JPS6082683A - Manufacture of electrochemical apparatus using ion- exchange membrane - Google Patents

Manufacture of electrochemical apparatus using ion- exchange membrane

Info

Publication number
JPS6082683A
JPS6082683A JP58188002A JP18800283A JPS6082683A JP S6082683 A JPS6082683 A JP S6082683A JP 58188002 A JP58188002 A JP 58188002A JP 18800283 A JP18800283 A JP 18800283A JP S6082683 A JPS6082683 A JP S6082683A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion
membrane
ion exchange
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58188002A
Other languages
Japanese (ja)
Inventor
Ikuo Tanigawa
谷川 郁夫
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58188002A priority Critical patent/JPS6082683A/en
Publication of JPS6082683A publication Critical patent/JPS6082683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the jointing state of both an ion-exchange membrane and a catalytic electrode layer and to obtain an electrochemical apparatus wherein an internal resistance has been diminished by performing a wet treatment, a fixation and a dry treatment for the ion-exchange membrane. CONSTITUTION:After an ion-exchange membrane 1 has been swelled to a hydrous state by such a method that the membrane 1 is immersed in boiling water, the circumference of the membrane is fixed by a frame or the like made of a resin, thereafter the membrane is dried under vacuum. A catalytic electrode layer incorporating an electrically-conductive catalyst powder such as platinium and a fluorine-contg. high molecular binder such as polytetrafluoroethylene is press- fixed and jointed onto both surfaces of said membrane 1 or the reverse surface to a surface on which a catalytic electrode has been jointed by an electroless plating and thereby a cathode 2 and anode 3 are formed. By said process, an electrochemical apparatus for water electrolysis or the like wherein the jointing strength of both the ion-exchange membrane and the catalytic electrode layer is large and the electric resistance of the jointing interface is small is obtained.

Description

【発明の詳細な説明】 本化明はイオン交換膜を電解質とする各種電気化学装置
、°ガの製造法に関するものである。その目的は触媒屯
q層とイオン交換りuを接合する時、含水もしくは合歓
し膨潤し1こ状態からノ≠さ方向を除く二軸方向の収縮
をさせずに乾燥り、 1コイオノ交換模を用いろことに
より、接合強度が大きく、接合界面の電気抵抗が小さい
すぐn r二特性の電気化学装置を提供することにある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing various electrochemical devices and gases using an ion exchange membrane as an electrolyte. The purpose is that when joining the catalyst layer q and the ion exchange layer u, it absorbs water or swells and swells, then dries without shrinking in the two axial directions except for the ≠ longitudinal direction, and forms a 1 ion exchange model. The object of the present invention is to provide an electrochemical device that has two characteristics, such as high bond strength and low electrical resistance at the bond interface, depending on the application.

イオン交換膜を電解質とする電気化学装置には71(t
 14@ 装置、ハロゲン化アルカリ電解装置、酸素分
離装置、ボ滴分咀袋栽、燃料亀池などがあろうこれらの
各種電気化学装置には【Li、極とイオン交換1娘とを
一体化し1こものとそうでないものとがあるが、本発明
は前行に関するものでj)ろ、従来、イオン交換1りと
電極とを一体化する方法には、大別すると、特公昭56
−36873号に記Φ(されてし)ろ無電解メッキ法と
特公昭58 155544号に記載されている゛Ii+
気伝導気触導性触媒粉末子結右剤との混合物をイオン交
換膜に圧着して接合する、いわゆるプレス法さがある。
71 (t) for an electrochemical device using an ion exchange membrane as an electrolyte
14@ equipment, halogenated alkali electrolysis equipment, oxygen separation equipment, droplet separation cultivation, fuel turtle pond, etc.These various electrochemical equipment include Although there are some methods and others that are not, the present invention relates to the previous method.j) Conventionally, methods for integrating ion exchange and electrodes can be roughly divided into
The electroless plating method described in No.-36873 and the ゛Ii+
There is a so-called press method in which a mixture of gas-conducting, gas-conducting catalyst powder and a binder is pressed onto an ion exchange membrane.

無電解メIキ法は直接イオン交換膜表面に鹸媒金属を析
出させろ方法であるfコめ、簡便である反面金4酸イし
物など金属状態以外の状態にあろ触媒を接合できない。
The electroless plating method is a method in which saponifying metal is deposited directly on the surface of the ion exchange membrane, and although it is simple, it cannot bond the catalyst in a state other than the metal state, such as in a metal state such as gold tetraoxide.

