JPS6082294A - Production of fused flux for submerged arc welding - Google Patents

Production of fused flux for submerged arc welding

Info

Publication number
JPS6082294A
JPS6082294A JP19020683A JP19020683A JPS6082294A JP S6082294 A JPS6082294 A JP S6082294A JP 19020683 A JP19020683 A JP 19020683A JP 19020683 A JP19020683 A JP 19020683A JP S6082294 A JPS6082294 A JP S6082294A
Authority
JP
Japan
Prior art keywords
flux
flow rate
fused
flow
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19020683A
Other languages
Japanese (ja)
Inventor
Toshio Konishi
小西 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANSHIN YOSETSU KIZAI KK
Original Assignee
HANSHIN YOSETSU KIZAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANSHIN YOSETSU KIZAI KK filed Critical HANSHIN YOSETSU KIZAI KK
Priority to JP19020683A priority Critical patent/JPS6082294A/en
Publication of JPS6082294A publication Critical patent/JPS6082294A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve productivity of a flux by allowing a fused flux to flow downward by gravity and spraying gaseous material to the descending flow thereby solidifying the flux by air cooling to a powder and granular state while the fused flux flies in the form of particles. CONSTITUTION:Various conditions for production are set as follows in the stage of obtaining a flux F having an adequate grain size: The viscosity of a fused flux M is first set at <=10 poise. If the viscosity is higher than 10 poises, the flux flies like stringing to form fibrous fluxes which require regrinding. The flow rate of gas is set at 20-100m/sec. If the flow rate is <20m/sec., the flux does not fly and the lumped fluxes deposite in the falling position. If the flow rate exceeds 100m/sec., the flux is drifted to assume the fibrous state without flocculation. With flow rate molten metal amt. is regulated at 0.37-2.8m<3>/kg. If the wind flow rate for each 1kg of the molten metal is below 0.37, the particles are fused to each other again into a lump state. On the other hand, if the wind flow exceeds 2.8m<3>, cooling is excessive and the driving power of a blower 2 is wastefully consumed. An angle theta of injection is set at + or -40 deg. when viewed from a horizontal direction. If the angle exceeds +40 deg., the flux F scatters and is difficult to be recovered. If below -40 deg., substantial air cooling effect is not obtainable.

Description

【発明の詳細な説明】 本発明は、溶融状態のフラックス原料を流下させながら
、これに空気等のガス流を吹きつけて粒状の潜弧溶接用
溶融型フラックス(以下単にフラックスということがあ
る)を製造する方法に関し、詳細には簡素な生産工程に
よって水素含有量の少ない7ラレクスを得ることができ
る72ツクスの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces granular molten flux for latent arc welding (hereinafter sometimes simply referred to as flux) by blowing a gas flow such as air onto a molten flux raw material while flowing it down. The present invention relates to a method for producing 72x, in particular, a method for producing 72x that can produce 7ralex with a low hydrogen content through a simple production process.

