JPS6080701A - Probe for measuring thickness of suspended matter layer on surface of liquid material - Google Patents

Probe for measuring thickness of suspended matter layer on surface of liquid material

Info

Publication number
JPS6080701A
JPS6080701A JP18905283A JP18905283A JPS6080701A JP S6080701 A JPS6080701 A JP S6080701A JP 18905283 A JP18905283 A JP 18905283A JP 18905283 A JP18905283 A JP 18905283A JP S6080701 A JPS6080701 A JP S6080701A
Authority
JP
Japan
Prior art keywords
probe
slag
groups
connector
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18905283A
Other languages
Japanese (ja)
Other versions
JPH0324964B2 (en
Inventor
Kiyohiko Kobayashi
清彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASOU DENKI KOGYO KK
Original Assignee
KAWASOU DENKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASOU DENKI KOGYO KK filed Critical KAWASOU DENKI KOGYO KK
Priority to JP18905283A priority Critical patent/JPS6080701A/en
Publication of JPS6080701A publication Critical patent/JPS6080701A/en
Publication of JPH0324964B2 publication Critical patent/JPH0324964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve accuracy by amplifying the electric resistance values measured respectively by plural electrode groups provided at a specified interval in the vertical direction on the outside circumferential surface in the lower part of a main unit at specified sequence and outputting the same to a connector. CONSTITUTION:Plural electrode pair groups 21-33 are independently provided at a specified interval in the vertical direction on the outside circumferential surface in the lower part of the main unit 5 of a probe 1 within the range where the part above the slag layer can be covered. A switch 19 is made pushable by a push rod 35 mounted to an insulator 34 at the bottom end of the main unit. The switch 19, the lead wires 39 of the groups 21-33 are connected via a signal processor 9 to a connector 11 connected to an external signal processing means (not shown). The analog multiplexer 16 in the processor 9 connects the groups 21-33 according to the specified sequence via an isolation amplifier 12 to the connector 11 by the signal from a shift register 15. The thickness of the slag layer is thus calculated from the difference in the electric resistance values between the slag layer and the molten metal.

Description

【発明の詳細な説明】 本発明は炉内の溶融金属の表面に浮M−4る溶融スラグ
層、又は、ピッチを含むガス体のピッチ除去の為の洗浄
槽にJ3けるアンモニア洗浄液上に浮遊するビッヂ混合
体層、等の液状物質表面の浮遊物層厚さ測定プローブに
関J゛るものである。
Detailed Description of the Invention The present invention is directed to a molten slag layer M-4 floating on the surface of molten metal in a furnace, or a molten slag layer floating on an ammonia cleaning solution in a cleaning tank J3 for removing pitch from a gas containing pitch. The present invention relates to a probe for measuring the thickness of a suspended substance layer on the surface of a liquid substance such as a muddy mixture layer.

従来、転炉等の精錬炉内の溶融金属レベル測定用プロー
ブとしては、溶融金属表面に浮遊づる溶融スラグ乃至溶
融金属が共に導電性物質であることを利用して、開回路
電極構成とした一対の検出用電極を先端部に備えたプロ
ーブを外部測定nl器と電気的に接続し、自動挿入装置
(例えば転炉サブランス装置等)にfi着し、挿入装置
の降下と同期させることにより、電極間にスラグ又は溶
融金属が介在し、導通状態となり電気信号を発するタイ
ミングから、炉内溶融金属レベルをIt定づるものが知
られている。
Conventionally, as a probe for measuring the level of molten metal in a smelting furnace such as a converter, a pair of open-circuit electrodes has been used, taking advantage of the fact that both molten slag and molten metal floating on the surface of the molten metal are conductive substances. A probe equipped with a detection electrode at the tip is electrically connected to an external measurement device, attached to an automatic insertion device (such as a converter sublance device, etc.), and synchronized with the lowering of the insertion device to detect the electrode. It is known that the level of molten metal in the furnace is determined from the timing when slag or molten metal is interposed between the two, and the molten metal level in the furnace becomes conductive and an electric signal is generated.

