JP2006131442A - Method for manufacturing spherical fused silica powder - Google Patents

Method for manufacturing spherical fused silica powder Download PDF

Info

Publication number
JP2006131442A
JP2006131442A JP2004320451A JP2004320451A JP2006131442A JP 2006131442 A JP2006131442 A JP 2006131442A JP 2004320451 A JP2004320451 A JP 2004320451A JP 2004320451 A JP2004320451 A JP 2004320451A JP 2006131442 A JP2006131442 A JP 2006131442A
Authority
JP
Japan
Prior art keywords
raw material
powder
fused silica
water
spherical fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320451A
Other languages
Japanese (ja)
Inventor
Sakatoshi Naito
栄俊 内藤
Yoshiaki Okamoto
義昭 岡本
Takahisa Mizumoto
貴久 水本
Mitsuyoshi Iwasa
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004320451A priority Critical patent/JP2006131442A/en
Publication of JP2006131442A publication Critical patent/JP2006131442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing spherical fused silica powders where more particles with a high fusing rate whose particle diameters are close to those of silicon dioxide powders as a raw material, namely little bloated, are obtained. <P>SOLUTION: The spherical fused silica powders are manufactured by the method that the silicon dioxide powders as the raw material, their water slurry and/or water are sprayed into a flame formed in a furnace where spraying is favorably performed by the dispersion with a gas whose blowing velocity is at least 50 m/s. It is favorable that the gas to disperse at least one selected from the silicon dioxide powders as the raw material, their water slurry and water forms a rotational gas flow in the furnace. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、球状溶融シリカ粉末の製造方法に関する。   The present invention relates to a method for producing spherical fused silica powder.

従来、半導体封止用樹脂組成物(以下、「封止材」ともいう。)としては、例えばエポキシ樹脂等の樹脂に溶融処理された無機質粒子、特に溶融シリカ粉末の充填されたものが用いられている。粒子が球状であると、樹脂に高充填をすることができ、しかも封止する際の流動性、耐金型摩耗性等にも優れるので球状溶融シリカ粉末が好んで用いられている。   Conventionally, as a resin composition for semiconductor encapsulation (hereinafter, also referred to as “sealing material”), for example, inorganic particles that are melt-processed in a resin such as an epoxy resin, particularly those filled with fused silica powder are used. ing. If the particles are spherical, the resin can be highly filled, and also excellent in fluidity and resistance to mold wear when sealed, spherical spherical silica powder is preferably used.

球状溶融シリカ粉末は、例えば炉内の溶融ゾーンに形成させた火炎中に、二酸化ケイ素粉末原料(例えば珪石粉末)を粉末状態で空気等のキャリアガスに同伴させ、バーナーから噴射する工程を経て製造される。噴射された二酸化ケイ素粉末原料は、溶融・球状化処理を受けて球状溶融シリカ粉末となり、溶融ゾーンに連続された冷却ゾーンを通過する間に冷却固化され、捕集系で捕集される。捕集系には重力沈降室、サイクロン、バグフィルター等の捕集機が適宜設置され、所望粒度の粉末が段階的に取得できるようになっている。そして、所望粒度の球状溶融シリカ粉末を効率的に生産するため、二酸化ケイ素粉末原料の粒度が調整されている。   Spherical fused silica powder is manufactured, for example, through a process in which a silicon dioxide powder raw material (for example, silica powder) is entrained in a powdered state with a carrier gas such as air in a flame formed in a melting zone in a furnace and injected from a burner. Is done. The injected silicon dioxide powder raw material is subjected to melting and spheroidizing treatment to become spherical fused silica powder, cooled and solidified while passing through a cooling zone continuous with the melting zone, and collected by a collecting system. In the collection system, a collector such as a gravity settling chamber, a cyclone, a bag filter or the like is installed as appropriate so that powder of a desired particle size can be obtained stepwise. In order to efficiently produce spherical fused silica powder having a desired particle size, the particle size of the silicon dioxide powder raw material is adjusted.

しかしながら、二酸化ケイ素粉末原料(以下、単に「原料粉末」ともいう。)は、溶融中に粒子同士の衝突や、溶融時に発生するシリカフュームの付着力で、融着結合により肥大化してしまい、原料粉末の粒子径に近い粒子を効率的に取得することは容易なことではなかった。特に10μm以下の微粉原料粉末の場合にその影響が顕著に表れていた。   However, the silicon dioxide powder raw material (hereinafter also simply referred to as “raw material powder”) is enlarged by fusion bonding due to collision between particles during melting and adhesion of silica fume generated during melting. It was not easy to efficiently obtain particles close to the particle size of. In particular, in the case of a fine raw material powder having a particle size of 10 μm or less, the influence was noticeable.

