JPS6081437A - Fuel injection controller - Google Patents

Fuel injection controller

Info

Publication number
JPS6081437A
JPS6081437A JP18927383A JP18927383A JPS6081437A JP S6081437 A JPS6081437 A JP S6081437A JP 18927383 A JP18927383 A JP 18927383A JP 18927383 A JP18927383 A JP 18927383A JP S6081437 A JPS6081437 A JP S6081437A
Authority
JP
Japan
Prior art keywords
throttle valve
intake
fuel injection
engine speed
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18927383A
Other languages
Japanese (ja)
Inventor
Koji Kano
狩野 公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Original Assignee
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automob Antipollut & Saf Res Center, Automobile Appliance Anti Pollution and Safety Research Center filed Critical Automob Antipollut & Saf Res Center
Priority to JP18927383A priority Critical patent/JPS6081437A/en
Publication of JPS6081437A publication Critical patent/JPS6081437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type

Abstract

PURPOSE:To improve responsiveness, by selecting a parameter for fuel injection quantity operation according to whether or not a suction cylinder at the secondary side is used, in case of a device being constituted of forming the suction cylinder into a compound type having both primary and secondary sides in itself. CONSTITUTION:A primary side suction cylinder 2 being normally used is installed at the left of a throttle chamber 1, while a secondary side suction cylinder 3 being used in time of high output driving is installed at the right. At a driving range where the primary side is mainly used, a fuel injection quantity is calculated according to the throttle valve opening detected by a throttle sensor 10 and the engine speed detected by an engine speed detecting sensor. Likewise, at a driving range where also the secondary side is used besides the primary side, a suction air quantity is detected on the basis of the throttle valve opening and the engine speed or the suction pressure detected by the engine speed and a suction pressure sensor 12 whereby the fuel injection quantity is determined according to this suction air quantity. With this constitution, responsiveness is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料噴射制御装置に係り、更に具体的には吸気
筒を、常時使用する一次側とエンジン高出力時に一次側
と共に使用する二次側とを有する複式としたエンジンの
燃料噴射制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel injection control device, and more specifically, the present invention relates to a fuel injection control device, and more specifically, an intake cylinder is connected to a primary side that is always used and a secondary side that is used together with the primary side when the engine output is high. The present invention relates to a fuel injection control device for a dual-type engine having the following.

〔発明の背景〕[Background of the invention]

排気性能や燃費を向上するために、エンジンの運転状態
を検知し燃料の供給量を決定する燃料噴射量#(以下E
Giと呼ぶ)の採用が普及しつつある。EGlには、エ
ンジンの吸入空気量を計測するために%開昭55−12
260号公報にあるようなベーンタイプや特開1185
5−78164号公報にあるような熱線式の空気量計測
装置が使用されている。
In order to improve exhaust performance and fuel efficiency, fuel injection amount # (hereinafter referred to as E
(referred to as Gi) is becoming more and more popular. EGl is set to % in order to measure the intake air amount of the engine.
Vane type as in Publication No. 260 and JP-A No. 1185
A hot wire type air amount measuring device as disclosed in Japanese Patent No. 5-78164 is used.

前者は、ベーンの慣性のため実際の吸入空気量の変化よ
シも遅れた情報となシ、加速運転時には希薄な空燃比と
カシ運転性を損なう。そこで加速状態を検出して、加速
の度合に応じて燃料の増量を行なうが、運転性を重視す
ると過補正となシ排気性能と燃比を悪化させることとな
る。後者の熱線式空気量計測装置を用いた場合でも熱線
を構成するボビンを含むセンサ部の熱容量によシ吸入空
気ことか多く、運動性燃費、排気性能を低下させるとい
う問題がある。
In the former case, due to the inertia of the vanes, information that lags behind the actual change in the amount of intake air is produced, resulting in a lean air-fuel ratio during acceleration, which impairs drivability. Therefore, the acceleration state is detected and the amount of fuel is increased depending on the degree of acceleration, but if emphasis is placed on drivability, this will lead to overcorrection and worsen the exhaust performance and fuel ratio. Even when the latter hot wire type air amount measuring device is used, there is a problem that the heat capacity of the sensor section including the bobbin that constitutes the hot wire is often absorbed by the intake air, resulting in a reduction in maneuverability fuel efficiency and exhaust performance.

