JPS6082041A - Magnetically levitating rotary wheel - Google Patents

Magnetically levitating rotary wheel

Info

Publication number
JPS6082041A
JPS6082041A JP18916483A JP18916483A JPS6082041A JP S6082041 A JPS6082041 A JP S6082041A JP 18916483 A JP18916483 A JP 18916483A JP 18916483 A JP18916483 A JP 18916483A JP S6082041 A JPS6082041 A JP S6082041A
Authority
JP
Japan
Prior art keywords
wheel
rotating
rotating wheel
ring
fixed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18916483A
Other languages
Japanese (ja)
Other versions
JPH031903B2 (en
Inventor
Hiroshi Morikawa
洋 森川
Toshiharu Kumazawa
俊治 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Precision Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP18916483A priority Critical patent/JPS6082041A/en
Publication of JPS6082041A publication Critical patent/JPS6082041A/en
Publication of JPH031903B2 publication Critical patent/JPH031903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To improve the inertial efficiency and to increase the supporting rigidity to an external force by forming noncontacting bearing means at the periphery of a rotary wheel to concentrate the mass of the wheel at the peripheral region. CONSTITUTION:A rotary wheel 1 having an axial center C of rotation includes a spherical surface 1a having a center of sphere on the axial center C, and formed in a substantially doughnut-shaped wheel. Annular permanent magnets 2, 3 are provided on the peripheral surface 1a of the wheel 1, and pole pieces 4, 5 and 6, 7 are closely engaged with the magnets 2, 3. Magnetic fluxes generated from the magnets 2, 3 are led to form a closed magnetic path at the projections 9-12 formed on the corresponding portion of a supporting stationary unit 8 made of a magnetic material arranged around the wheel 2, and the wheel 1 is supported without contact by a magnetic force.

Description

【発明の詳細な説明】 技術分野 本発明は磁気力を用いた無接触軸受手段で回転輪を高速
回転自在に支持した磁気浮上回転輪に関し、特に筒速回
転軸心と直交した他の二つの直交軸のまわりにオ差トル
ク全発生させて高速回転軸心の軸方向を空間中で変化さ
せることのできる磁気浮上回転輪に関する。
[Detailed Description of the Invention] Technical Field The present invention relates to a magnetically levitated rotating wheel in which the rotating wheel is supported for high-speed rotation by non-contact bearing means using magnetic force. The present invention relates to a magnetically levitated rotating wheel that can change the axial direction of a high-speed rotating axis in space by generating full offset torque around orthogonal axes.

従来技術 回輪体の回転全支持する手段として磁気力を応用した無
接触軸受手段の実用化が最近可能となり。
BACKGROUND ART Recently, it has become possible to put into practical use non-contact bearing means that utilizes magnetic force as a means to fully support the rotation of a rotating body.

軸受部瘍こおける機械的摩擦の解消に著しい効果を上げ
ている。然しなから、この種の無接触軸受手段からなる
支持機構を用いている周知の磁気浮上回転輪の偽造は、
従来の転がり軸受支待機溝を用いたものと同じく1回転
輪の中11部に磁気軸受手段が設けられており、このよ
うな構造では機械的摩擦の解消には有効であるが、kが
り軸受手段の場合と同様に回転輪を支持する支持剛性お
よび回転中心に対1−る慣性能率の適正化に寄与する質
量の有効配分には役立っていない。また1回転輪の回転
軸心の方向を他の支持固定体に対して変化させる自由!
’に持たせる仁とtま不可能であり、従つて回転輪の角
運動it’(r利用し℃支持固定体へ才差 。
It has a remarkable effect on eliminating mechanical friction caused by bearing cracks. However, counterfeiting of known magnetically levitated rotating wheels using support mechanisms consisting of contactless bearing means of this type is
Similar to the conventional rolling bearing support standby groove, magnetic bearing means are provided in 11 parts of the rotating wheel. Although this structure is effective in eliminating mechanical friction, As in the case of the means, it does not contribute to the effective distribution of mass that contributes to optimizing the support rigidity for supporting the rotating wheel and the inertia ratio relative to the center of rotation. Also, the freedom to change the direction of the axis of rotation of the single rotation wheel relative to other supporting fixed bodies!
It is impossible to have the angular movement of the rotating wheel until it's t' (r), and therefore the angular movement of the rotating wheel is used to transfer the angular movement to the supporting fixed body.

トルクを作用せしめることにより、6′uえば空間運動
体の姿勢制御を空間3軸に対しておこなうために磁気浮
上回転輪を利用する等が困難であった。
By applying torque, it has been difficult to use a magnetically levitated rotary wheel to control the attitude of a spatially moving body with respect to three spatial axes.