この様な粒子の肥大化を防止するため、火炎形成領域に冷却エアーを導入して火炎形成領域を調整し、もって原料の融点以上の温度域に滞留する時間を制御して粒子間の融着を防ぐ方法(特許文献1)や、原料粉末噴射時の断面積を変更可能とした溶射バーナーを使用して噴射時のガス流速を調節し、粗粉と微粉を作り分ける方法(特許文献2)や、更には原料/ガス量比を小さくし、火炎中の粒子間相互の分散性を向上させ、粒子間の融着現象を低減させる方法(特許文献3)などが提案されている。しかしながら、これらの方法であっても、原料粉末の粒子径が小さいときには、粒子の肥大化を十分には制御することが依然として困難であった。   In order to prevent such particle enlargement, the cooling air is introduced into the flame forming region to adjust the flame forming region, thereby controlling the residence time in the temperature range higher than the melting point of the raw material, thereby fusing the particles. (Patent Document 1) and a method of making coarse powder and fine powder separately by adjusting the gas flow rate at the time of spraying using a thermal spray burner that can change the cross-sectional area at the time of raw material powder injection (Patent Document 2) In addition, a method of reducing the raw material / gas amount ratio, improving the dispersibility between particles in the flame, and reducing the fusion phenomenon between particles has been proposed (Patent Document 3). However, even with these methods, when the particle diameter of the raw material powder is small, it is still difficult to sufficiently control the enlargement of the particles.

そこで、原料粉末を同伴させるキャリアガスの噴射速度を70〜1200m/secとして、原料粉末の火炎中の通過速度を速めることで、粒子同士の溶融中の衝突、肥大化を低減させる方法(特許文献4)も提案されている。この方法によれば、原料粉末と同程度の平均粒子径を持った球状溶融シリカ粉末を容易に得ることが可能となったが、未溶融粒子を多く含むことがあった。
特開平6−199013号公報 特開平6−56445号公報 特開昭61−35145号公報 特開平11−209106号公報
Therefore, the method of reducing collision and enlargement during melting of particles by increasing the passing speed of the raw material powder in the flame by setting the jetting speed of the carrier gas accompanying the raw material powder to 70 to 1200 m / sec (Patent Document) 4) has also been proposed. According to this method, it has become possible to easily obtain a spherical fused silica powder having an average particle size comparable to that of the raw material powder, but sometimes it contains a lot of unmelted particles.
JP-A-6-199013 JP-A-6-56445 JP 61-35145 A Japanese Patent Laid-Open No. 11-209106

本発明の目的は、高溶融率でしかも肥大化の小さい球状溶融シリカ粉末の製造方法を提供することである。   An object of the present invention is to provide a method for producing a spherical fused silica powder having a high melting rate and small enlargement.

すなわち、本発明は、二酸化ケイ素粉末原料と、二酸化ケイ素粉末原料の水スラリー及び/又は水とを、炉内に形成された火炎中に噴霧することを特徴とする球状溶融シリカ粉末の製造方法である。この場合において、二酸化ケイ素粉末原料及び/又は二酸化ケイ素粉末原料の水スラリーを、突出速度が少なくとも50m/sである気体に分散させて噴霧することが好ましい。また、二酸化ケイ素粉末原料、二酸化ケイ素粉末原料の水スラリー及び水から選ばれた少なくとも一つを分散させる気体が炉内で旋回気流を形成するものであることが好ましい。   That is, the present invention is a method for producing a spherical fused silica powder characterized by spraying a silicon dioxide powder raw material, a water slurry of the silicon dioxide powder raw material and / or water into a flame formed in a furnace. is there. In this case, it is preferable to spray the silicon dioxide powder raw material and / or the water slurry of the silicon dioxide powder raw material in a gas having a protrusion speed of at least 50 m / s. Moreover, it is preferable that the gas which disperse | distributes at least 1 selected from the silicon dioxide powder raw material, the water slurry of silicon dioxide powder raw material, and water forms a swirl | vortex airflow in a furnace.

本発明によれば、溶融率が例えば99%以上で、しかも肥大化の小さい、例え原料粉末の平均粒子径の1.3倍以下である球状溶融シリカ粉末を歩留まり良く製造することができる。また、シリカフュームの付着量が5質量%以下(0を含まず)の範囲で調節された球状溶融シリカ粉末を製造することもできる。   According to the present invention, a spherical fused silica powder having a melting rate of, for example, 99% or more and small enlargement, for example, 1.3 times or less of the average particle diameter of the raw material powder can be produced with high yield. It is also possible to produce a spherical fused silica powder in which the amount of silica fume attached is adjusted within a range of 5% by mass or less (excluding 0).