一方、単一の吸気筒に絞り弁を配設した場合には絞シ弁
をアクセルペダルで操作した時の絞り弁の開度に対する
通気面積の変化率が大きく円滑な運転操縦が難しい欠点
もあろう吸気筒の径を小さくすれば、この問題を改良す
るが吸気損失が増加して出力を低下する。また吸気筒を
大きくした場合には、運転性が低下すると共にアイドル
や減速運転のように絞シ弁の上下の差圧が増す場合には
大きな曲げ応力が加わシ絞シ弁や弁軸が変形する危険が
生じる。
On the other hand, when a throttle valve is installed in a single intake cylinder, the rate of change in the ventilation area with respect to the throttle valve opening when the throttle valve is operated with the accelerator pedal is large, making smooth operation difficult. Reducing the diameter of the wax intake cylinder will improve this problem, but will increase intake air loss and reduce output. In addition, when the intake cylinder is made larger, drivability decreases, and when the differential pressure between the top and bottom of the throttle valve increases, such as during idling or deceleration operation, large bending stress is applied, causing deformation of the throttle valve and valve stem. There is a risk of

更に、絞シ弁の開度が小さい運転時には、絞シ弁の外周
の環状間隙が小さいための噴射弁から供給された燃料と
吸入空気との混合が悪化する。すなわち燃料は、比較的
に大きな面積の絞シ弁の上面を壁面流として流動し絞シ
弁の下流側に吸い込まれる。したがって噴射弁から供給
された燃料粒子が液状となり、微粒化が低下する。
Furthermore, during operation with a small opening degree of the throttle valve, the mixing of the fuel supplied from the injection valve and the intake air deteriorates because the annular gap around the outer periphery of the throttle valve is small. That is, the fuel flows as a wall flow over the upper surface of the throttle valve, which has a relatively large area, and is sucked into the downstream side of the throttle valve. Therefore, the fuel particles supplied from the injection valve become liquid, and atomization is reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は吸入空気量計測の応答性の向上を図った
燃料噴射制御装置を提供することにある。
An object of the present invention is to provide a fuel injection control device that improves the responsiveness of intake air amount measurement.

〔発明の概要〕[Summary of the invention]

本発明は、吸気筒を一次側と二次側とを有する複式とし
て一体的に構成し、−次側を主として使用する運転域で
は絞シ弁開度とエンジン回転数から、また二次側をも使
用する運転域では絞シ弁開度とエンジン回転数、または
エンジン回転数と吸気圧力とから吸入空気量を演算し、
この吸入空気量から燃料噴射量を決定することを特徴と
するものである。
The present invention integrally configures the intake cylinder as a dual type having a primary side and a secondary side, and in an operating range where the downstream side is mainly used, the secondary side is In the operating range where the engine is used, the amount of intake air is calculated from the throttle valve opening and engine speed, or from the engine speed and intake pressure.
This system is characterized in that the fuel injection amount is determined from this intake air amount.

〔発明の実施例〕[Embodiments of the invention]

