JPS6080291A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6080291A
JPS6080291A JP18840383A JP18840383A JPS6080291A JP S6080291 A JPS6080291 A JP S6080291A JP 18840383 A JP18840383 A JP 18840383A JP 18840383 A JP18840383 A JP 18840383A JP S6080291 A JPS6080291 A JP S6080291A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
ohmic contact
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18840383A
Other languages
Japanese (ja)
Inventor
Satoru Todoroki
轟 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18840383A priority Critical patent/JPS6080291A/en
Publication of JPS6080291A publication Critical patent/JPS6080291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the measurement of characteristics of the titled device in the wafer state by making each chip independent by a method wherein a lattice- form insulation region surrounding the ohmic contact layer of each chip is provided from the surface of an N-cap layer to an N-cap layer. CONSTITUTION:An N type clad layer 2 of GaAlAs, an N type active layer 3, and a P type clad layer 4 are superposed on an N type GaAs substrate 1, and an SiO2 mask having a stripe aperture of a required width is applied on the N- cap layer 5, and a stripe ohmic contact layer 6 of a required width reaching part of a layer 4 is formed by Zn diffusion. Next, an SiO2 mask covering a fixed area including the layer 6 is applied, and an insulation layer 7 is formed by proton irradiation reaching the layer 2. When the mask is removed, and Au series electrodes 8 and 9 are attached to the layer 5 and the substrate, a wafer provided with laser chips independent of each other in adjacency, and the interface of the layer 7 serves as an effective resonator plane. The adjacent chips can be photoelectrically measured in laser characteristics as a laser diode and a photo diode, and accordingly the titled device of high quality can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a semiconductor laser device.

〔発明の背景〕[Background of the invention]

ダブルへテロ接合を有する半導体レーザ装置は発振しき
い電流を低減することができ、特にファイバ通信用ある
いはコンパクトディスクプリンタ用光源として使用され
つつある。従来この種の半導体レーザ装置は一般に液相
エピタキシャル成長法を用いて、つぎのようにして製造
されていた。
Semiconductor laser devices having a double heterojunction can reduce the oscillation threshold current, and are being used particularly as light sources for fiber communications or compact disk printers. Conventionally, this type of semiconductor laser device has generally been manufactured using a liquid phase epitaxial growth method in the following manner.

すなわちn形半導体基板上にn形りラッド層とn形また
はp形活性層とp形りラッド層とn形キャンプ層とを例
えば液相エピタキシャル成長法により連続的に設けたの
ち、所定の幅を有するストライプ状で、かつ上記n形キ
ャップ層とp形りラッド層とを貫くオーミック接触層を
設け、該オーミック接触層を含むn形キャップ層表面と
11形半導体基板との全面に電極を形成して、半導体レ
ーザ装置のウェー・・を製造していた。上記工程を経て
作られた半導体レーザ装置の電気的光学的特性は、上記
半導体レーザ装置用ウェーハを所定の共振長にへき開し
、チップ状にしなければ計測が不可能であるという欠点
を有していた。
That is, after an n-type LAD layer, an n-type or p-type active layer, a p-type LAD layer, and an n-type camp layer are successively provided on an n-type semiconductor substrate by, for example, liquid phase epitaxial growth, a predetermined width is formed. an ohmic contact layer having a stripe shape and penetrating the n-type cap layer and the p-type rad layer, and forming an electrode on the entire surface of the n-type cap layer including the ohmic contact layer and the 11-type semiconductor substrate; The company was manufacturing wafers for semiconductor laser devices. The electrical and optical characteristics of the semiconductor laser device made through the above process have the drawback that it is impossible to measure them unless the wafer for the semiconductor laser device is cleaved to a predetermined resonance length and made into chips. Ta.