本発明で用いられる原料粉末は、例えば珪石粉、特に天然高純度珪石を粉砕した珪石粉、珪酸アルカリと鉱酸との湿式反応により合成されたシリカゲル、アルコキシシランからゾルゲル法で得られたゲルの粉砕物などである。このうち、製造コストや原料粉末の粒度調整の容易さから、SiO純度が99.5質量%以上の天然高純度珪石の粉砕粉が好ましい。二酸化ケイ素粉末原料の粒径は、所望する製品粒子径によって自由に変更することができる。一般的には、平均粒径が例えば100μm以下であり、また粉末同士が凝集しやすい1μm以下の微粉末を多く含有したものであってもよい。本発明の効果が最も顕著に表れるのは平均粒径10μm以下の原料粉末を用いた場合である。火炎を形成するための燃料ガスとしては、例えばプロパン、ブタン、プロピレン、アセチレン、水素等が使用され、また助燃ガスとしては、例えば空気、酸素等が使用される。 The raw material powder used in the present invention includes, for example, silica powder, particularly silica powder obtained by pulverizing natural high-purity silica, silica gel synthesized by a wet reaction of alkali silicate and mineral acid, and a gel obtained by a sol-gel method from alkoxysilane. It is a pulverized product. Among these, natural high-purity quartzite pulverized powder having a SiO 2 purity of 99.5% by mass or more is preferable from the viewpoint of production cost and ease of adjusting the particle size of the raw material powder. The particle size of the silicon dioxide powder raw material can be freely changed according to the desired product particle size. In general, the average particle size may be, for example, 100 μm or less, and the powder may contain a large amount of fine powder of 1 μm or less in which the powders easily aggregate. The effect of the present invention appears most remarkably when a raw material powder having an average particle size of 10 μm or less is used. For example, propane, butane, propylene, acetylene, hydrogen or the like is used as the fuel gas for forming the flame, and air, oxygen or the like is used as the auxiliary combustion gas.

本発明の大きな特徴は、適度な水分に保たれた火炎中に原料粉末を噴霧し、炉内の溶融ゾーンで球状化処理をしたことである。「適度な水分に保たれた火炎」とは、燃料ガスによって生成した水分よりも多い水分を含む火炎、であると定義される。好ましい火炎は、燃料ガスによって生成した水分量よりも1.05倍以上多い、特に1.10〜2.00倍多い水分量を有する火炎である。火炎温度については1800℃以上であることが好ましい。   A major feature of the present invention is that the raw material powder is sprayed into a flame maintained at an appropriate moisture and spheroidized in the melting zone in the furnace. “A flame maintained at moderate moisture” is defined as a flame containing more moisture than the moisture produced by the fuel gas. A preferred flame is a flame having a moisture content that is 1.05 times or more, especially 1.10 to 2.00 times greater than the moisture content produced by the fuel gas. The flame temperature is preferably 1800 ° C. or higher.

適度な水分に保たれた火炎は、燃焼ガスによって形成された火炎に水分を補給することによって形成することができる。水分の補給は、水を噴霧するか、原料粉末の一部を水スラリーとして噴霧するか、又はその両方によって行うことができる。水を噴霧する場合、イオン交換水等の純度が高い水が好ましい。水の純度が低いと水分中の不純物成分が生成する球状溶融シリカ粉末の表面に付着し、イオン性不純物の原因となり得る。また、原料粉末の水スラリーを噴霧する場合にも純度の高い水を用いて水スラリーを調製するのが好ましく、またその固形分濃度は水の蒸発に要する熱量の増大緩和等の点から80質量%以下、特に50〜70質量%であることが好ましい。水又は水スラリーを噴射口まで搬送する手段としては、チューブポンプ、ダイヤフラムポンプ、渦巻きポンプなどが用いられる。   A flame maintained at moderate moisture can be formed by replenishing the flame formed by the combustion gas. The replenishment of water can be performed by spraying water, spraying a part of the raw material powder as a water slurry, or both. When spraying water, water with high purity, such as ion exchange water, is preferable. If the purity of the water is low, it may adhere to the surface of the spherical fused silica powder in which impurity components in the water are generated, and may cause ionic impurities. In addition, when spraying a raw material powder water slurry, it is preferable to prepare a water slurry using high-purity water, and the solid content concentration is 80 mass from the viewpoint of increasing and reducing the amount of heat required for water evaporation. % Or less, and particularly preferably 50 to 70% by mass. As means for conveying water or water slurry to the injection port, a tube pump, a diaphragm pump, a spiral pump, or the like is used.