以下図面にょシ本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明による燃料噴射装置は、スロットルチャンバ1の
左側に常時、使用する一次側吸気筒2と右側には高出力
運転時に一次側吸気筒2と同時に使用する二次側吸気筒
3とが一体的に構成されている。−次側吸気筒2には、
絞)弁4を取シ付けてアクセルリンクに連動するスロッ
トルンバー11で開閉操作をする。二次側吸気筒3には
、絞シ弁5を取り付けて絞シ弁4が約1/2開弁じたこ
ろから絞シ弁5の開弁を許容する二次弁開閉装置9で操
作する。二次弁開閉装置9は、絞シ弁4と絞シ弁5をリ
ンク材構で連動するか、あるいは吸入空気量や吸気筒の
一部に設けたペン4〜り部の負圧によシサーボ装置を駆
動し操作する。また二次弁開閉装置9には、絞シ弁5が
開弁したことを検出し、その情報を制御回路13に伝達
する開弁センサを内蔵している。なお吸入空気は、7ラ
ンヂ8に取シ付けるエアクリーナーを介して供給される
。スロットルチャンバ1の下流には、吸気マニホールド
14を接続して、絞シ弁4の上方に配設した噴射弁6と
絞シ弁5の上方に収シ付けた噴射弁7から供給される燃
料と空気を混合しエンジンの各気筒に供給する。
The fuel injection device according to the present invention has a primary side intake cylinder 2 that is always used on the left side of the throttle chamber 1, and a secondary side intake cylinder 3 that is used simultaneously with the primary side intake cylinder 2 during high output operation on the right side. It is composed of -In the next intake cylinder 2,
The throttle valve 4 is installed on the throttle valve 4 and opened and closed using the throttle lever 11 which is linked to the accelerator link. A throttle valve 5 is attached to the secondary intake cylinder 3 and operated by a secondary valve opening/closing device 9 that allows the throttle valve 5 to open from when the throttle valve 4 is about 1/2 open. The secondary valve opening/closing device 9 is configured by interlocking the throttle valve 4 and the throttle valve 5 by a link structure, or by controlling the intake air amount or by controlling the negative pressure of the pen 4 provided in a part of the intake cylinder. Drive and operate equipment. Further, the secondary valve opening/closing device 9 has a built-in valve opening sensor that detects that the throttle valve 5 is opened and transmits the information to the control circuit 13. Note that the intake air is supplied through an air cleaner attached to the 7-landing 8. An intake manifold 14 is connected downstream of the throttle chamber 1, and fuel is supplied from an injection valve 6 disposed above the throttle valve 4 and an injection valve 7 disposed above the throttle valve 5. Mixes air and supplies it to each cylinder of the engine.

エンジンの各気筒への吸入空気量は、第2図に示すよう
に図示してないエンジン回転数センナから検出されるエ
ンジン回転数と吸気マニホールド14に諏→付けた圧力
センサ12がらの吸気圧力によシ計測する方法がある。
As shown in FIG. 2, the amount of intake air into each cylinder of the engine is determined by the engine speed detected from an engine speed sensor (not shown) and the intake pressure from a pressure sensor 12 attached to the intake manifold 14. There is a way to measure it.

しがし圧力センサ12は、センサ部の差圧による歪を増
幅した信号としているための吸入空気量が増減し圧力が
変化した後に信号を得るため応答性が低い。特に寒冷時
には、この応答性の低下が大きい。また吸気マニホール
ド14内において過圧が発生したシ特異の液体が介入し
て異常な信号を発生する危険もある。
The pressure sensor 12 has low responsiveness because it obtains a signal after the pressure changes due to an increase/decrease in the amount of intake air, which is a signal obtained by amplifying the distortion due to the differential pressure in the sensor section. This decrease in responsiveness is particularly significant in cold weather. Furthermore, there is also a risk that a peculiar liquid in which overpressure has occurred in the intake manifold 14 may intervene and generate an abnormal signal.

一方、第3図に示したように、エンジン回転数と絞シ弁
開度によシ吸入空気量を計測する方法がある。この場合
には、絞シ弁の開度が太きいと絞シ弁開度に対する吸入
空気量の変化が大きく、絞シ弁開度の検出精度が点線で
示したように重要となる。
On the other hand, as shown in FIG. 3, there is a method of measuring the amount of intake air based on the engine speed and throttle valve opening. In this case, if the opening of the throttle valve is large, the amount of intake air changes greatly with respect to the opening of the throttle valve, and the detection accuracy of the throttle valve opening becomes important as shown by the dotted line.