このような欠点を改善するためにさらにつぎのような手
段が行われていた。すなわちエピタキシャルウェーハの
ホトルミネッセンス強度と電気的特性値との関連をあら
かじめめることにより、上記エピタキシャルウェーハの
良否検査を容易に。
In order to improve these drawbacks, the following measures have been taken. In other words, by determining the relationship between the photoluminescence intensity and the electrical characteristic values of the epitaxial wafer in advance, it is possible to easily inspect the quality of the epitaxial wafer.

する手段(特開昭5’7−194542) 、あるいは
半導体レーザ装置に高電流を所定時間通電して不良素子
を劣化させ、その後レーザ発振しきい電流を測定するこ
とにより短時間に半導体レーザ装置の良否判定を行う手
段(例えば特開昭57−13’2568、特開昭58−
21386)である。これらの手段のうち、前者はウェ
ーハ状態で特性評価ができその結果を早期に工程へフィ
ードバックできるけれども、上記ウェーハの表面にホト
ルミネッセンスを通さない層が存在すると評価できない
という欠点があった。また後者は半導体レーザ装置の良
否判別が確実にできる反面、へき開や組立の各工程およ
び多くの通電設備を必要とし、判別結果を早期工程にフ
ィードバックすることが困難であるという欠点を有して
いた。上記のような状況にかかわらず製造した半導体レ
ーザ用ウェーハの良否を早期に判断し、その結果にもと
づいてエピタキシャルウェーハエ程の改善をはかりたい
という要望が強かった0 〔発明の目的〕 本発明は半導体レーザ装置の電気的光学的特性をウェー
ハの状態で計測することができ、かつ高品質、高信頼度
を有する製造容易な半導体レーザ装置を得ることを目的
とする。
(Japanese Unexamined Patent Publication No. 5'7-194542), or by applying a high current to the semiconductor laser device for a predetermined period of time to deteriorate the defective element, and then measuring the laser oscillation threshold current, the semiconductor laser device can be repaired in a short time. Means for determining quality (for example, JP-A-57-13'2568, JP-A-58-
21386). Among these methods, although the former method allows characteristics to be evaluated in the wafer state and the results can be fed back to the process at an early stage, it has the disadvantage that it cannot be evaluated if there is a layer that does not transmit photoluminescence on the surface of the wafer. In addition, while the latter method can reliably determine the quality of the semiconductor laser device, it requires cleavage and assembly processes as well as a large number of energizing equipment, and has the disadvantage that it is difficult to feed back the determination results to earlier processes. . Despite the above-mentioned circumstances, there has been a strong desire to determine the quality of manufactured semiconductor laser wafers at an early stage and, based on the results, to improve the quality of epitaxial wafers.0 [Object of the Invention] The present invention It is an object of the present invention to obtain a semiconductor laser device that can measure the electrical and optical characteristics of the semiconductor laser device in a wafer state, has high quality and high reliability, and is easy to manufacture.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明による半導体レーザ
装置は、n形半導体基板上に順次形成されたn形りラッ
ド層、n形またはp形活性層、p形クラッド層、n形キ
ャップ層よりなる多層膜と、上記n形キャップ層を貫き
p形クラッド層に達する深さで所定の幅を有するストラ
イブ状のオーミック接触層とを備えた半導体レーザ装置