このfコめ触媒を自由に選択できないという大きな問題
がある。
A major problem is that the catalyst cannot be freely selected.

一方、プレス法では結着剤により噛媒扮末を混合して固
め、イオン交換d/Jvこプレスによf)接置させる方
法であるので、電(萌として(萌くへ勿質であればどの
様な単体あるいは化合物でもよい。例えば、食塩電解に
おけろアノードとしてすぐilfこ特性を何する酸化ル
テニウム系の触媒を無電解メッキ法では接合できないが
、プレス法では容易に接合できろ。
On the other hand, in the press method, the powder is mixed with a binder and solidified, and then placed in an ion exchange press. For example, a ruthenium oxide catalyst, which has such properties as an anode in salt electrolysis, cannot be bonded by electroless plating, but it can be bonded easily by pressing.

JID常、プレス法では結着剤としてポリ4ブノ化エチ
レンのごとき含〕l素高分子が化学1勺安定11位び結
4性にすぐnているT、−め用いら几ろ。
In the JID press method, a polymer such as poly(tetrabutylene) as a binder is usually used as a binder because it has a chemically stable 11-position and is easily bonded.

イオン交換膜としては、禽フッ素翻分子〆こスルフォン
峻ハもしくはカルボン酸基を導入してなる米国デュボノ
社のナフィオン(Nafion)などが11]いら1%
でいろ。
Examples of ion exchange membranes include Nafion manufactured by Dubono, USA, which is made by introducing sulfone or carboxylic acid groups into fluorine-containing molecules (11).
It's okay.

yl!媒’rtf Iかとイオン交換1欠とのEE着に
際しては、接合の機械的強度を高め、屯′へ的な接触抵
抗を低減する目的で50〜800’C位の範囲の温度に
加熱し/(がら行なうのが一般的である。この時、触媒
r匡(7層とイオン交換−漢が含水もしくは合成してい
ると、良好な接合状態が得らtz Ill”いので、俗
合する時には、これらを充分乾燥させ7)ことが望まし
い。
Yl! During the EE bonding of the medium 'rtf I and the ion exchanger, it is heated to a temperature in the range of 50 to 800'C in order to increase the mechanical strength of the bond and reduce the contact resistance to the surface. At this time, if the catalyst layer (7 layers) and ion exchange layer contain water or are synthesized, a good bonding state cannot be obtained. , it is desirable to thoroughly dry these 7).

乾燥しfこ状因で接合さ旧1こセル(諜、イオン交換膜
のイオン伝導性を確保ずろfこめに光分に含乃くさせて
申い1.Cけ11.ばなら/、fいっ含水条件によって
も異なるがJlり常は10〜20%、n機に剤が加オ)
ろとそ第1以上に膨潤する。従って乾燥し1こイオン交
換膜と咽(媒1匡極との擦合体はすくれ1こI生〆fを
付していることが明らかであつfコか含水IIOの寸法
変化か著しく触媒扮禾旬界の接触抵抗が増大ず−るので
結果としては、含水状!lイでプレスしfこものと特性
が同程度の接合1不しか杖りらノド了かつrニー O木
症明は、乾燥状「にと含)K伏聾シこおlするイオノ交
換Hニアqの寸法変化を著しく低トあせり、 (rろ方
法を採−1tJすること′こ、1つて、に述の2泪き間
頓を尼全に解決し、イアr釆にないt+ i′U−能の
代シ(化学装置へを提供するものである。すなわち、ま
ずイオン交94%を水。
After drying, the ion-exchange membrane should be immersed in light to ensure the ionic conductivity of the ion-exchange membrane. Although it varies depending on the water content conditions, the standard is 10 to 20%, and the agent is added to the machine)
It swells more than the first. Therefore, it is clear that the dried product of the ion-exchange membrane and the medium has a raw material, and that the size of the hydrated IIO has changed significantly. As the contact resistance of the contact area increases, the result is a bond that has the same properties as the wet one when pressed with a water-containing material. To significantly reduce the dimensional change of the ion exchange H near q caused by drying (including drying), use the filtration method. It completely solves the problem and provides a substitute for the t+ i'U- function that is not present in the Ir tank (for chemical equipment. Namely, first, 94% of the ion exchange is done with water.

n機俗媒あるいはこれらのl混合(?4欣又は「皮、塩
シ(。
n mechanical medium or l mixture of these (?4 欣 or ``rin, salt shi (.

