JPS6081516A - Gas bearing device - Google Patents

Gas bearing device

Info

Publication number
JPS6081516A
JPS6081516A JP19013183A JP19013183A JPS6081516A JP S6081516 A JPS6081516 A JP S6081516A JP 19013183 A JP19013183 A JP 19013183A JP 19013183 A JP19013183 A JP 19013183A JP S6081516 A JPS6081516 A JP S6081516A
Authority
JP
Japan
Prior art keywords
housing
shaft
bearing
gap
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19013183A
Other languages
Japanese (ja)
Inventor
Kaoru Katayama
薫 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19013183A priority Critical patent/JPS6081516A/en
Publication of JPS6081516A publication Critical patent/JPS6081516A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To prevent the titled device from wearing, seizing and breaking by maintaining a gap between a rotary shaft and a housing at an initially determined value, by maintaining a temperature of the housing at the same level with that of the rotary shaft by providing a heat insulating device on the housing. CONSTITUTION:Heat of exhaust gas is transmitted to a shaft 23 from a turbine 21 on the one hand while it is transmitted to a center housing 26 and a journal bearing 29 from a turbine housing 24 and a thrust bearing 27, in a turbocharger. The shaft 23, consequently, the journal bearing 29 and the center housing 26 are heated up to about identical temperature. As the center housing 26, however, is covered with a heat insulating component 31, the center housing 26, the journal bearing 29 and the shaft 23 are kept at a predetermined temperature difference always. Then quantities of displacements of the shaft 23 and the bearing 29 become about indentical with each other, a gap 30 of which is kept at an initially determined value always.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気体軸受装置、例えば自動車用ターボチャー
ジャ、ガスタービン等に使用される気体軸受装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in gas bearing devices, such as gas bearing devices used in automobile turbochargers, gas turbines, and the like.

(従来技術) 従来の気体軸受装置、特にターボ機械に使用される空気
軸受装置としては、例えば第1図に示すようなものがあ
る(「潤滑」第15@第9号p、595〜p、601、
十合普−著 ゛日本における気体軸受実用化の現況”1
970年刊行、参照)。このものは膨張タービンに静圧
空気軸受装置を通用した例であり、図中1はタービン、
はコンプレッサのインペラを示し、これらのタービン1
とインペラ2とは共通回転軸であるシャフト3により一
体に結合されている。また、4はタービンハウジングで
あり、5はコンプレッサハウジングを示し、両ハウジン
グ4.5はシャフト3が遊貫されたセンタハウジング6
により結合されている。センタハウジング6の内部には
、シャフト3との間にわずかな間隙を形成するジャーナ
ル軸受7と、インペラ2例のシャフト3端部に配される
スラスト軸受8と、が嵌合、固定されており、これらの
両軸受7.8にはそれぞれ絞り弁9.10を有する圧縮
空気の給気孔11.12が形成されている。また、13
はこれらの給気孔11.12に接続した給気管であり、
圧縮空気は供給源(図外)から給気管13及び給気孔1
1,12を通ってシャフト3あるいはインペラ2と軸受
7.8との間隙Gこ供給される。ずなわぢ、該空気軸受
装置は、圧縮空気(加圧空気)を回転体との軸受面に供
給することで、軸受部利から回転体(特にシャフト3)
を浮上させ、潤滑油による粘性抵抗に比して極めて小さ
な摩擦抵抗下で該回転体を回転自在に支持するものであ
る。
(Prior Art) Conventional gas bearing devices, particularly air bearing devices used in turbomachinery, include the one shown in Figure 1 ("Lubrication" No. 15 @ No. 9, p. 595-p. 601,
Written by Fufu Jugo ``Current status of practical application of gas bearings in Japan'' 1
Published in 1970, see). This is an example in which a static pressure air bearing device is applied to an expansion turbine.
indicates the compressor impeller and these turbines 1
and the impeller 2 are integrally coupled by a shaft 3 which is a common rotation axis. Further, 4 is a turbine housing, 5 is a compressor housing, and both housings 4.5 are a center housing 6 into which the shaft 3 is loosely inserted.
are connected by. Inside the center housing 6, a journal bearing 7 that forms a small gap with the shaft 3 and a thrust bearing 8 arranged at the end of the shaft 3 of the two impellers are fitted and fixed. A compressed air supply hole 11.12 with a throttle valve 9.10 is formed in each of these two bearings 7.8. Also, 13
is the air supply pipe connected to these air supply holes 11.12,
Compressed air is supplied from a supply source (not shown) through an air supply pipe 13 and an air supply hole 1.
1 and 12, the gap G between the shaft 3 or impeller 2 and the bearing 7.8 is supplied. Zunawaji, this air bearing device supplies compressed air (pressurized air) to the bearing surface of the rotating body, so that the rotating body (particularly the shaft 3) can be removed from the bearing part.
The rotating body is floated and rotatably supported under extremely small frictional resistance compared to the viscous resistance caused by lubricating oil.