において、上記n形キャップ層表面からp形クラッド層
、n形またはp形活性層に沿ってn形りラッド層に達す
る深さの側面を絶縁領域で囲み、オーミック接触層を含
むn形キャップ層の表面を蔽って上記絶縁領域に達する
電極とn形半導体基板の裏面を蔽う電極とを設けたこと
により、本半導体レーザ装置のチップが複数個隣接して
構成されたウェーハ状態では、各オーミック接触層を囲
む格子状の絶縁領域がn形キャップ層の表面からn形り
ラッド層に達する深さまで設けられ、各半導体レーザチ
ップがそれぞれ独立してウェーハ内に形成されるように
したものである。
In order to achieve the above object, a semiconductor laser device according to the present invention includes an n-type rad layer, an n-type or p-type active layer, a p-type cladding layer, and an n-type cap layer, which are sequentially formed on an n-type semiconductor substrate. and a stripe-shaped ohmic contact layer having a predetermined width at a depth that penetrates the n-type cap layer and reaches the p-type cladding layer. The sides of the n-type cladding layer, the n-type or p-type active layer at a depth reaching the n-type cladding layer are surrounded by an insulating region, and the surface of the n-type cap layer including the ohmic contact layer is covered with the insulating region. By providing the contact electrode and the electrode covering the back surface of the n-type semiconductor substrate, in a wafer state in which multiple chips of this semiconductor laser device are arranged adjacent to each other, a lattice-shaped insulating region surrounding each ohmic contact layer is formed. It is provided from the surface of the n-type cap layer to a depth reaching the n-type rad layer, so that each semiconductor laser chip is formed independently within the wafer.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による半導体レーザ装置の一実施例の製
造工程において、n形半導体基板上の多層膜にオーミッ
ク接触層を形成したウェーハを示す断面図、第2図は」
1記ウェーハに格子状の絶縁領域を形成した工程を示す
断面図、第6図は上記ウェーハに電極を形成した工程を
示す断面図、第4図は上記ウェーハより得た半導体レー
ザ装置の断面図でおる。第1図においてn形GaAs基
板1上に周知の液相エピタキシャル成長法を用いてn形
GaAtAsクラッド層2と、n形またはp形G a 
A LAs活性層3と、p形GaA7Asクラッド層4
と、n形0aAsキャップ層5とを順次連続的に積層す
る。つぎに上記!1形0aAsキャップ層5の上に5i
02膜またはAt20.膜などによる所定の幅をもっス
トライブ状の開口を有する第1のマスクを形成し、この
マスクで蔽われた部分以外の領域に通常の熱拡散法を用
いてZnあるいはSiなどの原子を拡赦し、n形0aA
sキャップ層5f:貫きp形0aA7Asクラッド層4
の一部に達する深さまで、所定の幅(数μ+n)を有す
るストライプ状オーミック接触層6を形成する。第1の
マスクを取除いたのち、上記オーミック接触層6を含む
所定の面積を蔽う第2のマスクを、格子状の領域を残し
てn形Oa A sキャラ1M5の上に再度5102膜
あるいはAt203膜で形成し、上記マスクで蔽われた
部分以外の格子状領域に、第2図に示すようにn形G 
a A sキャップ層5とp形GaAtA3クラッド層
4とn形またはp形G a AtA s活性層6とを貫
いて、n形GaAtAsクラッド層2の一部に達する深
さまで、よく知られたプロトン照射法を用いて絶縁領域
7を形成する。第2のマスクを除去したのち、上記オー
ミック接触層6を含み第2のマスクよシ大きな面積を有
するn形Oa A sキャンプ層5の表面とn形GaA
s基板1の裏面とに、第3図に示すようにそれぞれAu
系電極8および9を形成すると、側面を絶縁領域で囲ま
れて互いに独立した半導体レーザチップが複数個隣接し
て形成された半導体レーザ装置用ウェーハが得られる。
FIG. 1 is a cross-sectional view showing a wafer in which an ohmic contact layer is formed on a multilayer film on an n-type semiconductor substrate in the manufacturing process of an embodiment of a semiconductor laser device according to the present invention, and FIG.