溶融型72ツクスは原料鉱石を所定の組成に配合し、ア
ーク炉等で溶解した後、冷却凝固及び粉砕し更に適当な
粒度に調整して製造される。ところで溶融状態にある7
ラツクス原料(以下メルトという)を冷却凝固・粉砕す
る方法としては、望冷法(メルトを容器に移し空冷した
後、ショークラッシャー等で粉砕する方法)あるいは水
冷法(メルトを流下させながらこれにジェット水を吹付
ける方法)があるが、前者は冷却に時間がかかるので生
産性が悪いと共に別途粉砕工程を必要とするから工程が
複線になる欠点があシ、更に徐冷の為に結晶化して吸湿
し易くなると共に冷却時に水ぶの吸着が起こってフラッ
クス中の水素含有量が高くなるという欠点があシ、その
結果フラックス中の水素に起因する溶接欠陥が多発する
。一方後者は冷却凝固と同時に粉砕することができると
1/)う工程上の利点を有するものの、水との接触によ
って水和物を生成するという欠陥は空冷法を越えるもの
かあシフラックス中の水素含有量が高くなることは避け
られない− そこで本発明者等は上記欠点を解消する必要があると考
え、メルトを流下させながらこれにガス体を吹き付ける
ことによって急冷凝固と粉砕を同時に行なう方法を採用
すれば上記欠点は悉く解消するのではないかと考えた。
Molten type 72x is manufactured by blending raw material ores into a predetermined composition, melting them in an arc furnace, etc., cooling them, solidifying and pulverizing them, and adjusting the particle size to an appropriate size. By the way, 7 is in a molten state.
Methods for cooling, solidifying, and pulverizing the laxative raw material (hereinafter referred to as melt) include the manual cooling method (transferring the melt to a container, cooling it in the air, and then pulverizing it with a show crusher, etc.) or the water cooling method (the method in which the melt is flowed down and crushed by a jet crusher). There is a method of spraying water), but the former has the disadvantage of poor productivity because it takes time to cool down, requires a separate pulverization process, and requires a double process, and also has the disadvantage of slow cooling, which causes crystallization. This has the disadvantage that it becomes easier to absorb moisture and water blisters are adsorbed during cooling, increasing the hydrogen content in the flux, resulting in frequent welding defects caused by the hydrogen in the flux. On the other hand, although the latter method has the advantage of being able to crush at the same time as cooling and solidification, it has the disadvantage of producing hydrates upon contact with water, which is beyond the air cooling method. An increase in the hydrogen content is unavoidable - Therefore, the inventors of the present invention believed that it was necessary to eliminate the above drawback, and developed a method in which rapid solidification and pulverization are simultaneously performed by blowing a gaseous body onto the melt while it is flowing down. I thought that all of the above drawbacks would be resolved by adopting the .

しかしながら流下するメルトに単にガス体を噴射するだ
けでは所定の効果を安定的に得ることが困難であり、製
造条件に種々の工夫を加える必要があることを知った1
、本発明はこうした事情に着目してなされたものであっ
て、適当な粒度を有し且つ水素含有量の少ない7ラツク
スを効率良く製造しようとするものである。
However, we learned that it is difficult to stably obtain the desired effect by simply injecting a gas into the flowing melt, and that it is necessary to add various improvements to the manufacturing conditions1.
The present invention has been made in view of these circumstances, and aims to efficiently produce 7lacs having an appropriate particle size and a low hydrogen content.

しかして上記目的を達成した本発明方法は、粘度がlO
ボイズ以下の溶融7ラツクスを自重で流下させておき、
この下降流に対して、流速:20〜100 m 、/s
ec%風量/′溶湯量:0.37=2.8m’ /kg
のガス体を、水平方向から+40°の範囲内の方向から
吹き付ける点に要旨を有するものである。
The method of the present invention, which achieved the above object, has a viscosity of 1O
Let the molten 7 lux below Boise flow down under its own weight,
For this downward flow, flow velocity: 20-100 m,/s
ec% air volume/'Molten metal volume: 0.37=2.8m'/kg
The gist is that the gas is blown from a direction within the range of +40° from the horizontal direction.

本発明方法の基本的な実施の概念は第1図に示ず通シで
あp、1は取鍋、2はプロワ、3はノズル、Mはメルト
、Fはフラックスを夫々示す。
The basic concept of carrying out the method of the present invention is not shown in FIG.

アーク炉(図示せすり等で溶解し取鍋1に移したメルl
−Mを、取鍋1を傾転させることによって図示する如く
取鍋1の出湯口1aから流下させる。
Arc furnace
-M is caused to flow down from the spout 1a of the ladle 1 as shown in the figure by tilting the ladle 1.