塩の水浴故に浸漬し、実際(・Cセルとじて用いら第1
る時の寸法に1影潤させる。次いで膨潤し1こノオノ父
jQ% liqのl、jd囲を枠で固足しfコ状I序で
乾燥させろ。
Because of the salt water bath, it is immersed and used as a cell (C cell).
Add 1 shadow to the dimensions. Then, fix the swollen, 1, 1, 2, and 4 parts of the liq with a frame, and dry it in a square shape.

この様にすればイオン交換膜の収縮は起らない。In this way, the ion exchange membrane will not shrink.

この様にして乾燥し1こイオン交換膜に乾燥しfこ融1
謀屯唾「11を王看して接合体を作る。この接合体を前
述の膨潤処理に用いfコ液に浸漬しても寸法の便化は起
きず触媒粉末粒界の接触抵抗の増大は生じない。
Dry in this way, dry on an ion exchange membrane, and melt.
A bonded body is made by observing ``11''. Even when this bonded body is used for the swelling treatment described above and immersed in the liquid, no reduction in size occurs and the contact resistance at the grain boundaries of the catalyst powder does not increase. Does not occur.

本余明はイオン交換膜への触媒電極の接合方法として、
F=31iと1易(返の双方にプレス法を採用する −
場合だけでなく、陰極と隋(iのうちどちらか片方をノ
倣’rj(解メ1キ法により接合する場合にも適用でき
る。この場合には、従来公知のt++C電解メッキ法に
よf)、イオン交換膜の片面に1触媒電極を接合さ才f
コのち、上述の如き護柵操作および1疋しTコ状、・シ
での乾燥操作をおこない、しかろのちに無゛1E)膵)
 =r キ法にまり鴫媒’11仮が接合さtllこイオ
ン交換11シ1の而と反対の面に、プレ7法によりもう
ひとつの触媒電極11つを桜合さゼf1.ばよい。
This book describes a method for joining a catalyst electrode to an ion exchange membrane.
F = 31i and 1i (press method is used for both returns −
It can be applied not only to the case where either one of the cathode and the metal plate is bonded by the method of bonding.In this case, the conventionally known t++C electrolytic plating method ), one catalytic electrode is bonded to one side of the ion exchange membrane.
After that, the guard fence operation as described above and the drying operation in 1 hole T-shaped shape, .
=r According to the Ki method, the ion exchange medium '11 temporary is joined, and another catalyst electrode 11 is joined to the opposite side of the ion exchange 11 by the Pre7 method. Bye.

なお、咄媒電憧1nにイオン交rj4樹脂粉末又はイオ
ン交換@+j’d繊維を混入してもよい。
Incidentally, ion exchange rj4 resin powder or ion exchange@+j'd fiber may be mixed into the medium Denso 1n.

以下、本発明の一実施例について詳述する。An embodiment of the present invention will be described in detail below.

実施例1 第1図は本発明の一実施例にかがろ水電解装置の断面宿
J青を7にすつ とポリ4フツ化エチレンからなるlも分子結着剤との、
混合IIVIからなろカソードである6もう一方の面に
は酸化イリジウムVi)末とポリ4フ7化エチレンとの
iQ台14からなるアノード(3)が接合さlている。
Example 1 Figure 1 shows a cross section of a Kagaro water electrolysis device according to an embodiment of the present invention.
An anode (3) consisting of an iQ base 14 of iridium oxide (Vi) powder and polytetrafluoroethylene is bonded to the other side of the cathode made of mixed IIIVI.

イオン交換膜をnB IJ氷水中30分間浸漬し含水;
ICイnlさせfコ後、暎の周囲を目脂鯛の枠で向jド
シ−へ空乾燥しTこ、一方7ノード少びフJ゛ノードは
各々触謀扮禾と1?す4′クフ化エチレンの水(と11
う1枚とを混合しソート状にし1このちI′t′)ど乾
燥して作つ1こ。こfしらは100 ’C、300kr
i/cAのプレス条f牛で:長合され1こ。
Immerse the ion exchange membrane in nB IJ ice water for 30 minutes to make it hydrated;
After inserting the IC, air-dry the area around the hole in the direction of the sea with a frame of mebushi sea bream, while the 7 nodes and the 1 node are respectively 1 and 2. 4' water of ethylene chloride (and 11
Mix the other two, sort them, and then dry them to make one. This is 100'C, 300kr
I/cA's press row f cow: long and 1 piece.

