JPS608057A - Method of forming droplet-shaped condensing surface - Google Patents

Method of forming droplet-shaped condensing surface

Info

Publication number
JPS608057A
JPS608057A JP11567283A JP11567283A JPS608057A JP S608057 A JPS608057 A JP S608057A JP 11567283 A JP11567283 A JP 11567283A JP 11567283 A JP11567283 A JP 11567283A JP S608057 A JPS608057 A JP S608057A
Authority
JP
Japan
Prior art keywords
condensation
droplet
film
forming
condensation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11567283A
Other languages
Japanese (ja)
Inventor
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP11567283A priority Critical patent/JPS608057A/en
Publication of JPS608057A publication Critical patent/JPS608057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、滴状凝縮面の形成方法に関する。更に詳しく
は、熱り換器などの金属凝縮面に滴状凝縮面を形成せし
める方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming droplet condensation surfaces. More specifically, the present invention relates to a method for forming a droplet-like condensation surface on a metal condensation surface such as a heat exchanger.

凝縮型熱交換器は、発電プラントや大型船舶の蒸気缶、
ヒートポンプ、化学工業での蒸発缶などに広く用いられ
ており、そこでは蒸気の凝縮潜熱が加熱源として有効に
用いられている。凝縮液体が水である場合の凝縮器は、
普通復水器と呼ばれているが、これを発電プラントを例
にとってボイラー過熱器、タービンなどの構成要素に分
けて考えると、復水器はこれらの中で最も大きな構造物
となっている。現在、復水器の製造コストの大部分は凝
縮面の材料費なので、その面積をより小さくすることで
復水器を小型化することができれば、そこに非常に大き
な経済的効果が期待できることKなる。
Condensing heat exchangers are used in power plants, steam canisters on large ships,
It is widely used in heat pumps and evaporators in the chemical industry, where the latent heat of condensation of steam is effectively used as a heating source. The condenser when the condensed liquid is water is
It is usually called a condenser, but if you take a power plant as an example and divide it into components such as a boiler superheater and a turbine, the condenser is the largest structure among them. Currently, most of the manufacturing cost of a condenser is the material cost for the condensing surface, so if the condenser can be made smaller by reducing its area, a very large economic effect can be expected. Become.

ところで、凝縮面における凝縮の形態は、次の2種類に
大別されている。
By the way, the forms of condensation on the condensation surface are roughly divided into the following two types.

(1)膨軟凝縮;凝縮液が凝縮面を濡らシフ、凝縮面を
膜状に覆って流下する (2)滴状凝縮:凝縮面は凝縮液で濡れtrいため、凝
縮液が滴状となって凝縮面上を流下する後者の滴状凝縮
では、前者の液膜が熱抵抗となるのに対し、放出される
潜熱が直接凝縮面に伝達されるので、同一条件における
滴状凝縮の熱伝達は、膜状凝縮の10倍乃至数10倍も
大きいことが知られている。
(1) Swelling and soft condensation: The condensate wets the condensing surface and flows down, covering the condensing surface like a film. (2) Droplet-like condensation: The condensing surface is wet with the condensate, so the condensate becomes drop-like. In the latter case of droplet condensation, which flows down on the condensation surface, the liquid film in the former case acts as a thermal resistance, whereas the released latent heat is directly transferred to the condensation surface, so the heat of droplet condensation under the same conditions is It is known that the transmission is ten to several tens of times greater than that of membranous condensation.

ところで、現在復水器などの凝縮型熱交換器は、すべて
膜状凝縮理論に基いて設計されているが、滴状凝縮理論
を利用することができれば、前述の小型化が達成される
のできわめてその効果は大となる。この滴状凝縮を実現
するためには、凝権面が凝縮液で濡れないように、それ
の表面張力を小さくすることが必要であり、これ迄にも
利i々の方法が検討されてきている。例えば、 (1)貴金属メッキ:金メッキなどの判金属メッキ面は
水に濡れないという性質を利用しているが、高価である
By the way, all condensing heat exchangers such as condensers are currently designed based on the film condensation theory, but if the droplet condensation theory could be used, the aforementioned miniaturization would be achieved, which would be extremely useful. The effect will be great. In order to achieve this droplet-like condensation, it is necessary to reduce the surface tension of the condensate surface so that it does not become wet with the condensate, and advantageous methods have been studied to date. There is. For example, (1) Precious metal plating: Gold plating and other metal plated surfaces take advantage of the property of not getting wet with water, but they are expensive.