この様に流下するメル)Mに対してプロワ2の先端ノズ
ル3からガス(一般に空気)を吹付けて、メルトを倣刊
なメルト粒子に粉砕する1、粉砕されたメルト粒子は空
気流の進行方向に吹き飛ばされて放物腺を描きながら飛
翔・落下する。この間にメルト粒子は空冷されて凝固し
7ラツクスFとなる。尚0は空気噴射角度を示す。
Gas (generally air) is sprayed from the tip nozzle 3 of the blower 2 onto the melt) M flowing down in this way to crush the melt into imitative melt particles. It is blown in a direction and flies and falls in a parabolic pattern. During this time, the melt particles are air-cooled and solidified to 7 lux F. Note that 0 indicates the air injection angle.

ところで適正な粒度の7ラツクスを得るに当っては上記
基本借成に示される製造方法の諸条件を最適のものに設
定する必要があシ、以下この様な諸条件即ち本発明の4
n成要件を説明する。
By the way, in order to obtain 7 lux with an appropriate particle size, it is necessary to optimally set the various conditions of the manufacturing method shown in the above basic borrowing.
Explain the requirements for n formation.

(1)メルトの粘度:10ボイズ以下 粘度が10ボイズより高い場合にはメルトは粒状となら
ず糸をひく様に飛んで繊維状のフラックスとなシ再粉砕
の必要が生じて不経済である。ところでタルト粘度はフ
ラックス成分及びメルト温度に依存するが、特に後者の
要因が大きく取鍋1からの出扮温度が低いと当然粘度は
高くなる。そして粘度が高い場合にはメルトの流動性が
悪くなると共に表面張力が低くなるので吹付はガス流に
よる衝撃力を受けて解砕されるべきメルト粒子夫夫が粒
状にまで凝集せず一部が吹付は空気流の中で糸を引く様
に飛翔して繊維状となる。
(1) Melt viscosity: 10 boids or less If the viscosity is higher than 10 boids, the melt will not become granular but will fly like strings and become fibrous flux, which will be uneconomical as it will require re-grinding. . Incidentally, the viscosity of the tart depends on the flux components and the melt temperature, but the latter factor is particularly important, and if the temperature at which the tart is poured from the ladle 1 is low, the viscosity will naturally increase. When the viscosity is high, the fluidity of the melt deteriorates and the surface tension decreases, so when spraying, the melt particles that should be crushed by the impact force of the gas flow do not aggregate into granules and some of them When sprayed, it flies like a string in the airflow and becomes fibrous.

(2)ガス流速:20〜100 rH/sec流速が2
0m/sec未溝の場合にはメルトが十分に飛翔せずメ
ルト流下点の直下近傍に集中して落下すると共に落下中
に十分に冷却凝固しないので落下位置に塊状フラックス
が堆瑣する。一方流速が100 m/seeを越える場
合には吹付はガス流の流速が早すぎる為に解砕されたメ
ルト粒子が凝祭できず、糸を引く様に流されて繊維状と
なる。
(2) Gas flow rate: 20 to 100 rH/sec flow rate is 2
If the groove is not set at 0 m/sec, the melt will not fly sufficiently and will concentrate in the vicinity of the point directly below the melt flow point, and will not be sufficiently cooled and solidified during the fall, resulting in lumpy flux being deposited at the falling position. On the other hand, when the flow rate exceeds 100 m/see, the flow rate of the gas flow during spraying is too fast, and the crushed melt particles cannot be coagulated, and are drawn like strings and become fibrous.

(3)風量/溶湯量: 0.37〜2.8 mX17k
g溶湯(メル) )1kg自りの風量が0.37m’ 
未満の場合には、吹付はガスによる冷却力が不足する為
に解砕されたメルトが十分に凝固せずメルト粒子同士が
再融着を起こして塊状物となる。一方上記風量が2.8
m3を越える場合には吹付はガスの冷却力が過剰となり
プロワ回転動力が無駄に消費される。
(3) Air volume/molten metal volume: 0.37-2.8 mX17k
g Molten metal (mel) 1kg own air volume is 0.37m'
If the amount is less than 1, the crushed melt will not solidify sufficiently due to the insufficient cooling power of the gas during spraying, and the melt particles will re-fuse with each other to form lumps. On the other hand, the air volume above is 2.8
If the amount exceeds m3, the cooling power of the gas will be excessive and the blower rotational power will be wasted.