しかしながら、この方法は、溶融スラグ、溶融金属のい
ずれも導電性物質であることから、真の溶融金属のレベ
ルの検出が出来ないという欠点があった。
However, this method has the drawback that the true level of molten metal cannot be detected because both molten slag and molten metal are conductive substances.

まIこ、溶融金属表面に浮遊づる溶融スラグ層の真の厚
みが測定出来ないことから、精練に必要な副原料の適切
な量を判定りるために必要な、スラグ量に関づるデータ
が得られないという問題があつl〔。
However, since it is not possible to measure the true thickness of the molten slag layer floating on the surface of the molten metal, there is no data on the amount of slag needed to determine the appropriate amount of auxiliary material required for scouring. There is a problem of not being able to obtain it.

その他、ガス処理技術分野において、ピッチを含むガス
体の洗浄処理後のピッチ廃棄が必要な場合、廃棄リーベ
きピッチ量の判定をりるためのアンモニア溶液とぞの上
に浮遊づるピッチとの界面部分の判定をな寸手段として
の適当な測定ブローブはなかった。
In addition, in the field of gas processing technology, when it is necessary to dispose of pitch after cleaning a gas body containing pitch, the interface between the pitch and the pitch floating on the ammonia solution is used to determine the amount of pitch to be discarded. There was no suitable measuring probe as a means of determining the part.

本発明は従来のプローブの様に挿入装置の挿入(降下)
速度と同期さける必要がなく、プローブ自体がメジ1?
−となり、スラグ等の浮遊物の厚さを正確に測定出来る
スラグ等の浮遊物層厚さ測定プローブの提供を目的と1
−る。
The present invention allows insertion (lowering) of the insertion device like a conventional probe.
There is no need to synchronize with the speed, and the probe itself is meji 1?
-The aim is to provide a probe for measuring the layer thickness of floating substances such as slag that can accurately measure the thickness of floating substances such as slag.
-ru.

以下本発明のスラグ等の浮遊物層厚さ測定プローブ(以
下本発明のプローブという)を転炉等の精錬炉内の溶融
スラグの厚さ測定を1例として、図面に示す実施例に従
い説明覆る。
Hereinafter, the probe for measuring the thickness of a suspended substance layer such as slag of the present invention (hereinafter referred to as the probe of the present invention) will be explained according to the embodiment shown in the drawings, taking as an example the measurement of the thickness of molten slag in a smelting furnace such as a converter. .

第1図は本発明のプローブを示し、該プローブ(3)は
紙管等の筒体(5a) (5b) (5c)からなる本
体(5)を有する。
FIG. 1 shows a probe of the present invention, and the probe (3) has a main body (5) consisting of cylindrical bodies (5a), (5b), and (5c) such as paper tubes.

本体(5)下部外周面には上下方向一定間隔で設けられ
側方に突出する独立した複数の電極対群(実施例では、
30〜1001Iの間隔を聞(〕で、500〜1100
0II1の範囲に電極対群(21) (22) −・・
・・、 (32)(33)を配列したものを示す)が設
けられる。
A plurality of independent electrode pair groups (in the example,
Listen to the interval from 30 to 1001
Electrode pair group (21) (22) -... in the range 0II1
..., (32) (showing an arrangement of (33)) are provided.

電極対の数は必要に応じ増減出来るが、寸くなくとも想
定されうるスラグの厚さ以上の範囲をカバーシ15ノる
ものでなりればなら4jい。
The number of electrode pairs can be increased or decreased as necessary, but 4j is sufficient as long as it covers a range at least 15 times greater than the expected thickness of the slag.

この範囲内で電極対の数を増づことにより、スラグ層の
抵抗特性をJ、り細く把握づることが可能となる。
By increasing the number of electrode pairs within this range, it becomes possible to understand the resistance characteristics of the slag layer more precisely.

実施の一例とし−C,第1図に承り電極対nY(21)
り22)・・・・・・の各々はリング状のmt4万イシ
(3I)に支持され、該電極ガイシ(37)tよ筒1本
(5C)外周に装着されている。
As an example of implementation, the electrode pair nY (21) shown in FIG.
Each of the electrode insulators (37) is supported by a ring-shaped mt40,000 insulator (3I), and the electrode insulator (37) is attached to the outer periphery of one tube (5C).