(2)硫化物被覆;硫化銀7″r、どの硫化物が水に儒
れ録いという性質を利用するが、fbだ化物には飽性の
あるものが多い。
(2) Sulfide coating: Silver sulfide 7''r takes advantage of the property that sulfides absorb water, but most fb oxides are saturated.

(3)プロモーター添加:脂肪酸などを凝縮面上に塗布
しまたtd給水中に添加する方法であるが、流出し易い
こと、補給および回収の必要性があるなどの欠点がある
(3) Promoter addition: This is a method in which a fatty acid or the like is applied onto the condensing surface and added to the td water supply, but this method has drawbacks such as easy leakage and the need for replenishment and recovery.

(4)高分子被覆:テトラフルオロエチレ> ml F
’M ヤシリコンゴムなどで被覆する方法であるが、こ
れらは一般に金属との密着性がよくないこと、熱抵抗を
無視できる程度迄膜厚を薄くしてかつ機械的および熱的
な強度をもたせることが璧かしいなどの欠点がみられる
(4) Polymer coating: Tetrafluoroethylene > ml F
'M' is a method of coating with silicone rubber, etc., but these generally have poor adhesion to metals, and the film thickness must be thinned to the extent that thermal resistance can be ignored while providing mechanical and thermal strength. There are some drawbacks, such as poor performance.

これらの各種方法の中で、皮膜寿命および材料価格の点
から最も実用化の可能性が高いと考えられるのは高分子
被覆の方法である。そして、従来は塗膜法による高分子
破鼾が行われており、塗膜を焼き付けることなどにより
金属表面に密着した高分子皮膜を形成させることができ
るが、この方法では得られ、る皮Its:の厚さを1μ
m以下にすることば内部であり、また皮膜の形成ては溶
剤の蒸発を伴うため、簿い皮膜ではピンホールの発生が
避けられないなどの間頌がみられる。
Among these various methods, the method of polymer coating is considered to have the highest possibility of practical application in terms of film life and material cost. Conventionally, polymer demolition has been carried out using a coating method, and it is possible to form a polymer film that adheres to the metal surface by baking the coating film, etc. : Thickness of 1μ
Since the inside of the film is made smaller than 0.0 m, and the formation of the film involves evaporation of the solvent, there are some caveats such as the unavoidable formation of pinholes in thin films.

本発明者は、表面張力の小さいフッ素系樹脂を被覆材料
とし、上記塗膜法によるような欠点を示すことなく、滴
状凝縮面皮膜を形成せしめる方法について種々検討の結
果、高周波スパッタリング法によりフッ素系樹脂のコー
ティング薄膜を形成させることがきわめて有効であるこ
とを見出した。
The present inventor has conducted various studies on a method of forming a droplet-like condensation surface film using a fluororesin having a low surface tension as a coating material without exhibiting the drawbacks of the above-mentioned coating method. It has been found that forming a thin coating film of resin is extremely effective.

従って、本発明1d滴状凝縮面の形成方法に係り、滴状
凝縮面の形成は、金属凝縮面に高周波スパッタリング法
によりフッ素系樹脂のコーティング薄膜を形成させるこ
とにより行われる。
Therefore, according to the method for forming a droplet-shaped condensation surface of the present invention 1d, the formation of the droplet-shaped condensation surface is performed by forming a coating thin film of a fluororesin on the metal condensation surface by high-frequency sputtering.