発明の目的 依って本発明の目的は、磁気を用いた無接触軸受手段の
有効性を活用して軸受部の機械的摩擦全解消するばかり
でなく、その無接触軸受手段を回転輪の周辺域に形成し
て回転輪の質量金その周辺領域に集中させ2回転中心に
対する慣性能率に寄与する負数金回転輪の周辺領域にお
いて効果的に確保すると同時に外力に対゛Tる支持剛性
′(L−増大させ、力)つ回転輪の回転軸瘉こ直交する
他の二軸心のまわりにも旋回の自由度をもった有用度の
高い磁気浮上回転輪全提供せんとするものである。
OBJECTS OF THE INVENTION It is an object of the present invention not only to completely eliminate mechanical friction in a bearing part by utilizing the effectiveness of a non-contact bearing means using magnetism, but also to apply the non-contact bearing means to the surrounding area of a rotating ring. The mass of the rotating wheel is formed to be concentrated in its surrounding area, and the negative gold that contributes to the inertia factor with respect to the center of rotation is effectively ensured in the surrounding area of the rotating ring. It is an object of the present invention to provide a highly useful magnetically levitated rotating wheel that has a degree of freedom in turning around two axes that are perpendicular to the rotating axis of the rotating wheel.

発明の構成と作用 上述の発明の目的に鑑みて一杢発明による磁気浮上回転
輪は1回転軸心上に球心を有した球形周面を備えた回転
輪と、前記回転輪の球形周面と同一球心r有した凹球面
を備えると共に該凹31!面と前記回転輪の球形局面と
の間に一定間隙を置いて前記回転輪の周囲に設けられる
支持固定体と、前記回転輪の球形局面と前記支持固定体
とに分配保持させた磁気作用部材昏こまって形成さrL
、前記回転輪を前記支持固定体に対して前記回転軸心ま
わりに回転可能にかつ該回転軸心と直交した二つの相互
直交軸心まわりに旋回運動可能に浮上支持する無接触磁
気軸受部と、前記回転輪の略中心部に配設され′〔前記
回転輪に前記回転軸心まわりの一定高速回転を与える回
転用駆動部と、前記支持固定体に巻設され、前記無接触
磁気軸受部と協働して前記回転輪の位置制御をおこない
、かつ前記回転輪を前記二つの軸心まわりに旋回させる
ことができる電磁線輪と、前記支持固定体に対する前記
回転輪の相対的位置を無接触検知する検出器と全具備し
て構成されたことを特徴とするものである。
Structure and operation of the invention In view of the above-mentioned object of the invention, the magnetically levitated rotating wheel according to Ichimoku's invention includes a rotating ring having a spherical circumferential surface having a spherical center on one rotation axis, and a spherical circumferential surface of the rotating wheel. It has a concave spherical surface with the same spherical center r as the concave 31! a supporting fixed body provided around the rotating ring with a constant gap between the surface and the spherical curved surface of the rotating ring; and a magnetically acting member distributed and held between the spherical curved surface of the rotating ring and the supporting fixed body. Formed in a coma rL
, a non-contact magnetic bearing part that levitates and supports the rotary ring so that it can rotate about the rotation axis relative to the supporting fixed body and can rotate around two mutually orthogonal axes perpendicular to the rotation axis; , a rotation drive section disposed substantially at the center of the rotating ring, which provides constant high-speed rotation to the rotating ring about the rotation axis, and a non-contact magnetic bearing section wound around the supporting fixed body. an electromagnetic wire wheel that controls the position of the rotary ring in cooperation with the rotary ring and that can rotate the rotary ring about the two axes; It is characterized by being completely equipped with a detector for detecting contact.

上述の構成からなる本発明の磁気浮上回転輪は。The magnetically levitated rotating wheel of the present invention has the above-described configuration.

高速回転する回転輪の半径方向の浮上支持は、該回転輪
とそれに対向した形状の支持固定体の対向部分とに設け
た無接触磁気軸受の相互磁気作用によって1回転輪の質
量を集中せしめた周辺域を直接支持するから、外力に対
する回転輪の支持力は磁気軸受手段が回転輪の中心部に
設けられた構造の場合より大幅に改善される。
The floating support in the radial direction of a rotating wheel rotating at high speed is achieved by concentrating the mass of one rotating wheel through the mutual magnetic action of non-contact magnetic bearings provided on the rotating wheel and the opposing portion of a supporting fixed body having a shape that opposes it. Since the peripheral area is directly supported, the supporting force of the rotating wheel against external forces is significantly improved compared to a structure in which the magnetic bearing means is provided at the center of the rotating wheel.

他方1回転輪の軸心方向の浮上支持は、上述した無接触
磁気軸受による浮上支持作用と併せて。
On the other hand, the floating support in the axial direction of the single rotation wheel is combined with the floating support effect by the above-mentioned non-contact magnetic bearing.

前記支持固定体に設けた電磁線輪に軸心方向の外力の方
向と大きさとに従って制御電流を供給し。
A control current is supplied to the electromagnetic wire ring provided on the supporting fixed body according to the direction and magnitude of the external force in the axial direction.