しかしながら、このような従来の空気軸受装置にあって
は、高温(例えば800°C)の排気ガスにさらされる
タービン7かも熱がシャフト3に伝達されシャフト3は
高温となるのに対して、外気にさらされるセンタハウジ
ング6及びこのハウジング6に固着されたジャーナル軸
受7は外気に熱が奪われてシャフト3に比較して低温と
なり、その結果、シャツI−3との熱膨張差により上記
シャフト3と軸受7との間隙が挟まり、高速回転時の振
動等によりシャフト3と軸受7とが摺接して、これらの
IW耗、焼イ」き、さらには、破損が生じるおそれがあ
った。
However, in such a conventional air bearing device, heat from the turbine 7 exposed to high temperature (e.g. 800°C) exhaust gas is transferred to the shaft 3 and the shaft 3 becomes high temperature, whereas the shaft 3 becomes high temperature. The center housing 6 and the journal bearing 7 fixed to the housing 6 are exposed to heat from the outside air and become lower in temperature compared to the shaft 3. As a result, due to the difference in thermal expansion with the shirt I-3, the shaft 3 The gap between the shaft 3 and the bearing 7 is pinched, and the shaft 3 and the bearing 7 come into sliding contact due to vibrations during high-speed rotation, causing IW wear, burning, and even damage.

(発明の目的) そこで、本発明は、回転軸との間に所定間隙を形成する
ハウジングを、該回転軸と同等の温度に保持することに
より、該間隙を初期設定値に常に保持し、上記摩耗、焼
伺き、破損のおそれを未然に解消することをその目的と
している。
(Object of the Invention) Therefore, the present invention maintains a housing that forms a predetermined gap with a rotating shaft at a temperature equivalent to that of the rotating shaft, so that the gap is always maintained at an initial setting value. The purpose is to eliminate the risk of wear, damage, and damage.

(発明に構成) 本発明に係る気体軸受装置は、作動気体により回転駆動
される羽根車の回転軸がハウジング内に所定の間隙を有
して挿入され、この間隙に圧縮気体を充填して回転軸を
回転自在に支持するものにおいて、保温手段によって前
記ハウジングを所定温度に保持する構成を有している。
(Configured in the Invention) In the gas bearing device according to the present invention, the rotating shaft of the impeller that is rotationally driven by working gas is inserted into the housing with a predetermined gap, and the gap is filled with compressed gas to rotate the impeller. In a device that rotatably supports a shaft, the housing is configured to be maintained at a predetermined temperature by a heat retaining means.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の一実施例を示すもので、ターボチャー
ジャに適用した静圧空気軸受装置である。すなわち、作
動気体としては機関の排気ガスが、圧縮気体としては圧
縮空気がそれぞれ用いられる。まず、構成から説明する
と、第2図において、21ば機関の排気ガス(作動気体
)により回転駆動される排気タービン(羽根車)であり
、22は吸気コンプレッサのホイール、すなわちインペ
ラである。これらのタービン21とインペラ22とは共
通回転軸、すなわちシャフト23により結合されている
。また、上記タービン21はタービンハウジング24内
に、インペラ22はコンプレッサハウジンク25内に、
それぞれ回転自在にわずかな間隙を有し°ζ収容されて
おり、これらの両ハウジング24.25を連結するセン
タハウジング26内には上記シャツ1〜23が遊貫され
ている。詳細には、センタハウジング2Gの両端部は円
板状のスラスト軸受27.2)3によ−って前記両ハウ
ジング24.25に結合され、該スラスト軸受27.2
8の間には(センタハウジング26の内部には)略円筒
状のジャーナル軸受29が嵌合。
FIG. 2 shows an embodiment of the present invention, which is a hydrostatic air bearing device applied to a turbocharger. That is, engine exhaust gas is used as the working gas, and compressed air is used as the compressed gas. First, to explain the configuration, in FIG. 2, numeral 21 is an exhaust turbine (impeller) rotationally driven by exhaust gas (working gas) of the engine, and numeral 22 is a wheel of the intake compressor, that is, an impeller. These turbine 21 and impeller 22 are coupled by a common rotation axis, that is, a shaft 23. Further, the turbine 21 is placed in the turbine housing 24, the impeller 22 is placed in the compressor housing 25,
The shirts 1 to 23 are rotatably housed with a slight gap between them, and the shirts 1 to 23 are loosely inserted into a center housing 26 that connects both housings 24 and 25. Specifically, both ends of the center housing 2G are connected to both housings 24.25 by disc-shaped thrust bearings 27.2) 3.
A substantially cylindrical journal bearing 29 is fitted between the center housing 26 (inside the center housing 26).