図面は、高周波スパッタリングの際の被処理物の温度上
昇が少ない故に、本発明で好んで適用されるマグネトロ
ン型高周波スパッタリング法に用いられる装置の一態様
の概略を示すものである。
The drawing schematically shows one embodiment of an apparatus used in the magnetron-type high-frequency sputtering method, which is preferably applied in the present invention because the temperature rise of the processed object during high-frequency sputtering is small.

即ち、被処理物1,1′を搭載した基板電極2およびフ
ッ素系樹脂ターゲット3を保持したマグネトロン型高周
波電極4が、排気筒5を有する反応槽6内に、互いに対
向する位置で設置される。
That is, a substrate electrode 2 carrying objects to be processed 1 and 1' and a magnetron-type high-frequency electrode 4 holding a fluororesin target 3 are installed in a reaction tank 6 having an exhaust pipe 5 at positions facing each other. .

スパッタリング処理は、まず油拡散ポンプなどの真空ポ
ンプ(図示せず)を用いて、反応構内の空気を前記排気
筒から排気して10”” Torr以下に減圧し、次い
で、バリアプルリーフバルブ7を調節しながらストップ
バルブ8を開け、アルゴンなどの不活性カスのボンベ9
からのアルゴンガスなどを反応槽内に導入し、そこの圧
力をIQ−’ Torrのオーダーとする。ここで、排
気筒のメインバルブ(図示せず)を調節して、圧力を1
0−3〜10゜Torr %好せしくけ6 X 10−
3〜i X 10−’ Torrとする。アルゴンガス
などの圧力がこれ以下では、放電が連続的に行われず、
才たこれ以上の圧力では、スパッタリング速度が著しく
低下するばかりではなく、放電も不安定となって、均一
なコーティング薄膜を形成させることができない。
In the sputtering process, first, a vacuum pump (not shown) such as an oil diffusion pump is used to exhaust the air in the reaction chamber from the exhaust pipe to reduce the pressure to 10'' Torr or less, and then the barrier pull-leaf valve 7 is closed. While adjusting the stop valve 8, open the stop valve 8 and open the cylinder 9 of inert gas such as argon.
Argon gas or the like is introduced into the reaction tank, and the pressure there is adjusted to the order of IQ-' Torr. Now adjust the main valve (not shown) on the exhaust stack to reduce the pressure to 1
0-3~10゜Torr %Koseshikeke 6 X 10-
3 to i x 10-' Torr. If the pressure of argon gas, etc. is lower than this, discharge will not occur continuously,
If the pressure is higher than this, not only will the sputtering rate drop significantly, but the discharge will also become unstable, making it impossible to form a uniform coating film.

スパッタリング操作は、高周波電源(13,56MHz
)10およびマツチングボックス(電力計)nから発振
させた高周波放電により行われ、被処理物凝縮面てフッ
素系樹脂のコーティング薄膜を形成させ、約1 lt?
n以下で所定の膜厚(ただL/、膜厚を均一にしかつピ
ンホールをなくすためには100大以上の厚さけ必要で
ある)が得られたら、その時点で放電を停止し、アルゴ
ンガスなどの導入を中止し、メインバルブを閉じて、反
応槽内から処理物を取り出すことにより行われる。なお
、符号12けリークバルブであり、13はアースである
The sputtering operation is performed using a high frequency power source (13,56MHz
) 10 and a matching box (power meter) n to form a coating thin film of fluororesin on the condensed surface of the object to be treated.
When a predetermined film thickness (only L/, a thickness of 100 or more is required to make the film thickness uniform and eliminate pinholes) is obtained, the discharge is stopped and the argon gas is This is done by stopping the introduction of the substances, closing the main valve, and taking out the treated material from the reaction tank. Note that 12 is a leak valve, and 13 is a ground.

このようにして、被覆材料として用いられたフッ素系樹
脂のそれに近い、小さな表面エネルギーを有する滴状凝
縮面が形成された凝縮型熱交換器(d1次のような特徴
を有している。
In this way, a condensing heat exchanger (having d1-order characteristics) is formed with a droplet-like condensation surface having a small surface energy similar to that of the fluororesin used as the coating material.