該外力とバランスする軸心方向の力を発生させることに
より、軸心方向の平衡位置に適正に保持制御するもので
ある。このようにすれば2従来一般に用いられている回
転輪の軸心方向制御手段、すなわち回転輪と支持固定体
との相対位置を常に一定に保持する手段に較べて電磁線
輪へ供給する制御電流は、外力を克服して回転輪全一定
位置に保持するのではなく、外力と平衡する位置に保持
するだけでよいから、その電流値を著しく低減すること
ができる。
By generating a force in the axial direction that balances the external force, it is possible to properly maintain and control the axially balanced position. In this way, the control current supplied to the electromagnetic wire wheel can be improved compared to conventionally commonly used means for controlling the axis of the rotating ring, that is, means for always keeping the relative position of the rotating ring and the supporting fixed body constant. Instead of overcoming the external force and holding the rotating wheels at a constant position, it is only necessary to hold the rotating wheels at a position that is balanced with the external force, so the current value can be significantly reduced.

更に前述した電磁線輪を支持固定体上の、前記回転輪を
囲繞する等間隔の四位置に各配設した4つの#j1輪力
)ら形成し、それらの2つずつを1対を成して協働する
よりに構成した場合にはこれら4つの線輪に供給する電
流を適正比率に配分することにより1回転輪に作用する
合成トルクから該回転輪にその回転軸心と直交する2つ
の直交軸のまわりに夫々、所望の才差トルクを発生させ
ることができる○また回転輪駆動部の駆動方會略ドーナ
ツ形會した回転輪に作用させる仁とにより回転軸心から
のトルク腕長が大きく、故に回転輪駆動トルクが大きく
、このことは2回転輪駆動部の駆動電流値が比較的低レ
ベルであるにもかかわらず。
Furthermore, the above-mentioned electromagnetic wire rings are formed from four #j1 wheels arranged on the supporting fixed body at four equally spaced positions surrounding the rotating ring, and two of each are arranged to form a pair. In the case of a configuration in which the currents supplied to these four wire wheels are distributed in an appropriate ratio, the resultant torque acting on one rotating wheel is transferred to the two rotating wheels perpendicular to its axis of rotation. Desired precession torque can be generated around each of the two orthogonal axes. Also, the drive mechanism of the rotating wheel drive unit is shaped like a donut. is large, and therefore the rotating wheel drive torque is large, even though the drive current value of the two rotating wheel drive section is at a relatively low level.

大きな回転輪駆動トルクが得られるという効果を生ずる
のである。
This produces the effect that a large rotating wheel drive torque can be obtained.

実施例 以下1本発明を添付図面に示す実施例に基いて更に詳細
に説明する。
EXAMPLES The present invention will be explained in more detail below based on examples shown in the accompanying drawings.

第1図は1本発明による磁気浮上回転輪の実施例を示す
縦断面図、第2図は第1図の1−1線に沿う断面図、第
3図は同回転輪において回転輪と支持固定体との間の磁
気平衡点における相対的位置関係金示T部分拡大図であ
る。
FIG. 1 is a longitudinal sectional view showing an embodiment of a magnetically levitated rotating wheel according to the present invention, FIG. 2 is a sectional view taken along line 1-1 in FIG. 1, and FIG. It is an enlarged view of a part T showing the relative positional relationship between the fixed body and the magnetic equilibrium point.