(4)はアノード集C1f体、(5)はカソード集%i
体である。
(4) is the anode collection C1f body, (5) is the cathode collection %i
It is the body.

(6)は水の供給口、(7)は水と)盾素の川口、(8
)は水素の出口である。(91,t91は屯(曹でアル
(6) is the water supply port, (7) is the mouth of the shield element, (8)
) is the hydrogen outlet. (91, t91 is tun (cao and al.

かかる措遺の水電解セルに直流’1111Eを印加する
と7′ノードから酸素がカソードから水素が発生しそノ
1ぞtlの排出口(7)及び(8]から排出されろ。
When a direct current '1111E is applied to the water electrolysis cell with this arrangement, oxygen is generated from the 7' node and hydrogen is generated from the cathode, which are then discharged from the tl outlets (7) and (8).

η(に、この水′Lへ解セルの性能を従来の例との比較
のもともこテストしてみ1こ、 まず−1−吐の不発明のセルを(Alとし、庇潤処理及
び固定乾燥処理を施さなかつfコイオン交埃模(1)に
LAI 、!: 141 [のアノードとカソードを同
様の条件で王看E、r−セルを(B)、影潤処理後含ボ
し1こ状態のままで(△)と同様のアノードとカソード
を同様の条件で」三aしT:セルをC)とし、これらの
セルの30゛CにJjける゛層流゛湛圧特性をめり1,
2図の結果を得Tコ。
In order to test the performance of this water-dissolved cell in comparison with a conventional example, we first tested an uninvented cell with -1- discharge (aluminum, heat treated and fixed). LAI,!: 141 ['s anode and cathode were treated under the same conditions without drying, and the r-cell (B) was treated with borosilicate after drying treatment. With the same anode and cathode as in (△) under the same conditions, we set the cell as T: C) and examined the laminar flow and submerged pressure characteristics of these cells at 30°C. 1,
Obtained the results shown in Figure 2.

チす、(Alと+B1とを比・咬すると、 (ijlの
方が′i埋j王が、ビく高[にlf′K1度になるにつ
れその差は大きく/【つでいる、この時のセルの内部抵
抗を測定してみにところ(13)のそれは四の約2倍あ
り、触媒粉末粒子間ノfに触抵抗が1大していることが
分つ1こ。
Chis, (Comparing Al and +B1, (Ijl is ′i buried j King, and the difference becomes larger as lf′K1 degree becomes higher.) When we measured the internal resistance of the cell in (13), it was found to be approximately twice that of 4, indicating that the tactile resistance between the catalyst powder particles was 1 greater.

一方、(へ)とO)を比+!+!すると0は(」3)と
同様に1Nより611(汗が高く、その内部抵抗の1J
ijl定の結果、接合界面の抵抗が大きいことが分つ1
こ。
On the other hand, compare (to) and O) +! +! Then, 0 is 611 (sweat is higher than 1N and its internal resistance is 1J) as in ('3).
As a result of the ijl constant, it is found that the resistance at the bonding interface is large1
child.

実施例2 第3図は本発明の実施例にかかる空気から酸素を分離す
る装置の断面構造図を示す。
Embodiment 2 FIG. 3 shows a cross-sectional structural diagram of an apparatus for separating oxygen from air according to an embodiment of the present invention.

第3図において(10)はパーフロロカーボンにスルフ
ォン酸基を有するイオン交換膜、 (II)は白金黒粉
末とポリ4フリ化エチレンからなる高分子結着剤との混
合jfRからなるカソードである。もう一方の1hiに
は無1!解メツキ法によって接合されfこ白金からなる
アノード(12)があz・。
In FIG. 3, (10) is an ion exchange membrane having a sulfonic acid group in perfluorocarbon, and (II) is a cathode made of jfR, a mixture of platinum black powder and a polymer binder made of polytetrafurinated ethylene. The other 1hi has no 1! The anode (12) made of platinum is bonded by the plating method.