原料粉末及び/又は原料粉末の水スラリーを噴霧する場合、その突出速度が少なくとも50m/s以上である気体に分散させて噴霧すると、その噴霧速度に比例した、シリカフューム付着量が5質量%以下(0を含まず)である球状溶融シリカ粉末を製造することができる。このようなシリカフュームの付着した球状溶融シリカ粉末は、それを用いて封止材を製造する場合にコロ作用を示し、より多くの球状溶融シリカ粉末を樹脂に充填させることができる利点がある。分散に用いる気体としては、空気、酸素等の助燃気体、窒素、アルゴン等の不活性気体、プロパン、水素等の可燃性気体などをあげることができる。   When spraying the raw material powder and / or water slurry of the raw material powder, when dispersed in a gas having a protrusion speed of at least 50 m / s and spraying, the silica fume deposition amount proportional to the spray speed is 5 mass% or less ( A spherical fused silica powder can be produced. The spherical fused silica powder to which such silica fume adheres has an advantage in that when it is used to produce a sealing material, it exhibits a roller action, and more spherical fused silica powder can be filled into the resin. Examples of the gas used for dispersion include air, auxiliary gas such as oxygen, inert gas such as nitrogen and argon, and combustible gas such as propane and hydrogen.

原料粉末の水スラリーの調整は、水と原料粉末を容器に所定量投入し、攪拌機でスラリー化するバッチ式、ラインミキサーで連続的にスラリーを調整する連続式などによって行うことができる。水スラリー中の原料粉末の分散性を向上させるために、少量の例えばポリカルボン酸、ポリアクリル酸又はそれらの酸の塩を成分とする分散剤、具体的には花王株式会社製商品名「ポイズ532A」、日本油脂株式会社製商品名「AKM−0531」、「HKM−50A」、「AKM−3011−60」などを必要に応じ添加することもできる。   The water slurry of the raw material powder can be adjusted by a batch method in which a predetermined amount of water and raw material powder are put into a container and slurried with a stirrer, or a continuous method in which the slurry is continuously adjusted with a line mixer. In order to improve the dispersibility of the raw material powder in the water slurry, a dispersant containing a small amount of, for example, polycarboxylic acid, polyacrylic acid or a salt of those acids, specifically, trade name “Poise” manufactured by Kao Corporation 532A ”, trade names“ AKM-0531 ”,“ HKM-50A ”,“ AKM-3011-60 ”manufactured by NOF Corporation may be added as necessary.

原料粉末は、テーブルフィーダー、スクリューフィーダーなどの粉体供給機からキャリアガスに同伴して噴射口に搬送されるが、その際のキャリアガス量は原料粉末が供給ラインで閉塞を起こさない程度の量であればよい。キャリアガスとしては、空気、酸素などの助燃気体、窒素、アルゴンなどの不活性気体が好適に使用することができる。   The raw material powder is transferred from the powder feeder such as a table feeder or screw feeder to the injection port along with the carrier gas. The amount of the carrier gas at this time is such that the raw material powder does not block the supply line. If it is. As the carrier gas, an auxiliary combustion gas such as air or oxygen, or an inert gas such as nitrogen or argon can be preferably used.

本発明において、原料粉末又は原料粉末の水スラリーを噴射口から火炎中に噴霧するには、例えば二流体ノズル等のスプレー噴霧器を用いることが好ましい。二流体ノズルは、その中心部から原料粉末又は原料粉末の水スラリーが噴射し、その周囲から気体が噴射する構造のノズルである。二流体ノズルには、キャリアガスが炉内で旋回気流を形成するものがあるので、原料粉末の更なる分散化という点から、それを用いることが望ましい。水の噴射口からの噴霧には普通のノズルで十分である。   In the present invention, in order to spray the raw material powder or the water slurry of the raw material powder into the flame from the injection port, it is preferable to use a spray sprayer such as a two-fluid nozzle. The two-fluid nozzle is a nozzle having a structure in which a raw material powder or a water slurry of the raw material powder is jetted from the center thereof, and a gas is jetted from the periphery thereof. In some two-fluid nozzles, the carrier gas forms a swirling airflow in the furnace, so that it is desirable to use it from the viewpoint of further dispersing the raw material powder. A normal nozzle is sufficient for spraying from the water jet.