第1図において1回転軸心c金有する回転輪lは、その
回転軸心C上に球心を有した球形の局面1a全有し、し
かも内部がくりぬ力)れた略ドーナツ形輪体として形成
されている。回転輪lの周面1aには環状の永久磁石2
,3が軸心方向に互いに離して設けられており、また、
永久磁石2にはその両端に環状の磁極片4,5が密着さ
れ、他方の永久磁石3には同じくその両端に環状の磁極
片6.7が密着さi″C組み込まれ℃いる。これらの環
状の磁極片4,5および6,7は、第3図に拡大図示す
るように、永久磁石2および3から生ずる磁束f1およ
びfzk−前記回転輪1の周囲に配設された磁性材料か
らなる支持固定体8の対応部に形成されている突起9,
1oおよび11,12に磁気閉路を形成するように誘導
し、これによって回転輪1に対し、その径方向(第1N
の軸心方向Xに垂直な平面内における球心からの半径方
向で代翫的に矢印Yで示しである。)および軸心方向(
第1図に矢印Xで示した方向)に就き磁気力の平衡点O
からその径方向および軸心方向のずレヲ除去する向きに
力を発生させ、上記平衡点0の付近に回転輪1を無接触
支持する。こ\で、上記支持固定体8における突起9,
10および11.12は回転輪1の球心と同一球心を有
した凹球面8aに形成されており1回転輪1が上記平衡
点に保持されているとき、支持固定体8の凹球面8aと
回転輪1の球形周面1aとの間には一定空隙が形成され
た同心関係位置に保持される。なお、このとき、回転輪
1の磁極片4,5および6.7と支持固定体8の突起9
,10および11.12との周方向における相対位置は
第3図に明示したように突起9,10,11,12の極
片幅+E′′に対し1:6だけ内側にづれているように
設けられている。
In Fig. 1, a rotating wheel l having one rotation axis C is a generally donut-shaped ring having a spherical curved surface 1a with a spherical center on its rotation axis C, and whose interior is hollowed out. It is formed as. An annular permanent magnet 2 is provided on the circumferential surface 1a of the rotating ring l.
, 3 are provided apart from each other in the axial direction, and
The permanent magnet 2 has annular magnetic pole pieces 4 and 5 closely attached to both ends thereof, and the other permanent magnet 3 has annular magnetic pole pieces 6.7 closely attached to both ends of the permanent magnet 3. The annular magnetic pole pieces 4, 5 and 6, 7 are made of a magnetic material arranged around the rotating wheel 1 - the magnetic fluxes f1 and fzk generated from the permanent magnets 2 and 3, as shown in an enlarged view in FIG. A protrusion 9 formed on the corresponding part of the supporting and fixed body 8,
1o and 11, 12 to form a magnetic closed circuit, thereby directing the rotating wheel 1 in its radial direction (first N
The radial direction from the spherical center in a plane perpendicular to the axial direction X is indicated by an arrow Y. ) and axial direction (
The equilibrium point O of the magnetic force in the direction shown by the arrow X in Figure 1)
A force is generated in a direction to remove the displacement in the radial direction and axial direction, and the rotating wheel 1 is supported in the vicinity of the equilibrium point 0 without contact. Now, the protrusions 9 on the supporting and fixed body 8,
10 and 11.12 are formed as concave spherical surfaces 8a having the same spherical center as the spherical center of the rotating wheel 1, and when the rotating wheel 1 is held at the above equilibrium point, the concave spherical surface 8a of the supporting fixed body 8 and the spherical circumferential surface 1a of the rotating ring 1 are held in a concentric position with a constant gap formed therebetween. In addition, at this time, the magnetic pole pieces 4, 5, and 6.7 of the rotating wheel 1 and the protrusion 9 of the supporting fixed body 8
, 10 and 11.12 in the circumferential direction, as shown in FIG. It is being

更に、支持固定体8の突起9.10の間および突起11
.12の間には電磁線輪13および14が巻設され、こ
れらの電磁線輪13.14に外部から制御励磁電流を印
加して磁束島およびj4(第3図)′に生せしめると、
前述した回転輪1の永久磁石2,3による磁束島および
f2の大きさを変動制御することができる。例えば、磁
束f1と同じ向きに磁束f a’t−また磁束f2と逆
の向きに磁束、ff生ずるように制御励磁電流を加えて
−,+1”!<>φ2−f4の状態を発生させると1回
転輪1の磁極片4゜5は支持固定体8の突起9,1oと
前述した周方向のずれを解消して互すに整合するように
引かれ2他方1回転輪1の磁極片6,7は支持固定体8
の突起11.12から離れるように相互磁気作用が起る
。故にこのような相互磁気作用を利用Tf′N、げ。
Furthermore, between the projections 9, 10 of the support fixture 8 and the projections 11
.. Electromagnetic wire rings 13 and 14 are wound between the electromagnetic wire rings 12 and 12, and when a controlled excitation current is applied from the outside to these electromagnetic wire rings 13 and 14 to generate a magnetic flux island and j4 (Fig. 3)',
The magnitude of the magnetic flux islands and f2 caused by the permanent magnets 2 and 3 of the rotating wheel 1 described above can be controlled to fluctuate. For example, if a controlled excitation current is applied to generate a magnetic flux fa't- in the same direction as the magnetic flux f1, and a magnetic flux ff in the opposite direction to the magnetic flux f2, a state of -, +1''!<>φ2-f4 is generated. The magnetic pole pieces 4° 5 of the one-rotation wheel 1 are pulled together with the protrusions 9, 1o of the supporting fixed body 8 so as to eliminate the aforementioned circumferential deviation and align with each other. , 7 is a supporting fixed body 8
A mutual magnetic interaction occurs away from the protrusions 11, 12 of. Therefore, using such mutual magnetic action, Tf'N, ge.