本実施例では、比較的に小さい径の一次側吸気筒2用の
絞シ弁4に一体的に取シ付けたスロットルセンサ10に
よシ検出するため絞シ弁4の開度に対する吸入空気量の
変化が第3図に実線で示したように大きくスロットルセ
ンサ10の精度を特別に向上させなくとも十分な計測精
度を確保することができる。なお絞シ弁軸とスロットル
センサ10の中間に増幅機能(ギヤー、カム、リンクな
ど)を介在させるとさらに精度を向上できる。
In this embodiment, since the throttle sensor 10 integrally attached to the throttle valve 4 for the primary intake cylinder 2 with a relatively small diameter detects the intake air amount relative to the opening degree of the throttle valve 4. As shown by the solid line in FIG. 3, the change in the amount of time is large, as shown by the solid line in FIG. 3, and sufficient measurement accuracy can be ensured without particularly improving the accuracy of the throttle sensor 10. Note that the accuracy can be further improved by interposing an amplifying function (gear, cam, link, etc.) between the throttle valve shaft and the throttle sensor 10.

交叉点での発信や市街地での走行などのように、比較的
エンジンへの吸入空気量が少量の状態から吸入空気量の
増加率を大きくする場合には、第2圧力の圧力センサ1
2での応答性が低いために正しい吸入空気量の増加を検
知できない。しかし本実施例では、絞シ弁4の開度の変
化を即座にスロットルセンサ10で検出するため第4図
に示すように吸入空気量の変化と同時に絞り弁の開度の
変化が制御回路13に伝達される。またエンジンの高出
力運転時には、吸入空気量が大きいので圧力センサから
の信号が遅れても運転性を低下させる影響の度合が少な
い。なおスロットルセンサ10を絞シ弁4の低開度域で
出力特性を向上させるように、また圧力センサ12は、
吸気圧力の大きい側で感を良好とするようにそれぞれ設
定して吸入空気量の計測精度を向上することができる。
When increasing the rate of increase in the amount of intake air from a relatively small amount of intake air to the engine, such as when transmitting at an intersection or driving in a city area, the pressure sensor 1 of the second pressure is used.
2, the correct increase in intake air amount cannot be detected because the response is low. However, in this embodiment, since a change in the opening degree of the throttle valve 4 is immediately detected by the throttle sensor 10, a change in the opening degree of the throttle valve 4 is detected simultaneously with a change in the intake air amount by the control circuit 10, as shown in FIG. transmitted to. Furthermore, when the engine is operated at high output, the amount of intake air is large, so even if the signal from the pressure sensor is delayed, the degree of deterioration of drivability is small. The throttle sensor 10 is designed to improve output characteristics in the low opening range of the throttle valve 4, and the pressure sensor 12 is
The accuracy of measuring the amount of intake air can be improved by setting each so that the feeling is better on the side where the intake pressure is higher.

また実施例においては、スロットルセンサ10と圧力セ
ンサ12の故障診断回路を設けて制御回路13内に付加
することによシこれらのセンサの一方が故障した場合に
は、他方のセンサが代行して吸入空気量を計測すること
が容易にできる。
In addition, in the embodiment, a failure diagnosis circuit for the throttle sensor 10 and the pressure sensor 12 is provided and added to the control circuit 13, so that when one of these sensors fails, the other sensor takes over. The amount of intake air can be easily measured.

また排気性能対策として、排気ガス再環流(EGR)を
行う場合に第2図に示した方法で吸入空気量を計測する
とEGR量と共に吸気圧力が太きくなシ真の吸入空気量
を検出できない欠点があったが、EGR,は−次側吸気
筒2での絞シ弁4の開弁操作間に行なう方法が大半であ
シ、本発明の有 1効性がこの点においても発揮できる
In addition, when performing exhaust gas recirculation (EGR) as an exhaust performance measure, if the intake air amount is measured using the method shown in Figure 2, the intake air pressure will increase along with the EGR amount, and the true intake air amount cannot be detected. However, in most cases, EGR is performed during the opening operation of the throttle valve 4 in the downstream side intake cylinder 2, and the effectiveness of the present invention can also be demonstrated in this respect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば吸入空気量計測の応答性の向上が図れる
のでエンジンの各気筒内の空燃比を最適に制御し得る。
According to the present invention, the responsiveness of intake air amount measurement can be improved, so that the air-fuel ratio in each cylinder of the engine can be optimally controlled.