本発明で用いる装置としては、例えば二流体ノズルと必要に応じた水の噴霧ノズルとが設置された炉と、球状溶融シリカ粉末の捕集系とからなるものである。炉は、火炎の形成と、原料粉末の溶融・球状化が行われる溶融ゾーンと、自然に又は強制的に球状溶融シリカ粉末の冷却固化が行われる冷却ゾーンとから構成されていることが好ましい。冷却ゾーンでは、捕集系の操作が容易となるように例えば1000℃以下の温度までに球状溶融シリカ粉末が冷却される。強制冷却を行わない場合には、その温度に達する時間の間、生成した球状溶融シリカ粉末が滞留するように冷却ゾーンの長さが設計されている。   The apparatus used in the present invention includes, for example, a furnace in which a two-fluid nozzle and a water spray nozzle as necessary are installed, and a spherical fused silica powder collecting system. The furnace is preferably composed of a flame zone, a melting zone where the raw material powder is melted and spheroidized, and a cooling zone where the spherical fused silica powder is cooled and solidified naturally or forcibly. In the cooling zone, the spherical fused silica powder is cooled to a temperature of, for example, 1000 ° C. or less so that the operation of the collection system is facilitated. In the case where forced cooling is not performed, the length of the cooling zone is designed so that the produced spherical fused silica powder stays during the time to reach that temperature.

本発明によって、平均粒径が10μm以下の球状溶融シリカ粉末を製造するには、溶融ゾーンで形成した球状溶融シリカ粒子が肥大化させないように速やかに強制冷却を行うことが好ましい。強制冷却は、溶融ゾーンと冷却ゾーンとの接続部近傍から空気等の冷却ガスを供給することによって行うことが望ましく、これによって球状溶融シリカ粒子を捕集系に気体輸送できる利点もある。捕集系には重力沈降室、サイクロン、バグフィルター等の捕集機が適宜設置され、所望粒子径の粒子が段階的に取得できるようになっている。   In order to produce spherical fused silica powder having an average particle size of 10 μm or less according to the present invention, it is preferable to perform forced cooling promptly so as not to enlarge the spherical fused silica particles formed in the melting zone. The forced cooling is desirably performed by supplying a cooling gas such as air from the vicinity of the connection portion between the melting zone and the cooling zone, which also has an advantage that the spherical fused silica particles can be transported by gas to the collection system. In the collection system, a collector such as a gravity sedimentation chamber, a cyclone, a bag filter or the like is installed as appropriate so that particles having a desired particle diameter can be obtained stepwise.

炉頂に二流体ノズルと水の噴霧ノズルの設置された竪型炉と、その下部が捕集系に直結された装置を用いて球状溶融シリカ粉末を製造した。なお、水の噴霧ノズルは、火炎の側面から水を霧状に噴霧できるように設置されている。原料粉末はキャリアガスに同伴させて二流体ノズルの中心部に供給し、その周囲から噴射した気体に分散させて噴霧した。二流体ノズルの周囲から燃焼ガスと助燃ガスを噴射させて火炎が形成されている。燃焼ガス量と助燃ガス量の制御により火炎長さと火炎温度を調節し、水の噴霧量によって火炎の水分量を調節した。炉内で生成した球状溶融シリカ粉末は、ブロワーで吸引されて捕集系に導かれ、バグフィルターで一括捕集した。   Spherical fused silica powder was produced using a vertical furnace in which a two-fluid nozzle and a water spray nozzle were installed at the top of the furnace and an apparatus in which the lower part was directly connected to a collection system. The water spray nozzle is installed so that water can be sprayed in a mist form from the side of the flame. The raw material powder was supplied with the carrier gas to the center of the two-fluid nozzle, dispersed in the gas jetted from the periphery, and sprayed. A flame is formed by injecting combustion gas and auxiliary combustion gas from around the two-fluid nozzle. The flame length and flame temperature were adjusted by controlling the amount of combustion gas and auxiliary gas, and the moisture content of the flame was adjusted by the amount of water sprayed. The spherical fused silica powder generated in the furnace was sucked by a blower, led to a collecting system, and collected in a lump with a bag filter.