回転輪1に外力が作用したときその外方による回転輪1
のずrLt−バランスさせることができる。つまり、回
転輪1の周面1afこ設けらtた永久磁石2.3.磁極
片4.5 # 6.7と支持固定体8の突起9,10,
11.12によって構成された回転輪1の浮上支持用無
接触軸受に対して電磁線輪13.14は外力に対するバ
ランス手段として機能するのである。なお、回転@1と
支持固定体8との間には本実施例の場合には、第1図、
第2図の両図全参照することによって理解できるように
周方向に4つの浮上支持用の無接触軸受が等間隔で設け
られており、これに対応して電磁線輪13゜14と球心
に関して点対称位置に電1a#輪15゜16が巻設され
、同じくこ肚らと直交配置により。
When an external force acts on the rotating wheel 1, the rotating wheel 1 is caused by the external force.
NozrLt-can be balanced. In other words, permanent magnets 2.3. Magnetic pole piece 4.5 #6.7 and protrusions 9, 10 of supporting fixed body 8,
The electromagnetic wire wheels 13 and 14 function as a balance means against external forces in contrast to the non-contact bearings for floating and supporting the rotating wheel 1 constituted by 11 and 12. In addition, in the case of this embodiment, between the rotation @1 and the supporting fixed body 8, as shown in FIG.
As can be understood by referring to both figures in Fig. 2, four non-contact bearings for floating support are provided at equal intervals in the circumferential direction. Electrical rings 1a and 1a are wound at points symmetrical to each other, and are arranged perpendicularly to the arms.

電磁線輪13a、14a、15a、16aが配設されて
いる。
Electromagnetic wire rings 13a, 14a, 15a, and 16a are provided.

さて、上述した制御励磁電流を回転輪1の回転中に電磁
線輪13.14に加え、同時に電磁線輪13と平衡点0
に関して点対称の位置にある電磁線輪15に磁束流が増
加するように、また電磁線輪16に磁束流が減少するよ
うに制御励磁電流を印加すると1回転輸1には第1図の
平衡点0に対して時計まわりに入力トルクが加わり、こ
の入力トルクに従って、それとは直角方向のベクトル金
持つ才筆トルクを発生し、この才筆トルクによって支持
固定体8へ反動トルクを与える。このような反動トルク
は別の電磁線輪13a 、14aおよび15a、16a
に就いても発生させることができ、しかも両反動トルク
又は両才筆トルクは回転軸1の回転軸心Cに対し℃直交
する2つの相互直交軸の各軸まわりに発生するOつまり
回転輪1はから本発明による磁気浮上回転輪は、二自由
度磁気浮上回転輪として形成さオtているのである。
Now, the above-mentioned control excitation current is applied to the electromagnetic wire wheels 13 and 14 while the rotary wheel 1 is rotating, and at the same time the electromagnetic wire wheel 13 and the equilibrium point 0
When a controlled excitation current is applied so that the magnetic flux flow increases in the electromagnetic wire 15, which is located at a point symmetrical position with respect to the point, and the magnetic flux flow decreases in the electromagnetic wire 16, the equilibrium shown in FIG. An input torque is applied clockwise with respect to point 0, and according to this input torque, a torque with a vector perpendicular to the input torque is generated, and a reaction torque is applied to the supporting fixed body 8 by this torque. Such reaction torque is generated by separate electromagnetic wire wheels 13a, 14a and 15a, 16a.
Moreover, both reaction torques or both torques are generated around each of two mutually orthogonal axes that are orthogonal to the rotational axis C of the rotating shaft 1, that is, the rotating wheel 1. Therefore, the magnetically levitated rotating wheel according to the present invention is formed as a two-degree-of-freedom magnetically levitated rotating wheel.

本発明による二自由度磁気浮上回転輪全人工衛星やロケ
ット装置の姿勢tiilJ御部に塔載′1′″nば、上
記の反動トルクによってそれら人工衛星やロケット装置
の姿勢や方位を制御するために用いることができる。こ
の場合に、才筆トルクが発生すると。
If the two-degree-of-freedom magnetically levitated rotary wheel according to the present invention is mounted on the attitude control section of all artificial satellites and rocket devices, the above-mentioned reaction torque can be used to control the attitude and orientation of these artificial satellites and rocket devices. In this case, if a sharp torque is generated.

その反動トルクが無接触磁気軸受の支持力により℃支持
固定体8に伝えら扛、該支持固定体8が取付けられた人
工衛星本体やロケット装置本体そのものを変位させるの
で2回転輪1と支持固定体8との相対位置は微小変化し
かしない0故に上記のようなr5用の場合にも回転輪1
と支持固定体8との隙間を大きくとる必要はない。
The reaction torque is transmitted to the C support fixed body 8 by the supporting force of the non-contact magnetic bearing, displacing the satellite body and the rocket device body to which the support fixed body 8 is attached, so that it is supported and fixed with the two rotating wheels 1. Since the relative position with the body 8 changes only slightly, the rotary wheel 1
There is no need to provide a large gap between the support and fixed body 8.

回転軸心Cと同じXll!l11方向の制御は例えば電
磁線輪13と同一円周上に設けである他の電磁線輪線輪
14ど同一円周上に設けである他の電磁線輪14 a 
+ 15 e l 6Bに対し環状永久磁束3による磁
束流が減少するように制御励磁電流を加えると回転輪1
’(I−X軸の餓1図上向き方向(プラス方向)へ移動
させることができる。
Same as rotation axis C! The control in the l11 direction is performed, for example, by controlling another electromagnetic wire ring 14 provided on the same circumference as the electromagnetic wire ring 13.
+ 15 e l When a control excitation current is applied to 6B so that the magnetic flux flow due to the annular permanent magnetic flux 3 is reduced, the rotating wheel 1
'(It can be moved in the upward direction (plus direction) on the I-X axis.

