional refrigeration system, and FIG. 2 is a refrigerant circuit diagram of a refrigeration system according to an embodiment of the present invention. 1... Compressor, 2... Condenser, 4...
... Evaporator for freezer compartment, 6... Check valve, 6.
...Evaporator for refrigerator compartment. Name of agent: Patent attorney Toshio Nakao and 1 other person
Figure C Figure 2/

Claims (1)

【特許請求の範囲】[Claims] 外殻内高圧型の圧縮機、凝縮器、毛細管、冷凍室用蒸発
器、冷蔵室用蒸発器等を順次接続配管し、前記冷蔵室用
蒸発器の中途部に逆止弁を配設した冷凍装置。
A refrigeration system in which a high-pressure compressor, a condenser, a capillary tube, an evaporator for the freezer compartment, an evaporator for the refrigerator compartment, etc. are connected in sequence in the outer shell, and a check valve is installed in the middle of the evaporator for the refrigerator compartment. Device.
JP19117583A 1983-10-13 1983-10-13 Refrigerator Granted JPS6082758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19117583A JPS6082758A (en) 1983-10-13 1983-10-13 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19117583A JPS6082758A (en) 1983-10-13 1983-10-13 Refrigerator

Publications (2)

Publication Number Publication Date
JPS6082758A true JPS6082758A (en) 1985-05-10
JPH0515948B2 JPH0515948B2 (en) 1993-03-03

Family

ID=16270143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19117583A Granted JPS6082758A (en) 1983-10-13 1983-10-13 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6082758A (en)

Also Published As

Publication number Publication date
JPH0515948B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
CN109764607B (en) Control method of refrigerator
JPH09318165A (en) Electric refrigerator
JPS6082758A (en) Refrigerator
JP2000329443A (en) Refrigerator
JPH0233571A (en) Refrigerating device
JPH10148413A (en) Air-conditioning equipment
JPS5971963A (en) Heat pump type refrigeration cycle
JPS6216626Y2 (en)
JPS6033456A (en) Refrigerator
JPS5835979Y2 (en) reiki house
JPS6146878A (en) Pefrigerator
JPH05172408A (en) Refrigerator
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JP2540740B2 (en) Freezing / heating device
JPS6236042Y2 (en)
JPH023207B2 (en)
JP2001153477A (en) Refrigerating plant
JPS5971960A (en) Heat pump type refrigeration cycle
JPS61184363A (en) Refrigeration cycle
JPS6060462A (en) Refrigerator
JPH01247978A (en) Cold heat reserving type refrigerator
JPS59205569A (en) Refrigerating storehouse
JPH0415460A (en) Freezer device
JPS60276A (en) Refrigerator
JPS5926223B2 (en) air conditioner