実施例1
原料粉末として、粉砕珪石粉(平均粒径:5.0μm、SiO純度:99.9質量%)を用いた。これの20.0kg/hrを酸素からなるキャリアガス24Nm/hrに同伴させて二流体ノズルの中心部に搬送した。この中心部の周囲から酸素ガスをその突出速度を105m/sにして噴射し、原料粉末を分散させながら火炎に噴霧する一方、この二流体ノズルの周囲から、燃料ガスとしてLPG:10Nm/hr、助燃ガスとして酸素:40Nm/hrを噴射して火炎(温度約1900℃)を形成した。水の噴霧ノズルからは、水の10.0kg/hrを表1に示す割合で火炎に噴霧した。なお、二流体ノズルは、原料粉末を供給する中心管を中心として、旋回気流を形成する構造を有している。バグフィルターにて捕集された球状溶融シリカ粉末の回収率は95質量%であった。
Example 1
As the raw material powder, crushed silica stone powder (average particle size: 5.0 μm, SiO 2 purity: 99.9% by mass) was used. 20.0 kg / hr of this was transported to the center of the two-fluid nozzle along with the carrier gas 24Nm 3 / hr made of oxygen. Oxygen gas is injected from the periphery of the central portion at a projection speed of 105 m / s and sprayed onto the flame while dispersing the raw material powder, while LPG: 10 Nm 3 / hr as a fuel gas from the periphery of the two-fluid nozzle. Then, oxygen (40 Nm 3 / hr) was injected as an auxiliary combustion gas to form a flame (temperature about 1900 ° C.). From the water spray nozzle, 10.0 kg / hr of water was sprayed onto the flame at the rate shown in Table 1. The two-fluid nozzle has a structure that forms a swirling airflow around a central tube that supplies the raw material powder. The recovery rate of the spherical fused silica powder collected by the bag filter was 95% by mass.

実施例2〜6
原料粉末の分散気体の突出速度、及び水の噴霧量などを表1のように種々変更したこと以外は、実施例1に準じて球状溶融シリカ粉末を製造した。
Examples 2-6
Spherical fused silica powder was produced in the same manner as in Example 1 except that the protruding speed of the dispersed gas of the raw material powder and the spray amount of water were variously changed as shown in Table 1.

実施例7
水の噴霧と同時に、原料粉末の水スラリー(原料粉末濃度が60質量%)を表1に示す割合で火炎に噴霧したこと以外は、実施例1に準じて球状溶融シリカ粉末を製造した。水スラリーは二流体ノズルを用い、水の噴霧とは火炎に対して対角の位置から火炎に向かって噴霧した。
Example 7
Spherical fused silica powder was produced in the same manner as in Example 1 except that water slurry of the raw material powder (raw material powder concentration: 60% by mass) was sprayed onto the flame at the rate shown in Table 1 simultaneously with the spraying of water. The water slurry used a two-fluid nozzle and sprayed from the diagonal position with respect to the flame toward the flame.

実施例8
水の噴霧を行わずに、水スラリーのみを噴霧したこと以外は、実施例7に準じて球状溶融シリカ粉末を製造した。
Example 8
A spherical fused silica powder was produced according to Example 7 except that only water slurry was sprayed without spraying water.

実施例9
二流体ノズルとして、分散気体が炉内で旋回気流を形成しないものを用いたこと以外は、実施例1と同様の条件で球状溶融シリカ粉末を製造した。
Example 9
A spherical fused silica powder was produced under the same conditions as in Example 1 except that a two-fluid nozzle was used in which the dispersed gas did not form a swirling airflow in the furnace.

比較例1
水の供給を全く行わないこと以外は、実施例1と同様の条件で球状溶融シリカ粉末を製造した。
Comparative Example 1
A spherical fused silica powder was produced under the same conditions as in Example 1 except that no water was supplied.

得られた球状溶融シリカ粉末について以下の物性を測定した。それらの結果を表1に示す。   The obtained spherical fused silica powder was measured for the following physical properties. The results are shown in Table 1.

(1)平均球形度
日本電子社製走査型電子顕微鏡「FE−SEM、モデルJSM−6301F」にて撮影した粒子像を画像解析して測定した。すなわち、粒子の投影面積(A)と周囲長(PM)を写真から測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を粉末の平均球形度とした。平均球形度は0.80以上が好ましい。
(1) Average sphericity A particle image photographed with a scanning electron microscope “FE-SEM, model JSM-6301F” manufactured by JEOL Ltd. was subjected to image analysis and measured. That is, the projected area (A) and the perimeter (PM) of the particle are measured from the photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained was determined, and the average value was taken as the average sphericity of the powder. The average sphericity is preferably 0.80 or more.