この様にガイシを使用づる独立した電極対れYの構成方
法のばかに、複数の電極対群を一定間隔C配回して各々
独立しlc状態で耐熱性・絶縁性良好な耐火物質にJ、
って一体内に成型づるプj法を採用りることも可能であ
る。
In addition to this method of constructing independent electrode pairs Y using insulators, a plurality of electrode pairs are arranged at regular intervals C and each is made of a refractory material with good heat resistance and insulation properties in the LC state.
It is also possible to adopt the molding method.

筒[(5C)はF方からスリット(6)が設()られ、
該スリット(6)にJ3い−C電4ii対群(21)(
22)・・・・・・から筒体(5c)内にリード線(3
9)が導かれる。
The tube [(5C) has a slit (6) from the F side (),
J3-C electric 4ii pair group (21) (
22) Insert the lead wire (3
9) is derived.

一方固体(5C)’F端にはスイング−(19)が装着
され、該スイッチ(19)は前記電極対群(21)(2
2)・・・と同様リード線(39)により信号処理装置
(9)に導かれる。
On the other hand, a swing (19) is attached to the F end of the solid body (5C), and the switch (19) is connected to the electrode pair group (21) (2
2) It is guided to the signal processing device (9) by the lead wire (39).

又筒体(5C)下端には先端ガイシ(34)が固定され
、該先端ガイシ(34)には下端面に突出し上下動によ
りスイッチ(19)を押込み可能なブツシュロッド(3
5)が装着される。
Further, a tip insulator (34) is fixed to the lower end of the cylinder (5C), and a bushing rod (3) that protrudes from the lower end surface and can push the switch (19) by vertical movement is attached to the tip insulator (34).
5) is installed.

次に信号処理装置(9)は上方にコネクター(11)が
突出し、該コネクター(11)は第3図に示す様にサブ
ランス等プローブ挿入装置(1)のホルダー(2)のコ
ネクタを介し外部信号処理手段(図示せず)に電気的接
続するためのものである(なお、信号処理装置(9)部
分は繰返し使用が可能である)。
Next, a connector (11) protrudes upward from the signal processing device (9), and the connector (11) connects external signals via the connector of the holder (2) of the probe insertion device (1) such as a sublance as shown in FIG. It is for electrical connection to a processing means (not shown) (note that the signal processing device (9) portion can be used repeatedly).

第2図は信号処理装置(9)の電気回路のブロック図を
示し、該信号処理袋N(9)は電極対群(21) (2
2)・・・・・・が接続されたアナログマルチプレクサ
−(16)を有する。
FIG. 2 shows a block diagram of the electric circuit of the signal processing device (9), and the signal processing bag N (9) has an electrode pair group (21) (2
2) has an analog multiplexer (16) connected to it.

該アナログマルチプレクサ−(16)には更に1−ツブ
シグナル発生回路(11)及びボトムシグナル発生回路
(18)が接続される。
A 1-tube signal generation circuit (11) and a bottom signal generation circuit (18) are further connected to the analog multiplexer (16).

トップシグナル発生回路(11)及びボトムシグナル発
生回路(18)は所定の基準用ツノを発生さけて電極対
群(21) (22)・・・・・・の周期的測定の区切
りを明確にづる目的で使用されるが、この様な区切りが
不要な場合は、これらを除いてもよい。
The top signal generation circuit (11) and the bottom signal generation circuit (18) clearly define the periodic measurement intervals of the electrode pair groups (21), (22), etc. while avoiding generation of predetermined reference horns. However, if such delimiters are unnecessary, they may be omitted.