固定されている。また、該ジャーナル軸受29及びスラ
スト軸受27.28と上記シャフト23との間には所定
の(例えば10μ)間隙3oが形成されている。さらに
、上記センタハウジング26の外周部には円筒状の断熱
部材31が嵌着されており、ごの断熱部材31はセンタ
ハウジング26が直接外気にさらされることを防止して
該ハウジング26をシャフト23と略同等の温度に保つ
保温手段を構成している。また、ジャーナル軸受29に
は絞り32.Aを有する給気孔32が複数個形成されて
おり、該軸受29とシャフト23との間の前記間隙30
には、圧縮空気源(図外)に接続された給気管33より
該給気孔32を介して所定圧力の圧縮空気が供給される
。また、この給気管33は上記各スラスト軸受27.2
8に形成した給気孔34.35にも連通しており、圧縮
空気はこれらの給気孔34.35を通って各スラスト軸
受27.28と夕〜ビン2I、インペラ22との間隙に
も所定圧力で供給される。
Fixed. Further, a predetermined gap 3o (for example, 10 μ) is formed between the journal bearing 29 and thrust bearings 27, 28 and the shaft 23. Furthermore, a cylindrical heat insulating member 31 is fitted to the outer circumferential portion of the center housing 26, and the heat insulating member 31 prevents the center housing 26 from being directly exposed to the outside air and allows the housing 26 to be connected to the shaft 23. It constitutes a heat retention means that maintains the temperature at approximately the same level as the temperature. Further, the journal bearing 29 has an orifice 32. A plurality of air supply holes 32 are formed, and the gap 30 between the bearing 29 and the shaft 23 is
Compressed air at a predetermined pressure is supplied through the air supply hole 32 from an air supply pipe 33 connected to a compressed air source (not shown). Further, this air supply pipe 33 is connected to each of the above-mentioned thrust bearings 27.2.
The compressed air also communicates with the air supply holes 34.35 formed at 8, and the compressed air passes through these air supply holes 34.35 and reaches a predetermined pressure in the gaps between each thrust bearing 27.28, the cylinder 2I, and the impeller 22. Supplied by

なお、これらの給気孔32.34.35にはそれぞれ校
り32A、34A、35Aが形成されている。36は上
記間隙30に接続された軸受圧縮空気の排気管である。
Note that air holes 32A, 34A, and 35A are formed in these air supply holes 32, 34, and 35, respectively. 36 is a bearing compressed air exhaust pipe connected to the gap 30.

次に作用について説明する。Next, the effect will be explained.

ターボチャージャは、機関からの高温(約800°C)
の排気カス(作動気体)によりタービン21が回転駆動
されると、このタービン21とシャフト23で連結され
たインペラ22も一体に回転して吸入外気を圧縮して機
関に供給する。この場合、シャフト23の外周面の間隙
30及びタービン21、インペラ22との間隙には、給
気管33より各給気孔32.34.35を通って所定圧
力の圧縮空気が供給される。その結果、タービン2トイ
ンペラ22及びシャフト23からなる回転体は各軸受面
より浮上して極めて低摩擦下に高速で回転する。また、
上記各間隙(30等)は軸受としての負荷能力を増大す
るために例えば10μ程度にまで微小に形成されている
The turbocharger uses high temperature (approximately 800°C) from the engine.
When the turbine 21 is rotationally driven by the exhaust gas (working gas), the impeller 22 connected to the turbine 21 by a shaft 23 also rotates together to compress the intake outside air and supply it to the engine. In this case, compressed air at a predetermined pressure is supplied from the air supply pipe 33 to the gap 30 on the outer peripheral surface of the shaft 23 and the gaps between the turbine 21 and the impeller 22 through the air supply holes 32, 34, and 35. As a result, the rotating body consisting of the turbine two impeller 22 and the shaft 23 floats above each bearing surface and rotates at high speed with extremely low friction. Also,
Each of the above-mentioned gaps (30, etc.) is formed as small as, for example, about 10 μm in order to increase the load capacity of the bearing.