イオ゛/交(’At1A(10)とカソード(IIJと
の接合は77(の様にして行なつrこ。片面にアノード
を無1!解メツキ法で接合し1こイオン交換dλを水に
浸漬し含水膨潤させfコ後、換の周囲を合成樹脂製の枠
で固定しfこ状態で真空乾燥し1こ。一方、カソードは
白金黒粉末とポリ4〕I化エチレ゛ノ水rW副Mとを混
合し、ンI・状にしf、:後、真空乾燥して作っfこう
こ1”Lをイオン交換膜の白金メーノキされていない曲
に100°C・ 300 A:q/cd の条件で接合
しTこ、(18)はアノード集電体、(14月はカソー
ド集電体である。(15)は水の供給口、(16)は水
とl!ill素の川口(17)は空気の入口、(18J
は空気の出口である。(19人(L92は電R臂で・ち
る。
The connection between the ion exchange ('At1A (10) and the cathode (IIJ) is done as shown in 77 (r).The anode is connected to one side using the 1! solution plating method, and the ion exchange dλ is placed in water. After soaking and swelling with water, the area around the tube is fixed with a synthetic resin frame and dried under vacuum.Meanwhile, the cathode is made of platinum black powder and poly(4)I-containing ethylene water (rW). Mix M and make it into a shape of I. After that, dry it under vacuum and apply 1" L of the prepared powder to an untreated platinum plate of an ion exchange membrane at 100°C and 300 A: q/cd. (18) is the anode current collector, (14 is the cathode current collector. (15) is the water supply port, (16) is the water and l!ill element kawaguchi (17) is the air inlet, (18J
is the air outlet. (19 people (L92 is electric R arm and Chiru.

かかる構造の空気から酸素を分離するセルに直流IF圧
を印加すると、カソードでは酸素の還元度。
When DC IF pressure is applied to a cell with such a structure that separates oxygen from air, the degree of reduction of oxygen at the cathode decreases.

応が生じ電気中の乍素が消費されろ。一方アノード゛C
はカソードで消費され1こと同量の酸素がグ6生し排出
口+71からUト出されろ。
A reaction occurs and the elements in the electricity are consumed. On the other hand, anode C
is consumed at the cathode, and the same amount of oxygen is produced as gas, which is discharged from the outlet +71.

次にこの装置4の性能を従来の例との比較のもとにテス
トしてみ1こ。
Next, let's test the performance of this device 4 by comparing it with a conventional example.

ま1”、上述の不発明のセルをfDlとし膨潤処理及び
固定let燥処理を施さなかつ1こ片1イ月に白金を無
電解メッキ法で接合しTこイオン交換膜(lO)にtl
)lと同(柔のカソードを同様の条件で圧着し1こセル
を(E)。
First, the above-mentioned uninvented cell was used as fDl, and one piece was bonded with platinum by electroless plating without being subjected to swelling treatment, fixation or drying treatment, and was then attached to an ion exchange membrane (lO).
) Same as 1 (A soft cathode was crimped under the same conditions and one cell was made (E).

−膨潤処411!妙含水しfこ吠聾の土までfDlと同
様のカソードを同様の条FFでUモ看し1こセルfr2
 iF]とし、これらのセルの25−CKJづけろ1攬
流N毬1王時1生をめ第4図の結果を得に。まずp)と
(Elとを比較すると、(141の方が電[王が伎い。
- Swelling place 411! A cathode similar to fDl is used with a similar row FF until the soil is slightly water-containing.
iF] and 25-CKJ of these cells to obtain the results shown in Figure 4. First of all, if we compare p) and (El), (141 has a better electric power.