尚、本実施例では、噴射弁を絞シ弁の上流に配設したも
のについて述べたが、噴射弁を下流の下流部に配設した
場合や気筒毎に取シ付けるEGiにおいても同様の効果
が得られる。
In this embodiment, the injection valve is arranged upstream of the throttle valve, but the same effect can be obtained when the injection valve is arranged downstream or in EGi installed in each cylinder. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料噴射制御装置の一実施例を示
す構成図、第2図は吸気圧力をパーラメータにしたエン
ジン回転数と吸気空気量との関係を示す特性図、第3図
は絞シ弁開度をパラメータにしたエンジン回転数と吸入
空気量との関係を示す特性図、第4図は加減速運転時に
おける吸気圧力と絞シ弁開度の検出応答性を比較して示
した図である。 1.5・・・絞シ弁、6,7.・・噴射弁、9・・・二
次弁開別装置、10・・・スロットルセンサ、12・・
・圧力セ/す、13・・・制御装置。 工ンシ゛l/−革云秋 協4図 時間
FIG. 1 is a configuration diagram showing an embodiment of the fuel injection control device according to the present invention, FIG. 2 is a characteristic diagram showing the relationship between engine speed and intake air amount using intake pressure as a parameter, and FIG. A characteristic diagram showing the relationship between engine speed and intake air amount using throttle valve opening as a parameter. Figure 4 shows a comparison of the detection response of intake pressure and throttle valve opening during acceleration/deceleration operation. This is a diagram. 1.5... Throttle valve, 6,7. ...Injection valve, 9...Secondary valve separation device, 10...Throttle sensor, 12...
・Pressure unit, 13...control device. Technology / - Leather Sports Association 4 Figure Time

Claims (1)

【特許請求の範囲】 1、吸気筒を、常時使用する一次側とエンジン高出力時
に一次側゛と共に使用する二次側とを有する複式とした
エンジンにおいて、エンジン回転数を検出するエンジン
回転数センサと、吸気筒の一次側の絞シ弁の開度を検出
するスロットルセ/すと、吸気マニホールド内の吸気圧
力を検出する圧力センサと、吸気筒の一次側の絞り弁の
開度が所定値以上になったとき二次側の絞シ弁を開弁さ
せる二次弁開閉装置と湖記各楓センサ及び二次弁開閉装
置の出力信号を取シ込み、−次側を主体とした運転域で
は絞9弁開度とエンジン回転数から、また二次側をも使
用する運転域では絞シ弁゛開度とエンジン回転数、また
はエンジン回転数と吸気圧力とから吸入空気量を演算し
、この吸入空気量から燃料噴射量を決定する制御回路と
から構成されたことを特徴とする燃料噴射制御装置。 2、前記制、御回路は、スロットルセンサ故障時にエン
ジン回転数と吸気圧力とから吸入空気量を演算すること
を特徴とする特許請求の範囲第1項に記載の燃料噴射制
御装置。 3、前記制御回路は圧力センサ故障時にエンジン回転数
と絞り弁開度とから吸入空気量を演算することを特徴と
する特許請求の範囲第1項に記載の燃料噴射制御装置。
[Claims] 1. An engine rotation speed sensor that detects the engine rotation speed in an engine having a dual intake cylinder having a primary side that is always used and a secondary side that is used together with the primary side when the engine output is high. When a throttle sensor detects the opening of the throttle valve on the primary side of the intake cylinder, a pressure sensor detects the intake pressure in the intake manifold, and a throttle valve detects the opening of the throttle valve on the primary side of the intake cylinder to a predetermined value. The output signals of the secondary valve opening/closing device, which opens the throttle valve on the secondary side when the above conditions are reached, and the output signals of each Kaede sensor and the secondary valve opening/closing device are input, and the operation range is mainly centered on the - downstream side. Then, the intake air amount is calculated from the throttle valve opening and the engine speed, and in the operating range where the secondary side is also used, the intake air amount is calculated from the throttle valve opening and the engine speed, or the engine speed and intake pressure. A fuel injection control device comprising a control circuit that determines a fuel injection amount from this intake air amount. 2. The fuel injection control device according to claim 1, wherein the control circuit calculates the intake air amount from the engine speed and intake pressure when the throttle sensor fails. 3. The fuel injection control device according to claim 1, wherein the control circuit calculates the intake air amount from the engine speed and the throttle valve opening when the pressure sensor fails.
JP18927383A 1983-10-12 1983-10-12 Fuel injection controller Pending JPS6081437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927383A JPS6081437A (en) 1983-10-12 1983-10-12 Fuel injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927383A JPS6081437A (en) 1983-10-12 1983-10-12 Fuel injection controller