(1)放出される潜熱が、直接凝縮面に伝達さノするの
で、同一条件における熱伝達が、膜状凝縮の数10倍に
なる。
(1) Since the released latent heat is directly transferred to the condensing surface, the heat transfer under the same conditions is several ten times that of film condensation.

(2)コーテイング膜を1μm以下の厚ぎで形成させる
ことができるので熱抵抗が小さく、この点からも熱伝達
効率を向上させる。
(2) Since the coating film can be formed with a thickness of 1 μm or less, the thermal resistance is low, and from this point of view as well, the heat transfer efficiency is improved.

(3)滴状凝縮面をとる結果、凝縮面積を小さくするこ
とができる。
(3) As a result of having a droplet-like condensation surface, the condensation area can be reduced.

(4)凝縮面でのコーティング薄膜の密着力が大きく、
塘だピンホールも少ないので、皮1侮寿命が長い。
(4) The adhesion of the coating thin film on the condensation surface is large;
Since there are fewer pinholes, the skin has a long lifespan.

(5)皮膜形成が空間を用いてのスパッタリング法によ
って行われるので、被処理物の形状の如何を問わずに適
用でき、しかも均一な厚さの膜を形成させることができ
る。
(5) Since the film is formed by a sputtering method using a space, it can be applied regardless of the shape of the object to be treated, and a film of uniform thickness can be formed.

(6)皮膜材料がフッ素系樹脂であり、メッキ皮膜など
他の皮膜と比較して廉価である。
(6) The coating material is a fluororesin and is cheaper than other coatings such as plating coatings.

本発明方法は、廃熱利用地域冷暖房システム、工場廃熱
回収給湯冷房システム、ビル冷1援房、ソーラー吸収ヒ
ートポンプ、発′屯所の蒸気タービンに接続する復水器
などの凝縮型熱交換器の金属凝縮面に有効に適用される
。より具体的には、例えば蒸気タービンの表面復水器の
場合、冷却管の表面部分に本発明が適用される。更に、
熱交検器以外にも、蒸留器などの凝縮面にも、本発明を
適用することができる。
The method of the present invention is applicable to condensing heat exchangers such as waste heat district heating and cooling systems, factory waste heat recovery hot water supply and cooling systems, building cooling systems, solar absorption heat pumps, and condensers connected to steam turbines at power stations. Effectively applied to metal condensation surfaces. More specifically, the present invention is applied to the surface portion of a cooling pipe, for example in the case of a surface condenser of a steam turbine. Furthermore,
In addition to heat exchange analyzers, the present invention can also be applied to condensing surfaces such as distillers.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例 図示された装置を用い、テトラフルオロエチレン樹脂の
円板状成形品をターゲットとして、トリクロルエチレン
蒸気脱脂5US(304)基板上へのテトラフルオロエ
チレン樹脂の高周波スパッタリング処理が行われた。処
理は、放電開始アルゴン圧力0.1. Torr 、有
効電力200 Wで1分間行われ、基板上に厚さ0.5
μmの薄膜樹脂コーティング層を形成させた。
EXAMPLE Using the illustrated apparatus, a high-frequency sputtering process of tetrafluoroethylene resin was performed on a trichlorethylene vapor-degreased 5US (304) substrate using a disc-shaped molded product of tetrafluoroethylene resin as a target. The treatment was performed at a discharge starting argon pressure of 0.1. Torr, carried out for 1 min at an effective power of 200 W, with a thickness of 0.5
A thin resin coating layer of μm was formed.

この薄j漢コーティング層の臨界表面張力r。を測定し
、滴状凝縮面としての適性を調べた。このr。
The critical surface tension of this thin coating layer is r. were measured to investigate its suitability as a droplet condensation surface. This r.

ば、物質の表面を温らす液体の表面張力を表わし、高分
子物質の表面特性を示すパラメーターとして、広く工業
的に使用されており、はぼその物質の表面張力と一致す
る。
For example, it represents the surface tension of a liquid that warms the surface of a substance, and is widely used industrially as a parameter that indicates the surface properties of polymeric substances, and it almost coincides with the surface tension of the substance.