これはυ)の内部抵抗が(Alのそ旧まりも約2倍太き
い1こめである。一方tDlと(Flとを比1咬すると
(Flは(D)、よりも電圧が高く、触媒粒子界面の抵
抗が大きくなっていることが分る・。′以上の如く、圧
着接合する前にイオン交換膜に膨潤処理と11定乾燥処
理を施すことによりイオン交換膜と喰媒電極層との接合
状部を改善し内部抵抗を低減させろことができ、従来に
ない高性能の電気化学セルを作ることができる。かかる
怠味から、本発明はすぐれfこイオン交換膜を゛電解′
dとする電気化学装置を曙供するので、その工業的価値
は極めて大である。
This means that the internal resistance of (υ) is about twice as large as that of (Al).On the other hand, when tDl and (Fl) are compared by one degree, (Fl has a higher voltage than (D), and the catalyst particles It can be seen that the resistance at the interface has increased.'As mentioned above, by subjecting the ion exchange membrane to swelling treatment and 11 constant drying treatment before pressure bonding, the ion exchange membrane and the feed electrode layer can be bonded. By improving the shape of the ion exchange membrane and reducing the internal resistance, it is possible to create an electrochemical cell with unprecedented high performance.
The industrial value of this method is extremely great because it will lead to the creation of an electrochemical device as described in d.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例[((かか671(電解セルの
断面構造図、第2図は本発明の実バII(911にかか
る水’+[解セル(Alと従来からの方圧によi6 (
13,U )との電流電圧特性の)tl咬を爪す図であ
る。y、第3図は本4こ明の実施例2にかかる空気から
q塁を分離するセルの断面構造図、第4図は本発明の実
施例2にかかる!2気から酸素を分縮するセルを功と従
来からの方所によるセル(E、F )との電流電圧特性
の比較を示す1である。 ■・・・・・・イオン交a 嘆、21 カソード。 3・・・・・・アノード、 4・・・・・・アノード集
α体。 5 カソード集’if体、 6 ・・・・水の供給口。 7・・・水と@素の排出口、 8・・曲水素の排出口。 9.9 ・・、・電槽、 10・・・・・・イオン交換
暎。 11・・・・カソード、12・曲・アノード。 13・・・・アノードiA 7M 体、14−・−・−
カソード集電体、15 ・・・水の供給1コ、16・・
・・・水と酸素の排出口、17・・・・・・空気の供給
口、 [8・・・・・空気の徘1130,19.19・
曲1il槽。 オ 1 口 オ 2 口
FIG. 1 shows an example of the present invention [((671) (cross-sectional structural diagram of an electrolytic cell), and FIG. 2 shows an example of the present invention (671). i6 (
13, U) is a diagram showing the current-voltage characteristics of the current-voltage characteristics. y, Fig. 3 is a cross-sectional structural diagram of a cell separating the q base from the air according to the second embodiment of the present invention, and Fig. 4 is according to the second embodiment of the present invention! Figure 1 shows a comparison of current-voltage characteristics between a cell that partially condenses oxygen from 2 air and a conventional cell (E, F). ■・・・Ion exchange a lament, 21 cathode. 3...Anode, 4...Anode collection α body. 5 Cathode collection 'if body, 6...Water supply port. 7... Exhaust port for water and @element, 8... Exhaust port for curved hydrogen. 9.9...Battery container, 10...Ion exchange. 11. Cathode, 12. Song anode. 13...Anode iA 7M body, 14-...-
Cathode current collector, 15...1 water supply, 16...
... Water and oxygen outlet, 17... Air supply port, [8... Air wandering 1130, 19.19.
Song 1il tank. 1 mouth 2 mouths

Claims (1)

【特許請求の範囲】[Claims] ’rfl解胃となるイオン交換膜、もしくは片面に無電
1tゲメlキ法により馳媒電循を接合してなるイオン交
換膜を、水又はn機浴剤あるいはこれらの泥ハ物で)シ
<は酸、塩基、塩の溜液に浸漬し、膨潤(、tしめ1こ
後、該イオン交換膜の周囲を1.!if疋し1こ状1.
15で乾・操せしめ、該イオン交換膜の両面あるいは無
電解メッキ法で触媒電極が接合されている面と反対の面
に、電気伝導性触媒粉末とポリ4フツ化エチレンのごと
き含)・ソ素高分子結着剤とを含む1!r1媒電極層を
圧着接合してなることを特徴とするイオン交換膜を巾い
ろ’di:気化学装置道の製造方法。
An ion-exchange membrane that becomes an rfl dissolution stomach, or an ion-exchange membrane with a carrier current bonded to one side by the electroless 1T gemmel method, is coated with water, bath additives, or these muddy substances). The ion exchange membrane is immersed in a concentrated solution of acids, bases, and salts, and after swelling, the area around the ion exchange membrane is 1.!if 1.
After drying and drying at 15, electrically conductive catalyst powder and poly(tetrafluoroethylene), etc. 1 including a basic polymer binder! A method for producing an ion exchange membrane characterized by pressure-bonding an R1 medium electrode layer: a gas chemical device method.
JP58188002A 1983-10-06 1983-10-06 Manufacture of electrochemical apparatus using ion- exchange membrane Pending JPS6082683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188002A JPS6082683A (en) 1983-10-06 1983-10-06 Manufacture of electrochemical apparatus using ion- exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188002A JPS6082683A (en) 1983-10-06 1983-10-06 Manufacture of electrochemical apparatus using ion- exchange membrane