このとき、排気ガスの熱は、一方ではタービン21かも
シャフト23に伝達され、他方ではタービンハウジング
24、スラスト軸受27からセンタハウジング26及び
ジャーナル軸受29に伝達される。その結果、シャフト
23、ジャーナル軸受29及びセンタハウジング26は
略同等の温度にまで(例えば400℃)熱せられる。し
かし、本実施例にあっては、センタハウシング26はL
tIi熱部材31により覆われて直接外気にはさらされ
ていないため、該ハウジング26の温度がシャフト23
のそれよりも極端に低下することはない。すなわち、セ
ンタハウジング26、ジャーナル軸受29及びシャフト
23は常に一定の温度差を保持している。この結果、シ
ャフト23と軸受29との熱変位量は略同等となり、こ
れらの間隙30は初期設定値10μに常に保持される。
At this time, the heat of the exhaust gas is transferred from the turbine 21 to the shaft 23 on the one hand, and from the turbine housing 24 and the thrust bearing 27 to the center housing 26 and the journal bearing 29 on the other hand. As a result, the shaft 23, journal bearing 29, and center housing 26 are heated to approximately the same temperature (for example, 400° C.). However, in this embodiment, the center housing 26 is
Since the housing 26 is covered by the heat member 31 and is not directly exposed to the outside air, the temperature of the housing 26 is lower than that of the shaft 23.
It will not be much lower than that of . That is, the center housing 26, journal bearing 29, and shaft 23 always maintain a constant temperature difference. As a result, the amount of thermal displacement between the shaft 23 and the bearing 29 is approximately the same, and the gap 30 between them is always maintained at the initial setting value of 10μ.

次に第3図は本発明の他の実施例を示している。本実施
例は、上記実施例におりる断熱部材31に代えてセンタ
ハウジング26の周囲に空気層41を形成し、この空気
層41を保温手段としたものである。すなわち、空気の
熱伝導率はハウジング2Gを形成する金属のそれに比べ
て弗素に小さいもので保温効果を奏するのである。この
空気層41は円筒状部材(パイプ)42をセンタハウジ
ング26の外周面に嵌着することで、このパイプ42と
ハウジング26との間に形成される。その他の構成及び
作用は上記実施例と同様であり省略する。
Next, FIG. 3 shows another embodiment of the present invention. In this embodiment, an air layer 41 is formed around the center housing 26 instead of the heat insulating member 31 in the above embodiment, and this air layer 41 is used as a heat retaining means. In other words, the thermal conductivity of air is lower than that of the metal forming the housing 2G compared to fluorine, and it has a heat retaining effect. This air layer 41 is formed between the pipe 42 and the housing 26 by fitting a cylindrical member (pipe) 42 onto the outer peripheral surface of the center housing 26 . The other configurations and operations are the same as those of the above embodiment, and will therefore be omitted.

また、第4図は本発明のさらに他の実施例を示している
。この実施例における保温手段は、センタハウジング2
Gの外周に機関の排気ガスを導入する構成で、この高温
の排気ガスによりセンタハウジング26をタービン21
と同等温度に、まで加熱し、シャフト23及びジャーナ
ル軸受29を同等温度に保持し、これらの間隙3oを一
定値に保っている。すなわち、センタハウジング26の
外周にパイプ50によって空間5Iを形成し、この空間
51を導入管52によりタービン21」二流側排気路5
3と連通している。また、排気管54によりこの空間5
1はタービン21の下流側排気路とも連通している。そ
の他の構成及び作用は前記各実施例と同様であり、省略
する。
Further, FIG. 4 shows still another embodiment of the present invention. The heat retaining means in this embodiment is the center housing 2
This configuration introduces engine exhaust gas into the outer periphery of G, and this high-temperature exhaust gas causes the center housing 26 to move toward the turbine 21.
The shaft 23 and the journal bearing 29 are kept at the same temperature, and the gap 3o between them is kept at a constant value. That is, a space 5I is formed on the outer periphery of the center housing 26 by a pipe 50, and this space 51 is connected to the turbine 21 by an inlet pipe 52.
It communicates with 3. In addition, this space 5 is provided by the exhaust pipe 54.
1 also communicates with the downstream exhaust path of the turbine 21. The other configurations and operations are the same as those in each of the embodiments described above, and will therefore be omitted.

(効果) 以上説明してきたように、本発明によれば、ハウジング
内で回転軸との間の圧縮気体が充填される間隙を富に初
IM設定値に保持でき、回転軸と軸受部との固体接触に
よる、これらの摩耗、焼付きさらには軸受装置自体の破
損を完全に防止できるという効果が得られる。
(Effects) As explained above, according to the present invention, the gap filled with compressed gas between the rotating shaft and the housing can be maintained at the initial IM setting value, and the gap between the rotating shaft and the bearing can be maintained at the initial IM setting value. It is possible to completely prevent wear, seizure, and even damage to the bearing device itself due to solid contact.