(4)噴射角0:水平方向からみて±40’1!11’
5射角が+40°を越えて仰向く場合には(1)メルト
粒子の飛翔距離が必要以上に大きくなって落下フラック
スが散乱し製品回収が困難になるか、あるいは(2)メ
ルト粒子の到達高さが犬きくなシ過ぎて製造設備の高さ
を大きくする必要が生じると共にフラックスの散乱も顕
著になり回収が困鵬になる。一方噴射角が一40°(俯
角)未満の場合にはメルトの流下方向に沼う方向に空気
が吹伺けられる為にガス流によるメルト解砕能が不足し
てメルトは十分に解砕されず吹伺はガス流に追い落され
る様に落下すると共に十分な空冷効果が得られない。
(4) Injection angle 0: ±40'1!11' when viewed from the horizontal direction
If the angle of incidence exceeds +40° and the product is turned upside down, (1) the flight distance of the melt particles will become larger than necessary and the falling flux will be scattered, making it difficult to recover the product, or (2) the melt particles will reach the target. Since the height is too large, it becomes necessary to increase the height of the manufacturing equipment, and the scattering of flux becomes noticeable, making recovery difficult. On the other hand, if the injection angle is less than 140° (depression angle), air is blown in the direction of the flow of the melt, so the melt disintegration ability by the gas flow is insufficient, and the melt is not sufficiently disintegrated. The blower falls as if being chased down by the gas flow, and a sufficient air cooling effect cannot be obtained.

本発明は以上の様にrり成されているので、メルトは十
分に解砕されてメルト粒子となり、更に飛翔する間に空
冷されて凝固し粉粒状フラックスとなる。従って従来の
放冷法において必要とされた様な粉砕の為の設備を必要
とせず製造工程を簡素化することができると共に連続生
産を可能とし生産性を向乍さぜることができる。又メル
トは吹付はガスによって冷却されるので水冷法の保に水
和物を形成することがないと共に、メルトは高速度で飛
翔する間に効率良く冷却され速やかに凝固するので水素
の吸着も殆んど蕪く、水素含有量の少ないフシックスを
得ることができる。
Since the present invention is constructed as described above, the melt is sufficiently crushed into melt particles, which are further air-cooled and solidified into powdery flux while flying. Therefore, it is possible to simplify the manufacturing process without requiring equipment for pulverization, which is required in the conventional cooling method, and also to enable continuous production and improve productivity. Also, since the melt is cooled by gas during spraying, no hydrates are formed during the water cooling method, and since the melt is efficiently cooled and quickly solidified while flying at high speed, there is almost no hydrogen adsorption. It is possible to obtain fusix with low hydrogen content by boiling.

以下本発明の実胞例につbて説明する1゜夾験I 第1表に示す成分組成の各K(料スラックスをアーク炉
において溶融′シ、同じく第1表に示す県外でメルトを
流下させると共にこれに空スを噴射してフシックスを製
造した。できちがった7ラツクス性状は第1表に示す通
りで6つた。
1゜Experiment I The actual examples of the present invention will be explained below. Each K (material slack) of the component composition shown in Table 1 was melted in an arc furnace, and the melt was flowed outside the prefecture shown in Table 1. At the same time, empty gas was injected into this to produce fusix.The properties of the finished 7 lacs were as shown in Table 1.