(2)溶融率
RIGAKU社製粉末X線回折装置「モデルMini Flex」を用い、CuKα線の2θが26°〜27.5°の範囲において、試料のX線回折分析を行った。結晶シリカの場合は、26.7°に主ピークが存在するが、溶融シリカではこの位置には存在しない。溶融シリカと結晶シリカが混在していると、それらの割合に応じて26.7°のピーク高さが変化する。そこで、結晶シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶シリカ混在率(測定物質のX線強度/結晶シリカのX線強度)を算出し、式、溶融率(%)=(1−結晶シリカ混在率)×100から溶融率を求めた。
(2) Melting rate Using a powder X-ray diffractometer “Model Mini Flex” manufactured by RIGAKU, X-ray diffraction analysis of the sample was performed in the range of 2θ of CuKα ray of 26 ° to 27.5 °. In the case of crystalline silica, a main peak exists at 26.7 °, but in fused silica it does not exist at this position. When fused silica and crystalline silica are mixed, the peak height of 26.7 ° changes depending on the ratio thereof. Therefore, from the ratio of the X-ray intensity of the sample to the X-ray intensity of the crystalline silica standard sample, the mixed ratio of crystalline silica (X-ray intensity of the measured substance / X-ray intensity of the crystalline silica) is calculated, and the formula, melting rate (%) = (Mixing ratio of 1-crystalline silica) × 100 The melting rate was determined.

(3)平均粒径
ベックマンコールター社製「モデルLS−230」(レーザー回折光散乱法)粒度分布測定機を用いて測定した。溶媒に水を用い、ホモジナイザーを用いて200Wの出力を1分間かけて分散処理させたものを試料とした。PIDS(Polarization Intensity Differential Scattering)濃度を45〜55%になるように調製し、水の屈折率を1.33、二酸化ケイ素粉末、溶融シリカ粉末の屈折率を1.50とした。
(3) Average particle diameter It measured using the "model LS-230" (laser diffraction light scattering method) particle size distribution measuring machine by a Beckman Coulter company. A sample was prepared by using water as a solvent and dispersing the output of 200 W for 1 minute using a homogenizer. The concentration of PIDS (Polarization Intensity Differential Scattering) was adjusted to 45 to 55%, the refractive index of water was 1.33, and the refractive indexes of silicon dioxide powder and fused silica powder were 1.50.

(4)シリカフュームの付着量
粒度分布測定機における累積重量分布において、1μm以下の累積重量の値をシリカフュームの付着量とした。本発明で用いた粒度分布測定機「モデルLS−230」では、1μmに測定における境界がないため、0.953μm以下の値にて判断した。シリカフュームの付着量は5質量%以下(0は含まず)が好ましい。
(4) Adhesion amount of silica fume In the cumulative weight distribution in the particle size distribution analyzer, the cumulative weight value of 1 μm or less was defined as the adhesion amount of silica fume. In the particle size distribution measuring instrument “Model LS-230” used in the present invention, since there is no boundary in measurement at 1 μm, the value was determined to be 0.953 μm or less. The adhesion amount of silica fume is preferably 5% by mass or less (excluding 0).

Figure 2006131442
Figure 2006131442

表1から、本発明の実施例1〜6は、比較例1に比べて、溶融率が優れ、肥大化の少ない(すなわち球状溶融シリカ粉末の平均粒子径が原料粉末の平均粒子径の1.3倍以下)球状溶融シリカ粉末が多く得られていることがわかる。また、分散気体の突出速度を選べばシリカフュームの付着量を5質量%以下(0は含まず)の範囲で調整することができた。実施例7は、実施例1に比べて平均球形度と平均粒径が若干劣った。   From Table 1, Examples 1-6 of this invention are excellent in a melting rate compared with the comparative example 1, and there is little enlargement (namely, the average particle diameter of spherical fused silica powder is 1. of the average particle diameter of raw material powder. It can be seen that many spherical fused silica powders are obtained (3 times or less). Moreover, if the protrusion speed of the dispersed gas was selected, the amount of silica fume adhered could be adjusted within a range of 5 mass% or less (excluding 0). Example 7 was slightly inferior in average sphericity and average particle size as compared to Example 1.

本発明によって製造された球状溶融シリカ粉末は、例えば封止材の充填材として用いることができる。   The spherical fused silica powder produced by the present invention can be used, for example, as a sealing material filler.