また、上記各実施例によれば、軸受装置の極め−C簡単
な改造により(わずかなコスト及び作業の増加で)、装
置自体の耐久性を向」二できる。
Further, according to each of the above embodiments, the durability of the device itself can be improved by extremely simple modification of the bearing device (with a slight increase in cost and work).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気体軸受装置を示すその断面し1、第2
図は本発明に係る気体11id+受装置の一実施例を示
すその断面図、第3図は本発明の他の実施例を示すその
断面図、第4図はさらに他の実施例を示すその断面図で
ある。 21−−−−−タービン(羽根車)、 23− シャフト(回転軸)、 26−−−〜−−センタハウジング、 30−−−−−一間隙、 31.41.5] −−−−保温手段。 特許出願人 日産自動車株式会社 代理人弁理士 有我軍一部
Figure 1 shows a cross section of a conventional gas bearing device.
The figure is a cross-sectional view showing one embodiment of the gas 11id+ receiving device according to the present invention, FIG. 3 is a cross-sectional view showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view showing still another embodiment. It is a diagram. 21-----Turbine (impeller), 23-Shaft (rotating shaft), 26----~--Center housing, 30-----One gap, 31.41.5] ---Heat insulation means. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Agagun Part

Claims (1)

【特許請求の範囲】[Claims] 作動気体により回転駆動される羽根車の回転軸がハウジ
ング内に所定の間隙を有して挿入され、この間隙に圧縮
気体を充填して前記回転軸を回転自在に支持する気体軸
受構造において、前記ハウジングを所定温度に保持する
保温手段を設けたことを特徴とする気体軸受装置。
A gas bearing structure in which a rotating shaft of an impeller rotationally driven by working gas is inserted into a housing with a predetermined gap therebetween, and this gap is filled with compressed gas to rotatably support the rotating shaft. A gas bearing device characterized by being provided with a heat retaining means for maintaining a housing at a predetermined temperature.
JP19013183A 1983-10-11 1983-10-11 Gas bearing device Pending JPS6081516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19013183A JPS6081516A (en) 1983-10-11 1983-10-11 Gas bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19013183A JPS6081516A (en) 1983-10-11 1983-10-11 Gas bearing device

Publications (1)

Publication Number Publication Date
JPS6081516A true JPS6081516A (en) 1985-05-09

Family

ID=16252904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19013183A Pending JPS6081516A (en) 1983-10-11 1983-10-11 Gas bearing device

Country Status (1)

Country Link
JP (1) JPS6081516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190445U (en) * 1985-05-21 1986-11-27
JP6318331B1 (en) * 2018-01-10 2018-04-25 村山 修 Power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190445U (en) * 1985-05-21 1986-11-27
JP6318331B1 (en) * 2018-01-10 2018-04-25 村山 修 Power generator
JP2019122181A (en) * 2018-01-10 2019-07-22 村山 修 Power generation device

Similar Documents

Publication Publication Date Title
US8186886B2 (en) Turbocharger shaft bearing system
US7371011B2 (en) Turbocharger shaft bearing system
US6877901B2 (en) Bearing system for high-speed rotating machinery
US7677041B2 (en) Bearing systems for high-speed rotating machinery
US4527912A (en) Squeeze film damper
JP3444394B2 (en) Combination bearing device
US4641977A (en) Bearing system
US7832938B2 (en) Floating bearing cartridge for a turbocharger shaft
US5017022A (en) High temperature bearing
US4934837A (en) Bearing structure of rotary machine
US4184720A (en) Air-supported bearing for turbine engines
US20030072509A1 (en) Bearing system for high-speed rotating machinery
KR100649976B1 (en) Turbocharger rotor with low-cost ball bearing
EP0012596B1 (en) Journal bearing assemblies
JP2924481B2 (en) Turbocharger thrust bearing device
JP2002039191A (en) Rotating support device for turbocharger
JPS6081516A (en) Gas bearing device
JPH0245477Y2 (en)
JP2003003856A (en) Rotary support means for turbocharger
JPH0218241Y2 (en)
GU Process fluid foil bearing liquid hydrogen turbopump
JPS6213816A (en) Turbine device
JPS6170137A (en) Pneumatic bearing device
JP2005163642A (en) Turbocharger
JP2002106569A (en) Rotation support mechanism for turbocharger