第3表 (p声) 注 ()内は平均を表わす 第3表に示される様に、本発明方法によると空令法及び
水冷法に比べて水素含有量の少ないフラックスを得るこ
とができる。第4表に示される様スについてはぜのまま
製品化することも可能である。又フラックスについても
粉砕はかなり進行しておシ、整粒を要する場合でも粗粉
砕は全く必要とせず粉砕工程は数段経減される。
Table 3 (p-voice) Note: Values in parentheses represent averages. As shown in Table 3, the method of the present invention can provide a flux with a lower hydrogen content than the air cooling method and the water cooling method. It is also possible to commercialize the products as shown in Table 4. In addition, the pulverization of the flux progresses considerably, and even if granulation is required, coarse pulverization is not required at all, and the pulverization process is reduced by several steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的概念を示す説明図である。 1・・・取鍋 2・・・プロワ 3・・・ノズル M・・・メルト F・・・フラツクス FIG. 1 is an explanatory diagram showing the basic concept of the present invention. 1...Ladle 2...Prower 3... Nozzle M... Melt F...Flux

Claims (1)

【特許請求の範囲】[Claims] 粘度が10ボイズ以下の溶融フラックスを自重で流下さ
せておき、この下降流に対して、流速:20〜100 
m/see、風量/溶湯量二037〜2、8 m’ /
 kgのガス体を、水平方向から±40°の範囲内の方
向から吹き付けることを特徴とする潜弧溶接用溶融型フ
ラックスの製造方法。
A molten flux with a viscosity of 10 boids or less is allowed to flow down by its own weight, and a flow rate of 20 to 100 is applied to this downward flow.
m/see, air volume/molten metal volume 2037~2,8 m'/
A method for producing a molten flux for submerged arc welding, which comprises spraying a kg of gas from a direction within a range of ±40° from the horizontal direction.
JP19020683A 1983-10-11 1983-10-11 Production of fused flux for submerged arc welding Pending JPS6082294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19020683A JPS6082294A (en) 1983-10-11 1983-10-11 Production of fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19020683A JPS6082294A (en) 1983-10-11 1983-10-11 Production of fused flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JPS6082294A true JPS6082294A (en) 1985-05-10

Family

ID=16254224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19020683A Pending JPS6082294A (en) 1983-10-11 1983-10-11 Production of fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS6082294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083667A (en) * 2014-10-23 2016-05-19 新日鐵住金株式会社 Manufacturing method of flux for arc-welding
JP2016083677A (en) * 2014-10-24 2016-05-19 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083667A (en) * 2014-10-23 2016-05-19 新日鐵住金株式会社 Manufacturing method of flux for arc-welding
JP2016083677A (en) * 2014-10-24 2016-05-19 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding

Similar Documents

Publication Publication Date Title
Kashiwaya et al. Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles
CN103261443B (en) The granulation of metallurgical slag
CN105722803A (en) Process and apparatus for dry granulation of slag with reduced formation of slag wool
JPH06172819A (en) Method of granulating molten metal
JP2016536131A (en) Molten metal granulation
US4168967A (en) Nickel and cobalt irregularly shaped granulates
JP6498684B2 (en) Granulation of melted ferrochrome
JPS6082294A (en) Production of fused flux for submerged arc welding
US3532775A (en) Method for producing aluminum particles
JP4313924B2 (en) Spherical silica powder and method for producing the same
JPH11323411A (en) Low melting point metal powder and its production
JP4230554B2 (en) Method for producing spherical particles
CN1718313A (en) Method of producing continuous casting protective slag by electric furnace premelt blowing granulation
JP4834906B2 (en) Method and apparatus for producing milled slag particles
RU2770107C1 (en) Welding flux granulation plant
JPH01226732A (en) Hollow spherical stabilized zirconia and production thereof
CN101745614A (en) Method for manufacturing granular mold slag powders using liquid free carbons and device for manufacturing and supplying liquid free carbons
JPH11131111A (en) Production of copper-iron alloy granule, its producing apparatus and copper-iron alloy granule
JP2930655B2 (en) Method and apparatus for producing spherical slag
JPS595058B2 (en) Granular powder for continuous steel casting
JP4145855B2 (en) Method for producing spherical fused silica powder
Mills et al. Manufacture of Mould Fluxes
CN114799187A (en) Method for improving fine powder rate of vacuum gas atomization powder preparation
JPS5814393B2 (en) Refractories for wind crushed slag manufacturing equipment
JP2006131442A (en) Method for manufacturing spherical fused silica powder