アナログマルチプレクサ−(16)はシフトレジスター
(15)からの信号によりトップシグナル発生回路(1
7)、電極対群(21) (22)・・・・・・及びボ
トムシグナル発生回路(18)を一定シークンスに従い
アイソレーションアンプ(12)の入力端子に接続4る
ーbのである。
The analog multiplexer (16) uses the signal from the shift register (15) to connect the top signal generation circuit (1
7), the electrode pair groups (21), (22), etc. and the bottom signal generation circuit (18) are connected to the input terminal of the isolation amplifier (12) according to a fixed sequence.

シフトレジスター(15)は周期的パルス発生回路であ
るクロックパルIJ−(14)からのパルス信号にJζ
り駆動される。
The shift register (15) receives the pulse signal Jζ from the clock pulse IJ- (14), which is a periodic pulse generation circuit.
It is driven by

又クロックパルザ−(14)は前記スイング(19)に
接続されて該スイッチ(19)からの信号によりパルス
発生を開始する。
A clock pulser (14) is connected to the swing (19) and starts generating pulses in response to a signal from the switch (19).

次にアイソレーションアンプ(12)であるが、これは
雑音遮断のため人出13間を電気的に絶縁したちのく例
えば光学的に入出力を接続する回路を有するもの)でそ
の出力端子はコネクター(11)に接続される。
Next is the isolation amplifier (12), which electrically insulates the crowd 13 to block noise, but also has a circuit for optically connecting input and output, for example), and its output terminal is Connected to the connector (11).

該アイソレーションアンプ(12)でのアナログマルチ
ブレクザー(16)からの入力信号の信号処理方法とし
て例えば次の方法が考えられる:A、電極対群(21)
 (22)・・・・・・の各々の信号を−そのままコネ
クター(11)に出力Jる。
As a signal processing method of the input signal from the analog multiplexer (16) in the isolation amplifier (12), for example, the following method can be considered: A. Electrode pair group (21)
(22) Each signal is output as is to the connector (11).

B、電極対群(21) (22)・・・・・・の出力値
が一定範囲内のもの(これはスラグ等の浮遊物の層に浸
漬されているもの)の数をWi算してその値を出力する
B. Calculate the number of electrode pairs (21), (22), etc. whose output values are within a certain range (these are those immersed in a layer of suspended matter such as slag). Output that value.

以上のアイソレーションアンプ(12)、り[1ツクパ
ルサー(14) 、シフトレジスター(15)及びアナ
ログマルチブレク勺−(16)は電池(13)を電源と
する。
The above isolation amplifier (12), pulser (14), shift register (15) and analog multiplexer (16) are powered by a battery (13).

以上の実施例に示した本発明のプローブの使用方法及び
作用を次に説明する。
The method of use and operation of the probe of the present invention shown in the above embodiments will now be described.

すなわも第3図に示?1′様にプローブ(3)はプロー
ブ挿入装N(1)のホルダー(2)にS!ii着される
Also shown in Figure 3? 1', the probe (3) is placed in the holder (2) of the probe insertion device N (1) S! ii.

これによりプローブ(3)のコネクター(11〉はホル
ダー(2)に電気的に接続される。
Thereby, the connector (11> of the probe (3) is electrically connected to the holder (2).

この状態でプローブ(3)は炉内に挿入されるが、炉内
の溶融金属8表面にはスラグ八層があるためプローブ(
3)下端はまずスラグ八層表面に接触する。
In this state, the probe (3) is inserted into the furnace, but since there are eight layers of slag on the surface of the molten metal 8 in the furnace, the probe (3)
3) The lower end first contacts the surface of the eight slag layers.

これによりプローブ(3)上端のブツシュロッド(35
)押し上げられてスイッチ(19)が閉じられる。
This allows the bushing rod (35) at the upper end of the probe (3) to
) is pushed up and the switch (19) is closed.

これによりクロツクバルリー(14)は作動を開始して
シフトレジスター(15)にパルス信号を供給りる。
This causes the clock valve (14) to start operating and supply a pulse signal to the shift register (15).