テトラフルオロエチレン樹脂ハ、表面張力の小さい材料
としてよく知られており、その値け18ダイン/cmと
いわれており、今回用いられたものもr。が18〜19
ダイン/cmを示しており、上記値とほぼ一致している
。基板上に形成させたテトラフルオロエチレン樹脂皮膜
のr。は21〜23ダイン/(7nを示し、用いられた
樹脂材料のそれとかなり近い値を有することが確認され
た。この値は、テトラフルオロエチレン樹脂に次いで小
さい表面張力を有するトリフルオロエチレン樹脂のr。
Tetrafluoroethylene resin is well known as a material with low surface tension, and its value is said to be 18 dyne/cm, and the material used this time is r. is 18-19
dyne/cm, which is almost the same as the above value. r of the tetrafluoroethylene resin film formed on the substrate. It was confirmed that the r value was 21 to 23 dynes/(7n), which is quite close to that of the resin material used. .

の値22ダイン/ cnrとほぼ同等であり、従って滴
状凝縮面として十分な特性を有することが確認された。
The value of 22 dynes/cnr is almost equivalent to that of 22 dynes/cnr, and therefore, it was confirmed that it has sufficient characteristics as a droplet condensation surface.

【図面の簡単な説明】[Brief explanation of the drawing]

図面(第1図)は、本発明で適用される高周波スパッタ
リング法に用いられる装置の一態様の概略図である。 (符号の説明) ]・・・・・・・・・被処理物 2・・・・・・・・・基板電極 3・・・・・・・・・フッ素系樹脂ターゲット4・・・
・・・・・・高周波電極 6・・・・・・・・・反応槽 9・・・・・・・・・ボンベ 10・・・・・・・・・高周波電源 11・・・・・・・・・マツチングボックス代理人 弁理士 吉 1)俊 夫
The drawing (FIG. 1) is a schematic diagram of one embodiment of an apparatus used in the high frequency sputtering method applied in the present invention. (Explanation of symbols) ]...Processed object 2...Substrate electrode 3...Fluorine resin target 4...
......High frequency electrode 6...Reaction tank 9...Cylinder 10...High frequency power source 11... ... Matching Box Patent Attorney Yoshi 1) Toshio

Claims (1)

【特許請求の範囲】 1、金属凝縮面に、高周波スパッタリング法によりフッ
素系樹脂のコーティング薄膜を形成させることを特徴と
する滴状凝縮面の形成方法。 2、熱交換器の金属凝縮面に適用される特許請求の範囲
第1項記載の滴状凝縮面の形成方法。 3.7iJlスパツタリングがマグネトロン型高周波ス
パッタリングとして行われる特許請求の範囲第1項記載
の滴状凝縮面の形成方法。 4、フッ素系樹脂としてテトラフルオロエチレン樹脂が
用いられる特許請求の範囲第1項記載の滴状凝縮面の形
成方法。
[Scope of Claims] 1. A method for forming a droplet-like condensation surface, which comprises forming a coating thin film of a fluororesin on a metal condensation surface by high-frequency sputtering. 2. A method for forming a droplet-like condensation surface according to claim 1, which is applied to a metal condensation surface of a heat exchanger. The method for forming a droplet-like condensation surface according to claim 1, wherein the 3.7 iJl sputtering is performed as magnetron-type high-frequency sputtering. 4. The method for forming a droplet-like condensation surface according to claim 1, wherein a tetrafluoroethylene resin is used as the fluororesin.
JP11567283A 1983-06-27 1983-06-27 Method of forming droplet-shaped condensing surface Pending JPS608057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11567283A JPS608057A (en) 1983-06-27 1983-06-27 Method of forming droplet-shaped condensing surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11567283A JPS608057A (en) 1983-06-27 1983-06-27 Method of forming droplet-shaped condensing surface