回転輪1は磁気力の平衡点0からX軸のプラス方向にず
rると、磁束/、の磁気吸引力により、またX軸のマイ
ナス方向(第1図の下向き方向)にずれると磁束f2の
磁気吸引力により、益々このX1′−衡点0からずれる
ので、このずれt各電磁線輪と対の配置で支持固定体8
に設けである軸方向位置検出器17417 a r 1
8 + 18 a (第1図、第2図)によって検出す
る0この検出は例えは漏し磁束検出器を利用し℃、無無
接触気気軸受らの漏れ磁束の変化によつ℃生ずる回転輪
1のX軸方向のずれ速度を検出するように構成子しばよ
い0この軸方向位置検出器17.17a、1B、18a
の検出した出力信号を適当な増幅器をこまって増幅し、
前記%磁線輪に必要な大きさの制御励磁電流t−加え1
発生した磁束f3およびオ、と磁束4.bよびc−J−
/7″1t;趨市寅1 未 L1番士副1穿真■こ肘り
当↑ふ磁QL力により回転輪1は外力と釣合う平衡点で
支持され。
When the rotating wheel 1 deviates from the magnetic force equilibrium point 0 in the positive direction of the X-axis, the magnetic flux / is caused by the magnetic attraction force, and when it deviates in the negative direction of the X-axis (downward direction in Figure 1), the magnetic flux f2 Due to the magnetic attractive force of
Axial position detector 17417 a r 1 provided in
8 + 18 a (Figures 1 and 2) This detection is performed using a leakage magnetic flux detector, for example, to detect rotation caused by changes in leakage magnetic flux of non-contact air bearings. The axial position detectors 17, 17a, 1B, 18a may be configured to detect the displacement speed of the wheel 1 in the X-axis direction.
Amplify the detected output signal using a suitable amplifier,
Control excitation current t of the required magnitude for the % magnetic wire ring - addition 1
The generated magnetic fluxes f3 and O, and magnetic flux 4. b and c-J-
/7″1t; 趨市寅1 未 L1 Gander Gunder■ こ Gurent ↑F Due to the magnetic QL force, the rotating wheel 1 is supported at an equilibrium point that balances the external force.

その後は殆んど永久磁石の支持力のみで支持が行なわオ
Lる。そしてこの支持方法により回転輪1を支持するた
めの電流を極めて少なくすることができる。
After that, support is performed almost exclusively by the supporting force of the permanent magnet. With this support method, the current required to support the rotating wheel 1 can be extremely reduced.

他方1回転輪1が半径方向にずiすると2支持固定体8
の円周上に前記軸方向位置検出器17゜17a+18+
18aと同一半径方向に偶数複数個設けた半径方向位置
検出器、Tなわら第1図においては参照番号19および
20で示した検出器(第1図4こは表示されなめ他の二
つの検出器がある。)からの出力信号に増幅し、同一半
径方向の電1iik線輪1丁なわち第1図においては電
磁線輪13.14$−よび1(i、15へ回転輪1の半
径方向へのずれ向きと大きさによってla磁気力増7J
l]もしくは減少するように制御励磁電流rUIJえ1
回転輪1を適正位置へ制御する。
On the other hand, when the rotating wheel 1 shifts i in the radial direction, the supporting fixed body 8
The axial position detector 17°17a+18+
An even number of radial position detectors are provided in the same radial direction as 18a, T is a detector designated by reference numerals 19 and 20 in FIG. The output signal from the electromagnetic coil 1 in the same radial direction, that is, the electromagnetic coil 13.14 in FIG. The la magnetic force increases by 7J depending on the direction and size of the deviation.
l] or control excitation current rUIJe1 to decrease
The rotating wheel 1 is controlled to an appropriate position.

次に上述した回転輪1の回転軸心Cに関する回転駆動に
就いて説明するO 回転輪1は既述のように内部がくりぬかJ’したド−ナ
ラ形の輪体に形成されており、その内部周囲蚤こは回転
軸1に日転會与えるための駆動機構が設けられている。
Next, the rotational drive of the rotating wheel 1 with respect to the rotational axis C will be explained.As mentioned above, the rotating wheel 1 is formed into a donor-shaped ring body with a hollow interior. The internal circumferential flea is provided with a drive mechanism for imparting daily rotation to the rotating shaft 1.