これによりシフトレジスター(15)はアナログマルチ
プレク勺−(16)を駆#Jさゼ該アノ−l」グマルヂ
プレクリー(16)においてトップジグノール発生回路
(17)、電t41対群(21) (22)・・・・・
・及びボトムシグナル発生回路〈18)はアイソレーシ
ョンアンプ(12)に順次接続される。
As a result, the shift register (15) drives the analog multiplexer (16), the top signal generating circuit (17), and the top signal generating circuit (17) in the analog multiplexer (16). 21) (22)・・・・・・
- and the bottom signal generation circuit (18) are sequentially connected to the isolation amplifier (12).

この電極対群(21) (22)・・・・・・の電気抵
抗値等の入力信号はアイソレーションアンプ(12)で
増幅及び適宜信号処理されコネクター(11)を介して
外部測定装置(図示せず)に出力される。
Input signals such as electrical resistance values of the electrode pair groups (21), (22), etc. are amplified and appropriately signal-processed by an isolation amplifier (12), and then sent to an external measuring device (Fig. (not shown).

ここで電極対群(21) (22)・・・・・・の各々
の測定抵抗値はその電極対群(21) (22>・・・
・・・の位置でのスラグA1溶融金属8等を流れる電流
値によって決定される。
Here, the measured resistance value of each electrode pair group (21) (22)... is the electrode pair group (21) (22>...
It is determined by the value of the current flowing through the slag A1, molten metal 8, etc. at the position of...

従ってスラグAは通常溶融金jlBより電気抵抗値が人
であるため、第3図の挿入状態では電極λ・1群(21
) (22)・・・・・・の電気抵抗値は第4図の状態
になると考えられる。
Therefore, since slag A normally has a higher electrical resistance value than molten metal B, in the inserted state shown in Fig. 3, electrodes λ・1 group (21
) (22) It is thought that the electrical resistance value of... will be in the state shown in FIG.

すなわち溶融金属B中に位置する電極対(32)(33
)等の電気抵抗値は低く、空気中に位置する電極対(2
1) (22)等の電気抵抗値は高い。
That is, the electrode pair (32) (33) located in the molten metal B
) etc. have a low electrical resistance value, and electrode pairs located in the air (2
1) The electrical resistance value of (22) etc. is high.

一方スラグA層中に位置する電極対は溶融金属Bよりは
電気抵抗値が高いがその値は一定でなく、何故ならスラ
ブ六層の下部は溶融金属Bど混合状態にあると考えられ
るので下方に従って電気抵抗値が低くなると考えられる
からである。
On the other hand, the electrode pair located in the slag A layer has a higher electrical resistance value than the molten metal B, but the value is not constant, because the lower part of the 6th layer of the slab is considered to be in a mixed state with the molten metal B. This is because it is thought that the electrical resistance value decreases as the temperature increases.

電極対からのパルスが、例えばJ(21)、(22)・
・・・・・とシーケンシャルに走査されてゆく結果、夫
々の電極材における電気抵抗値は空気中の高い値からス
ラグ六層乃至溶融金属B中の低い餡へと徐々に変化Jる
ことになる。
The pulses from the electrode pair are, for example, J(21), (22).
As a result of being sequentially scanned, the electrical resistance value of each electrode material gradually changes from the high value in the air to the low bean paste in the 6 layers of slag or molten metal B. .

第4図は上記シーケンスで送られるパルス信号に対応し
た抵抗変化曲線の想定図(縦軸は抵抗値が下りに増大り
−る)を示Jもので、空気中に描出づる部分について設
定された抵抗レベルが最大であり、スラグ八層に入るに
つれ゛(抵抗が徐々に減少し、やがて、スラグ八層と溶
融金属Bとの界面部分を経て溶融金属Bの同右抵抗値に
なる状態を示しく“いる。
Figure 4 shows a hypothetical diagram of the resistance change curve corresponding to the pulse signals sent in the above sequence (the vertical axis shows the resistance value increasing downward), and is set for the part depicted in the air. The resistance level is maximum, and as it enters the 8th layer of slag, the resistance gradually decreases and eventually reaches the same resistance value of molten metal B through the interface between the 8th slag layer and molten metal B. “There is.