Claims (3)

二酸化ケイ素粉末原料と、二酸化ケイ素粉末原料の水スラリー及び/又は水とを、炉内に形成された火炎中に噴霧することを特徴とする球状溶融シリカ粉末の製造方法。   A method for producing a spherical fused silica powder, comprising spraying a silicon dioxide powder raw material and a water slurry and / or water of the silicon dioxide powder raw material into a flame formed in a furnace. 二酸化ケイ素粉末原料及び/又は二酸化ケイ素粉末原料の水スラリーを、突出速度が少なくとも50m/sである気体に分散させながら噴霧することを特徴とする請求項1記載の製造方法。   2. The production method according to claim 1, wherein the silicon dioxide powder raw material and / or the water slurry of the silicon dioxide powder raw material is sprayed while being dispersed in a gas having a protrusion speed of at least 50 m / s. 二酸化ケイ素粉末原料、二酸化ケイ素粉末原料の水スラリー及び水から選ばれた少なくとも一つを分散させる気体が、炉内で旋回気流を形成するものであることを特徴とする請求項2記載の製造方法。   3. The method according to claim 2, wherein the gas in which at least one selected from silicon dioxide powder raw material, water slurry of silicon dioxide powder raw material and water forms a swirling airflow in the furnace. .
JP2004320451A 2004-11-04 2004-11-04 Method for manufacturing spherical fused silica powder Pending JP2006131442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320451A JP2006131442A (en) 2004-11-04 2004-11-04 Method for manufacturing spherical fused silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320451A JP2006131442A (en) 2004-11-04 2004-11-04 Method for manufacturing spherical fused silica powder

Publications (1)

Publication Number Publication Date
JP2006131442A true JP2006131442A (en) 2006-05-25

Family

ID=36725320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320451A Pending JP2006131442A (en) 2004-11-04 2004-11-04 Method for manufacturing spherical fused silica powder

Country Status (1)

Country Link
JP (1) JP2006131442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286175A (en) * 2009-06-11 2010-12-24 Taiyo Nippon Sanso Corp Burner for manufacturing inorganic spheroidized particle, inorganic spheroidized particle manufacturing device, and method of manufacturing inorganic spheroidized particle
US20110298003A1 (en) * 2010-06-07 2011-12-08 Nitto Denko Corporation Epoxy resin composition for optical use, optical component using the same, and optical semiconductor device obtained using the same
JP2012107828A (en) * 2010-11-18 2012-06-07 Taiyo Nippon Sanso Corp Burner for producing inorganic spheroidized particle, inorganic spheroidized particle production device, and method of producing inorganic spheroidized particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286175A (en) * 2009-06-11 2010-12-24 Taiyo Nippon Sanso Corp Burner for manufacturing inorganic spheroidized particle, inorganic spheroidized particle manufacturing device, and method of manufacturing inorganic spheroidized particle
US20110298003A1 (en) * 2010-06-07 2011-12-08 Nitto Denko Corporation Epoxy resin composition for optical use, optical component using the same, and optical semiconductor device obtained using the same
TWI510534B (en) * 2010-06-07 2015-12-01 Nitto Denko Corp Epoxy resin composition for optical use, optical component using the same, and optical semiconductor device obtained using the same
JP2012107828A (en) * 2010-11-18 2012-06-07 Taiyo Nippon Sanso Corp Burner for producing inorganic spheroidized particle, inorganic spheroidized particle production device, and method of producing inorganic spheroidized particle

Similar Documents

Publication Publication Date Title
US6360563B1 (en) Process for the manufacture of quartz glass granulate
JP4601497B2 (en) Spherical alumina powder, production method and use thereof
EP2471756A1 (en) Process for producing granules and process for producing glass product
JP2007051019A (en) Method for producing spheroidized inorganic powder
JPH11147711A (en) Alumina fine sphere and its production
JP5467418B2 (en) Method for producing granulated silica powder, method for producing silica glass crucible
JPH0891874A (en) Glass spherical powder and its production
JP2006131442A (en) Method for manufacturing spherical fused silica powder
JP2002179409A (en) Method of manufacturing fine spherical inorganic powder
JP4145855B2 (en) Method for producing spherical fused silica powder
JP4294191B2 (en) Method and apparatus for producing spherical silica powder
JP2003212572A (en) Method of manufacturing spherical glass powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP4330298B2 (en) Method for producing spherical inorganic powder
CN109592691A (en) A kind of device and method of gas heating countercurrent spray method production high-purity ultra-fine sphere silicon micro-powder
JP3957581B2 (en) Method for producing spherical silica powder
JP3891740B2 (en) Method for producing fine spherical siliceous powder
JPH02286B2 (en)
CN104030573B (en) Colorless niobium oxide glass and preparation method and application thereof
JP4230554B2 (en) Method for producing spherical particles
JP4392097B2 (en) Method for producing ultrafine spherical silica
JP3784144B2 (en) Method for producing low uranium spherical silica powder
JP3853137B2 (en) Method for producing fine spherical silica
TW202033464A (en) Method for producing opaque quartz glass
JP2000264622A (en) Production of spherical silica powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20080616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080825

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A02