Publications (1)

Publication Number Publication Date
JPS6082683A true JPS6082683A (en) 1985-05-10

Family

ID=16215918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188002A Pending JPS6082683A (en) 1983-10-06 1983-10-06 Manufacture of electrochemical apparatus using ion- exchange membrane

Country Status (1)

Country Link
JP (1) JPS6082683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056903A (en) * 1988-03-31 1991-10-15 Minolta Camera Kabushiki Kaisha Lens barrel structure for waterproof camera
JPH049487A (en) * 1990-04-26 1992-01-14 Mitsubishi Heavy Ind Ltd Electrochemical device using ion-exchange membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636873A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Quick coupling terminal
JPS583990A (en) * 1981-07-01 1983-01-10 Toagosei Chem Ind Co Ltd Pretreatment of ion exchange membrane for electrolysis
JPS5815544A (en) * 1981-07-21 1983-01-28 Toa Nenryo Kogyo Kk Polyolefin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636873A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Quick coupling terminal
JPS583990A (en) * 1981-07-01 1983-01-10 Toagosei Chem Ind Co Ltd Pretreatment of ion exchange membrane for electrolysis
JPS5815544A (en) * 1981-07-21 1983-01-28 Toa Nenryo Kogyo Kk Polyolefin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056903A (en) * 1988-03-31 1991-10-15 Minolta Camera Kabushiki Kaisha Lens barrel structure for waterproof camera
JPH049487A (en) * 1990-04-26 1992-01-14 Mitsubishi Heavy Ind Ltd Electrochemical device using ion-exchange membrane

Similar Documents

Publication Publication Date Title
TW398097B (en) Gas diffusion electrodes based on poly (vinylidene fluoride) carbon blends
CA2124839C (en) An ion exchange membrane used for a fuel cell
Tricoli Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H+ cations
JP4231110B2 (en) Novel polymer electrolyte membrane for fuel cells
US4865930A (en) Method for forming a gas-permeable and ion-permeable membrane
US5654109A (en) Composite fuel cell membranes
JP3573460B2 (en) High performance electrolytic cell electrode structure and method of manufacturing such electrode structure
CN106024408B (en) A kind of ruthenium-oxide-vulcanization carbon/carbon-copper composite material, using and a kind of electrode slice of ultracapacitor
DE102006051431A1 (en) Production of sulfonated perfluorocyclobutane polymer for use in proton exchange membranes for fuel cells, involves sulfonating perfluorocyclobutane polymer with oleum or sulfur trioxide
US20060194489A1 (en) Fuel cell gas diffusion layer coating process and treated article
JPH05262902A (en) Preparation of ion-exchange membrane
JP2000188013A (en) High heat-resistant polymer electrolyte
CN114108006A (en) Proton exchange membrane for hydrogen production by water electrolysis and preparation method thereof
JPS6082683A (en) Manufacture of electrochemical apparatus using ion- exchange membrane
JPH0412458A (en) Solid polymer electrolyte type fuel cell
JP2007180444A (en) Electrochemical capacitor
US20060105214A1 (en) Preconditioning fuel cell membrane electrode assemblies
JP2002298869A (en) Solid polymer fuel cell
JPH06251782A (en) Manufacture of joined body of membrane having high electric conductivity with electrode
JPS62240784A (en) Cathode film unit and its production
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JPS6167787A (en) Production of joined body of ion exchange resin film and electrode
JPH06203848A (en) Manufacture of solid high polymer fuel cell
CN109799274A (en) A kind of preparation and test method of conducting polymer membrane material
EP4060777B1 (en) Polymer electrolyte membrane, method for preparing the membrane and fuel cell comprising the membrane