すなわち、第1図において2回転輪1の内周に磁石片2
1.磁路形成リング22が埋設されており、こしと協働
するように励磁巻線23a’e有する固定子23が支持
固定体8の取付台24からの延長枠25に取付けられ、
蓋26とスペーサ27によって固定されている0こ2t
ら磁石片21と固定子23とにより電動機構造の駆動機
構の一例が形成されている。そしてこのよ壇こ回転輪1
の回転軸心Cに対し、輪体を駆動することによりトルク
増大を計ることができる。
That is, in FIG.
1. A stator 23 in which a magnetic path forming ring 22 is embedded and has an excitation winding 23a'e so as to cooperate with the strainer is attached to an extension frame 25 from a mounting base 24 of the supporting fixed body 8,
2t fixed by lid 26 and spacer 27
The magnet piece 21 and the stator 23 form an example of a drive mechanism of an electric motor structure. And this is the rotary wheel 1
It is possible to increase the torque by driving the wheel body with respect to the rotation axis C.

回転輪1の回転中に電磁線輪へ供給される制御励磁電流
が万一途絶え0回転輪1が支持固定体に接触した際に回
転を安全に徐々に停止させる制動輪28.29が支持固
定体8暑こ設けである。制動輪28,29は適当な制動
効果金層する例えば側脂材によって形成Tftばよい0 効果 以上の説明から明らかなように1本発明によれば2回転
輪の全質量に対する角運動量の比および外力に対する支
持剛性を大きくでき1回転軸心と直角面内の二軸のまわ
りに回転軸心を回転させることができる二自由度磁気浮
上回転輪を得ることができる。
Braking wheels 28 and 29 are supported and fixed to safely and gradually stop the rotation in the event that the control excitation current supplied to the electromagnetic wire wheel during rotation of the rotating wheel 1 is interrupted and the zero rotating wheel 1 comes into contact with a supporting fixed body. It has 8 heat chambers. The braking wheels 28, 29 may be formed of a suitable braking effect metal layer, for example, a side fat material Tft0.Effects As is clear from the above explanation, 1.According to the present invention, the ratio of angular momentum to the total mass of the rotating wheels and It is possible to obtain a two-degree-of-freedom magnetically levitated rotary wheel that can increase support rigidity against external forces and can rotate the rotational axis around two axes in a plane perpendicular to the one rotational axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気浮上回転輪の実施例を示す縦
断面図、第2図は第1図のI+−tl線に沿う断面図、
第3図は同実施例における無接触磁気軸受と電磁線輪と
の配置構造を示す部分拡大図。 1・・・・・・回転輪、2,3・・・・・・環状永久磁
石。 4.5,6.7・・・・・・磁極片、8・・・・・・支
持固定体、9.10,11.12・・・・・・突起−1
3,13a、14.14a。 1!1z15a+16,16a・・・・・・t@線輪、
17.17a。 18.18a・・・・・・軸方向検出器、19.20・
・・・・・半径方向位置検出器、21・・・・・・磁石
片、23・・・・・・固定子、23a・・・・・・励磁
巻線。 1■ 第2図1 第3図
FIG. 1 is a longitudinal sectional view showing an embodiment of a magnetically levitated rotating wheel according to the present invention, FIG. 2 is a sectional view taken along the I+-tl line in FIG. 1,
FIG. 3 is a partially enlarged view showing the arrangement structure of the contactless magnetic bearing and the electromagnetic wire ring in the same embodiment. 1... Rotating ring, 2, 3... Annular permanent magnet. 4.5, 6.7...Magnetic pole piece, 8...Supporting fixed body, 9.10, 11.12...Protrusion-1
3, 13a, 14.14a. 1!1z15a+16,16a...t@Senrin,
17.17a. 18.18a... Axial direction detector, 19.20.
... Radial position detector, 21 ... Magnet piece, 23 ... Stator, 23a ... Excitation winding. 1■ Figure 2 1 Figure 3

Claims (1)