この様にトップシグナルとボ1−ムシグツ“ルとで区画
された一連の信号を連続的に記録りるCとにJ:す、プ
ローブがスラグ八層に到達し、通過し、スラブAHと溶
融金属Bとの界面の識別がでさるところまで移動りる様
子がはっきりと判別できる。
In this way, a series of signals divided by the top signal and the bottom signal are continuously recorded. When the probe reaches and passes through the eight layers of slag, it melts into the slab AH. It can be clearly seen that it moves to the point where the interface with metal B can be identified.

従ってスラグ八層厚さは電気抵抗値が所定の最大及び最
小値の範囲一[にある電極対の数をカウントしそれに電
極対の間隔を掛けて81算りればまることになる。
Therefore, the thickness of the eight slag layers can be calculated by counting the number of electrode pairs whose electrical resistance values are within the range of the predetermined maximum and minimum values, and multiplying this by the distance between the electrode pairs, which is then calculated by 81.

又パルス出力に一定バイアスを与えて測定間始前の断線
状況等のチェックを可能にしてもよい。
Further, a constant bias may be applied to the pulse output to enable checking of the state of wire breakage, etc. before the start of the measurement period.

又空気中に露出する電極対のパルス出ノJが雰囲気によ
ってばらつくことを防止するため予め全ての電極対に空
気の抵抗よりやや低い抵抗(例えば1MΩ)を接続して
おいてもよい。
Further, in order to prevent the pulse output of the electrode pairs exposed to the air from varying depending on the atmosphere, a resistance slightly lower than the resistance of the air (for example, 1 MΩ) may be connected to all the electrode pairs in advance.

本発明のプローブは以上に示した実施例以外に次の構成
にしてもよい。
In addition to the embodiments shown above, the probe of the present invention may have the following configuration.

すなわちアイソレーションアンプ(12)は雑音遮断の
ためであり通常のアンプでもよい。
That is, the isolation amplifier (12) is for noise isolation and may be a normal amplifier.

更にi〜ツブシグナル発生回路(11)及びボトムシグ
ナル発生回路(18)は付随的である。
Further, the i~tube signal generation circuit (11) and the bottom signal generation circuit (18) are incidental.

更にスイッチ(19)はプローブ(3)がスラグA層表
面に到達した時点から測定開始させるICめであり、従
ってスイッチ(19)を省略してより前の段階から測定
開始させても差支えない。
Further, the switch (19) is an IC that starts the measurement from the time when the probe (3) reaches the surface of the slag A layer, so it is possible to omit the switch (19) and start the measurement from an earlier stage.

又電極対群(21) (22)・・・・・・については
第5図に示1[iに電極ガイシ(37)から突出しない
様にしてもよい。
Further, the electrode pair groups (21), (22), etc. may be arranged so that they do not protrude from the electrode insulators (37) as shown in FIG.

プローブの降下時、または浸漬時に、スラグが電極対に
付着する恐れのある場合は、電極対群の外周部分を紙管
その他の可燃性l料の外装材でカバーしてもよい。
If there is a possibility that slag may adhere to the electrode pairs when the probe is lowered or immersed, the outer periphery of the electrode pair group may be covered with a paper tube or other combustible exterior material.

この場合にaメいては、」二記のパルス信号波形とは異
なり、外装材の焼失後ただちにスラグへ層の厚さを示す
ものが得られることになる。
In this case, unlike the pulse signal waveform described in section 2, a waveform indicating the thickness of the slag layer is obtained immediately after the exterior material is burned out.

以上精錬炉内の溶融スラグと溶融金属を例に液状物質表
面の浮遊物層の厚さ測定の説明をしてきたが、このほか
前述の様なガス処理技術分野にJり()る、ビッヂとア
ンモニア溶液の界面の識別、−ぞの他これと同様な物質
についCの界面識別を目的とJる、液状物質表面の浮遊
物層の庁さの測定が極めて容易に行なえる。
Above, we have explained how to measure the thickness of a suspended solids layer on the surface of a liquid material using molten slag and molten metal in a smelting furnace as an example. It is extremely easy to measure the density of a suspended solid layer on the surface of a liquid substance for the purpose of identifying the interface of an ammonia solution, and of other similar substances.