Publications (1)

Publication Number Publication Date
JPS608057A true JPS608057A (en) 1985-01-16

Family

ID=14668429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11567283A Pending JPS608057A (en) 1983-06-27 1983-06-27 Method of forming droplet-shaped condensing surface

Country Status (1)

Country Link
JP (1) JPS608057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540768A (en) * 1993-11-09 1996-07-30 Toyo Aluminium Kabushiki Kaisha Aluminum pigments
WO1997016692A1 (en) * 1995-11-02 1997-05-09 University Of Surrey Modification of metal surfaces
JP2016518580A (en) * 2013-05-02 2016-06-23 ザ ボード オブ リージェンツ オブ ザ ネヴァダ システム オブ ハイヤー エデュケーション オン ビハーフ オブ ザ ユニヴァーシティ オブ ネヴァダ, ラス ヴェガスThe Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas Functional coating to improve condenser performance
US10921072B2 (en) 2013-05-02 2021-02-16 Nbd Nanotechnologies, Inc. Functional coatings enhancing condenser performance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698475A (en) * 1980-01-08 1981-08-07 Toshiba Corp Forming method for thin film of fluoro-resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698475A (en) * 1980-01-08 1981-08-07 Toshiba Corp Forming method for thin film of fluoro-resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540768A (en) * 1993-11-09 1996-07-30 Toyo Aluminium Kabushiki Kaisha Aluminum pigments
WO1997016692A1 (en) * 1995-11-02 1997-05-09 University Of Surrey Modification of metal surfaces
JP2016518580A (en) * 2013-05-02 2016-06-23 ザ ボード オブ リージェンツ オブ ザ ネヴァダ システム オブ ハイヤー エデュケーション オン ビハーフ オブ ザ ユニヴァーシティ オブ ネヴァダ, ラス ヴェガスThe Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas Functional coating to improve condenser performance
US10525504B2 (en) 2013-05-02 2020-01-07 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Functional coatings enhancing condenser performance
US10921072B2 (en) 2013-05-02 2021-02-16 Nbd Nanotechnologies, Inc. Functional coatings enhancing condenser performance

Similar Documents

Publication Publication Date Title
US10206307B2 (en) Immersion cooling
US20070235023A1 (en) Tubular radiation absorbing device for a solar power plant with reduced heat losses
JPS608057A (en) Method of forming droplet-shaped condensing surface
CN110983290A (en) Graphene-coated copper alloy composite material and preparation method thereof
TWI746592B (en) Apparatus and method of atomic layer deposition having a recycle module
CN212109147U (en) Cooling device for film coating chamber
Xu et al. Tubes with coated and sintered porous surface for highly efficient heat exchangers
CN105908144A (en) Surface treatment method for vacuum stainless steel pipe for solar water heater
CN111807441B (en) Corrosion-resistant evaporation concentration system
CN102226665B (en) Method for improving heat and moisture transfer efficiency of tubular indirect evaporative cooler
Mori et al. Heat transfer promotion of an aluminum-brass cooling tube by surface treatment with triazinethiols
CN103730315B (en) A kind of method improving plasma etch process
CN209431941U (en) Spray cooling system adaptable to different gravity environments
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
JPS57172741A (en) Method for forming insulating film for semiconductor device
KR100553194B1 (en) Low-pressure cvd apparatus and method of manufacturing a thin film
JP3547915B2 (en) Absorption refrigerator and manufacturing method thereof
CN102758184A (en) Film-coated component and preparation method thereof
JPS6032120B2 (en) Method for manufacturing droplet condensation surface
JPS5956664A (en) Solar heat collector and manufacture thereof
SU688009A1 (en) Method of producing thin film of metal of chrome series and it oxide
CN106460143A (en) Selenization or sufurization method of roll to roll metal substrates
JPH0568539B2 (en)
CN116559982A (en) Multilayer graphene terahertz metamaterial structure and preparation method thereof
EP4273470A1 (en) Surface treatment method for improving performance of a thermodynamic system with absorption cycle