【特許請求の範囲】 1、回転軸心上をこ球心を有した球形局面を備えた回転
輪と、前記回転輪の球形局面と同−球心を有した凹球面
金備えると共に該凹球面と前記回転輪の球形局面との間
に一定間隙を置いて前記回転輪の周囲に設けらtLる支
持固定体と、前記回転輪の球形局面と前記支持固定体と
に分配保持させた磁気作用部制によって形成され、削記
回転輪會前記支持固定体に対して前記回転軸心まわりに
回転可能に力)つ該回転軸心と直焚した二つの相互直装
軸心まわりに旋回連動可能に浮上支持する無接触磁気軸
受部と、前記回転輪の略中七部に配設されて前記回転輪
に前記回転軸11.7まわりの一定筒速回転を与える回
転用駆動部と、前記支持固定体に巻設され、前記無接触
磁気軸受部と協働して前記回転輪の位置制御をおこない
、かつ前記回転輪を前記二つの軸心まわりに旋回させる
ことができる電磁線輪と、前記支持固定体に対1−る前
記回転輪の相対的位置を無接触検知する検出器と全具備
して構成されたこと全特徴とする磁気浮上回転輪。 2、特許請求の範囲第1項に記載した磁気浮上回転輪に
おいて、前記電磁線輪は、前記支持固定体上の、前記回
転輪を囲繞する等間隔の四位置に各配設された4つの線
輪から形成され、これら2つずつを1対を成して協働す
るように構成されてなる6荘気浮上回転輪。 3、 特許請求の範囲記1項に記載1−る磁気浮上回転
輪において、前記検出器は前記回転輪の回転軸心方向と
半径方向の位置ず111検出する漏れ磁束検出形の検出
器からなる磁気浮上回転輪。 4、特許請求の範囲第1項に記載の磁気浮上回転輪にお
いて、前記回転輪は、その回転軸心に対する慣性能率を
大きくするようをこ略ドーナツ形の非中空体に形成した
磁気浮上回転輪。
[Scope of Claims] 1. A rotating wheel having a spherical curved surface having a spherical center on the rotation axis, and a concave spherical metal having the same spherical center as the spherical curved surface of the rotating wheel, and the concave spherical surface. and a spherical curved surface of the rotating ring, and a supporting fixed body provided around the rotating ring with a certain gap between the spherical curved surface of the rotating ring and the supporting fixed body, and a magnetic effect distributed and maintained between the spherical curved surface of the rotating ring and the supporting fixed body. The rotary wheel assembly is formed by a member and is capable of rotationally interlocking around two mutually mounted axes that are directly connected to the rotary axis. a non-contact magnetic bearing section that levitates and supports the rotary wheel; a rotational drive section that is disposed approximately in the middle portion of the rotary ring and provides the rotary wheel with rotation at a constant cylinder speed about the rotary shaft 11.7; an electromagnetic wire ring that is wound around a fixed body, controls the position of the rotating ring in cooperation with the non-contact magnetic bearing section, and is capable of rotating the rotating ring about the two axes; 1. A magnetically levitated rotating wheel, characterized in that it is fully equipped with a detector for non-contact detection of the relative position of the rotating wheel with respect to a supporting fixed body. 2. In the magnetically levitated rotating wheel as set forth in claim 1, the electromagnetic wire ring includes four electromagnetic wire rings arranged at four equally spaced positions surrounding the rotating ring on the supporting fixed body. A six-wheel floating rotating wheel formed from a wire ring and configured so that two of these wheels form a pair and cooperate with each other. 3. In the magnetically levitated rotating wheel as set forth in claim 1, the detector comprises a leakage flux detection type detector that detects positional deviation 111 in the rotational axis direction and radial direction of the rotating wheel. Magnetic levitation rotating wheel. 4. The magnetically levitated rotary wheel according to claim 1, wherein the rotary wheel is formed into a substantially doughnut-shaped non-hollow body so as to increase the inertia rate with respect to its rotation axis. .
JP18916483A 1983-10-12 1983-10-12 Magnetically levitating rotary wheel Granted JPS6082041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18916483A JPS6082041A (en) 1983-10-12 1983-10-12 Magnetically levitating rotary wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18916483A JPS6082041A (en) 1983-10-12 1983-10-12 Magnetically levitating rotary wheel

Publications (2)

Publication Number Publication Date
JPS6082041A true JPS6082041A (en) 1985-05-10
JPH031903B2 JPH031903B2 (en) 1991-01-11

Family

ID=16236528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18916483A Granted JPS6082041A (en) 1983-10-12 1983-10-12 Magnetically levitating rotary wheel

Country Status (1)

Country Link
JP (1) JPS6082041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193554A (en) * 1986-02-18 1987-08-25 Joji Kusuyama Electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193554A (en) * 1986-02-18 1987-08-25 Joji Kusuyama Electric motor

Also Published As

Publication number Publication date
JPH031903B2 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
US6359357B1 (en) Combination radial and thrust magnetic bearing
EP0087628B1 (en) Magnetic bearing wheel for an artificial satellite
JPS6011746A (en) Fly wheel device
US4370004A (en) Magnetically suspended type momentum ring assembly
JPS5833932B2 (en) Automatic pressure generating gas floating segment bearing
US4983869A (en) Magnetic bearing
CA2151687A1 (en) Hybrid magnetic/foil gas bearings
JPS6146684B2 (en)
JPS6117741A (en) Fly wheel device
JPS6082041A (en) Magnetically levitating rotary wheel
JPS5937323A (en) Magnetic bearing device
US5789838A (en) Three-axis force actuator for a magnetic bearing
EP0049300A1 (en) A magnetically suspended type momentum ring assembly
JP2004003572A (en) Magnetic bearing and bearing device provided with it
JPS6211218B2 (en)
JP2002257135A (en) Magnetic bearing device
JPH04203520A (en) Thrust rolling bearing and roller and motor using thereof
JPS6014988Y2 (en) Magnetic bearing mechanism for small rotating bodies
JPS5884221A (en) Five-axle control type magnetic bearing
JP2004293598A (en) Magnetic bearing
JP2519537Y2 (en) Magnetic bearing control circuit
JPH0587686B2 (en)
JPS6313128B2 (en)
JP2004286176A (en) Magnetic bearing device
JPS631339A (en) Non-contact support motor apparatus