本発明のプロー1は以上の実施例に示しIC構成、使用
方法及び作用において次の効果を有づる。
The pro 1 of the present invention is shown in the above embodiments and has the following effects in its IC configuration, method of use, and operation.

(1)本発明のプローブは特許請求の範囲に記載した構
成であり、特に本体下部外周面に上下方向−宅間l!1
ii(゛独立した複数の電極対群が設番)られるためこ
れらの各々による測定電気抵抗舶からiらにスラグ等の
浮遊物層厚さが決定出来、その結果プローブの挿入速度
と同期させることなくスラグ等の浮遊物層厚さを正確に
測定出来る。
(1) The probe of the present invention has the structure described in the claims, and in particular, the probe has the structure shown in the lower part of the main body in the vertical direction. 1
(ii) Since a plurality of independent electrode pair groups are installed, the thickness of the layer of floating substances such as slag can be determined from the electrical resistance measured by each of these, and as a result, it is possible to synchronize with the insertion speed of the probe. It is possible to accurately measure the thickness of the layer of suspended matter such as slag without any problems.

(2)本発明のプローブは同上の構成であり、スラグ等
の浮遊物層の厚さが正確に測定できることから、こうし
た浮遊物層の下にある液状物質の真のレベル測定が可能
となる。
(2) The probe of the present invention has the same configuration as above and can accurately measure the thickness of a layer of suspended matter such as slag, making it possible to measure the true level of the liquid substance beneath such a layer of suspended matter.

(3)本発明のプローブは同上の構成であり、スラグ等
の浮遊物層の厚さ方向における抵抗値変化状態がパルス
信号から直読できるため、各種の特性研究が可能となる
(3) The probe of the present invention has the same configuration as above, and since the state of change in resistance value in the thickness direction of the layer of floating substances such as slag can be directly read from the pulse signal, various types of characteristic research are possible.

(4)本発明のプローブは同上の構成であり、測定中プ
ローブが多少上下方向に動いても、パルス信号が描く曲
線全体が移動するだ【ノであり、浮遊物層の厚さの表示
値にはなんら影響はなく確実に測定出来る。
(4) The probe of the present invention has the same configuration as above, and even if the probe moves slightly up and down during measurement, the entire curve drawn by the pulse signal moves. There is no effect on this and it can be measured reliably.