Publications (1)

Publication Number Publication Date
JPS6081437A true JPS6081437A (en) 1985-05-09

Family

ID=16238553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927383A Pending JPS6081437A (en) 1983-10-12 1983-10-12 Fuel injection controller

Country Status (1)

Country Link
JP (1) JPS6081437A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316128A (en) * 1976-07-27 1978-02-14 Bosch Gmbh Robert Method and device for controlling fuel supply to internal combustion engine
JPS5532919A (en) * 1978-08-25 1980-03-07 Nissan Motor Co Ltd Fuel controller of internal combustion engine
JPS5618036A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS58167839A (en) * 1982-03-29 1983-10-04 Mikuni Kogyo Co Ltd Throttle valve system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316128A (en) * 1976-07-27 1978-02-14 Bosch Gmbh Robert Method and device for controlling fuel supply to internal combustion engine
JPS5532919A (en) * 1978-08-25 1980-03-07 Nissan Motor Co Ltd Fuel controller of internal combustion engine
JPS5618036A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS58167839A (en) * 1982-03-29 1983-10-04 Mikuni Kogyo Co Ltd Throttle valve system

Similar Documents

Publication Publication Date Title
CN104863699A (en) Control Device For Internal Combustion Engine Having Turbocharger
JPS5970853A (en) Controller for car engine
JPH0323354A (en) Exhaust gas reflux detecting device for exhaust gas reflex device for internal combustion engine
JP2010138734A (en) Control device for internal combustion engine
JPS6081437A (en) Fuel injection controller
JPH03115756A (en) Engine control device
JPH06288303A (en) Self-diagnosis device for exhaust gas circulating device of internal combustion engine
JPS628363Y2 (en)
JPH0523805Y2 (en)
JPH0156256B2 (en)
JPH0826786B2 (en) Engine controller
JP3189001B2 (en) Diagnosis device for exhaust gas recirculation system of internal combustion engine
JPS6341622A (en) Superchargning quantity controlling method for internal combustion engine
JPH0517402Y2 (en)
JP4000539B2 (en) Fuel injection control device for internal combustion engine
JP3047616B2 (en) Fuel injection amount control device for internal combustion engine
JP2000274299A (en) Failure diagnostic device for intake air quantity detecting device
JPH055465A (en) Failure diagnostic device for engine
JPH0517394Y2 (en)
JPS6260926A (en) Suction device for gasoline engine with turbo supercharger
JPH062606A (en) Device for controlling engine
JPH063151B2 (en) Slot valve control device
JP2000303885A (en) Diagnostic equipment for throttle opening abnormality
JP2518090Y2 (en) Exhaust gas recirculation device failure diagnosis device
JPH0325619B2 (en)