(5)本発明のプローブは同上の構成Cあり、特に電極
対群により測定される電気抵抗値を一部シーケンスに従
い出力する信号処理装置を有するためコネクター及びホ
ルダーにおける配線数は極めて少なくてすむ。
(5) The probe of the present invention has the same configuration C as above, and in particular has a signal processing device that partially outputs the electrical resistance value measured by the electrode pair group according to a sequence, so the number of wires in the connector and holder can be extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプローブの縦断面図 第2図は同上プローブの信号処理装置の電気回路ブロッ
ク図 第3図は同一1ニブローブの使用状態図第4図は同上電
極対群による測定電気抵抗1(jの一例を示1図 第5図は同上他の電極対群を承りブ11−jの一部の縦
断面図 1 : プローブ挿入装置 2 : ボルダ− 3: プローブ 5 : 本体 5a、 、5b、 5C:筒体 6 : スリット 9 : 信号処理装置 11: コネクター 12ニ アイソレージ三1ンフ7ンプ 13: 電池 14: クロツクバルリ− 15: シフトレジスター 16: アナログマルチプレクリ− 1フ:1〜ツブシグナル発生回路 18: ボ1〜ムシグナル発生回路 19: スイッチ 21、22.・・・・・・32.33: 電極対群34
: 先端ガイシ 35: ブツシュロッド 37: 電極ガイシ 39: リード線 A ゛ スラグ B : 溶融金属 出願人 川惣電機工業株式会社 代理人 橋 爪 英 彌 第4図
Fig. 1 is a vertical cross-sectional view of the probe of the present invention Fig. 2 is a block diagram of the electric circuit of the signal processing device of the same probe as above Fig. 3 is a diagram of the use state of the same one nib probe Fig. 4 is the electrical resistance measured by the same electrode pair group FIG. 5 is a partial vertical cross-sectional view of a probe 11-j that receives other electrode pair groups. 1: Probe insertion device 2: Boulder 3: Probe 5: Main body 5a, . 5b, 5C: Cylindrical body 6: Slit 9: Signal processing device 11: Connector 12, Isolation 31, Pump 7, 13: Battery 14: Clock valve, 15: Shift register 16: Analog multiplex cleaner, 1F: 1 to block signal generation circuit 18: Box 1 to signal generation circuit 19: Switches 21, 22...32.33: Electrode pair group 34
: Tip insulator 35 : Bush rod 37 : Electrode insulator 39 : Lead wire A ゛ Slag B : Molten metal Applicant Kawaso Electric Industry Co., Ltd. Agent Hideya Hashizume Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、本体下部外周面に上下方向一定間隔で設けられた複
数の電極対群と、該電極対群の各々により測定される電
気抵抗値を一定シーケンスに従い増幅してコネクターに
出力する信号処理装置とからなる液状物質表面の浮遊物
層厚さ測定プローブ。
1. A plurality of groups of electrode pairs provided at regular intervals in the vertical direction on the outer peripheral surface of the lower part of the main body, and a signal processing device that amplifies the electrical resistance value measured by each of the groups of electrode pairs according to a certain sequence and outputs it to a connector. A probe for measuring the thickness of suspended solids on the surface of a liquid substance.
JP18905283A 1983-10-07 1983-10-07 Probe for measuring thickness of suspended matter layer on surface of liquid material Granted JPS6080701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18905283A JPS6080701A (en) 1983-10-07 1983-10-07 Probe for measuring thickness of suspended matter layer on surface of liquid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18905283A JPS6080701A (en) 1983-10-07 1983-10-07 Probe for measuring thickness of suspended matter layer on surface of liquid material

Publications (2)

Publication Number Publication Date
JPS6080701A true JPS6080701A (en) 1985-05-08
JPH0324964B2 JPH0324964B2 (en) 1991-04-04

Family

ID=16234483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18905283A Granted JPS6080701A (en) 1983-10-07 1983-10-07 Probe for measuring thickness of suspended matter layer on surface of liquid material

Country Status (1)

Country Link
JP (1) JPS6080701A (en)

Also Published As

Publication number Publication date
JPH0324964B2 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US4444644A (en) PH Electrode
US4279142A (en) Technique for in situ calibration of a gas detector
KR101235401B1 (en) Apparatus for the determination of a parameter of a molten metal or a slag layer lying on the molten metal
JPH0275920A (en) Temperature measuring device for material built into sealed equipment
US4366714A (en) Pressure/temperature probe
WO2001023885A8 (en) Test device
US4964736A (en) Immersion measuring probe for use in molten metals
GB2302737A (en) Electric conductivity measurement circuit and probe
US4247380A (en) Technique for in situ calibration of a gas detector
JPS6023723Y2 (en) oxygen gas analyzer
JPS6080701A (en) Probe for measuring thickness of suspended matter layer on surface of liquid material
JPS62174313A (en) Apparatus for detecting slag level of molten metal bath
JPS57132051A (en) Air-fuel ratio measuring sensor and air-fuel ratio measuring method using said sensor
SU1024695A1 (en) Device for measuring hole diameter
GB2096772A (en) Oxygen gas analyzer using solid electrolyte
AU594758B2 (en) Thermocouple connector
US4182181A (en) Process and apparatus for measuring the temperature of a bath of molten metal
SU901895A1 (en) Device for two-phase flow diagnostics
JPS54112174A (en) Testing method for semiconductor device
SU607168A1 (en) Draught gauge
SU649965A1 (en) Liquid metal temperature and content determining device
SE9403054L (en) Apparatus and method for sensing and indicating the state of a medium in a conduit
SU673925A1 (en) Piezoelectric sensor
RU99107791A (en) METHOD AND DEVICE FOR DETERMINING THE CONCENTRATION OF HYDROGEN IONS
SU555276A2 (en) Foil strain gauge