1. A cross-sectional view showing the step of forming a grid-shaped insulating region on the wafer, FIG. 6 a cross-sectional view showing the step of forming electrodes on the wafer, and FIG. 4 a cross-sectional view of a semiconductor laser device obtained from the wafer. I'll go. In FIG. 1, an n-type GaAtAs cladding layer 2 is formed on an n-type GaAs substrate 1 using a well-known liquid phase epitaxial growth method, and an n-type or p-type Ga
A LAs active layer 3 and p-type GaA7As cladding layer 4
and an n-type 0aAs cap layer 5 are sequentially and continuously laminated. Next above! 5i on top of the 1 type 0aAs cap layer 5
02 membrane or At20. A first mask having stripe-like openings with a predetermined width is formed using a film or the like, and atoms such as Zn or Si are spread in areas other than the areas covered by this mask using a normal thermal diffusion method. Forgiveness, n-type 0aA
s cap layer 5f: through p-type 0aA7As cladding layer 4
A striped ohmic contact layer 6 having a predetermined width (several μ+n) is formed to a depth that reaches a part of the . After removing the first mask, a second mask covering a predetermined area including the ohmic contact layer 6 is applied again to the 5102 film or the At203 film on the n-type OaAs character 1M5, leaving a grid-like region. As shown in FIG. 2, an n-type G
The well-known protons penetrate through the aAs cap layer 5, the p-type GaAtA3 cladding layer 4, and the n-type or p-type GaAtAs active layer 6 to a depth that reaches a part of the n-type GaAtAs cladding layer 2. Insulating region 7 is formed using an irradiation method. After removing the second mask, the surface of the n-type OaAs camp layer 5, which includes the ohmic contact layer 6 and has a larger area than the second mask, and the n-type GaA
As shown in FIG.
When the system electrodes 8 and 9 are formed, a wafer for a semiconductor laser device is obtained in which a plurality of mutually independent semiconductor laser chips are formed adjacent to each other with side surfaces surrounded by insulating regions.

また上記ウェーハから得られた半導体レーザ装置は第4
図に示すように、n形GaAsキャップ層5の表面から
p形G a A tA sクラッド層4、n形またはp
形GaAtAs活性層3に沿ってn形QaAtAsクラ
ッド層2の一部に達する深さの絶縁領域7で側面を凹ま
れ、上記絶縁領域7の界面を実効的な共振器面としてい
る。
Furthermore, the semiconductor laser device obtained from the above wafer was
As shown in the figure, from the surface of the n-type GaAs cap layer 5 to the p-type GaAs cladding layer 4, the n-type or p-type
The side surface is recessed along the GaAtAs active layer 3 with an insulating region 7 having a depth that reaches a part of the n-type QaAtAs cladding layer 2, and the interface of the insulating region 7 serves as an effective resonator surface.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による半導体レーザ、装置は、n形
半導体基板上に順次形成されたn形りラッド層、n形ま
たはp形活性層、p形クラッド層、01層を貫きp形ク
ラッド層に達する深さで所定の幅を有するストライプ状
のオーミック接触層トラ備えた半導体レーザ装置におい
て、」1記n形キャップ層表面からp形クラッド層、1
1形またはp形活性層に沿ってn形りラッド層に達する
深さの側面を絶縁、領域で囲み、オーミック接触層を含
むn形キャップ層の表面を蔽って上記絶縁領域に達する
電極とn形半導体基板の裏面を蔽う電極とを設けたこと
により、本半導体レーザ装置のチップが複数個隣接して
構成されたウェーハ状態では、各オーミック接触層を囲
む格子状の絶縁領域がn形キ、トップ層の表面からn形
りラッド層に達する深さまで設けられ、各半導体レーザ
チップはそれぞれ独立して絶縁領域の界面を実効的共振
器面とする半導体レーザ装置を形成するから、互いに隣
接した1組の半導体レーザチップをレーザダイオードと
ホトダイオードとして機能させることにょシ、ウェーハ
の状態で電気的光学的にレーザ特性の計測をすることが
できる。また上記ウェーハ状態での計測結果を即座にエ
ピタキシャル成長の工程にフィードバックすることがで
きるから、高品質で高信頼度を有する製造容易な半導体
レーザ装置を得ることができる。なお上記ウェーハ状態
における格子状の絶縁領域の形成を化学エツチングによ
る格子状溝の形成に置換えても、上記同様の効果を期待
することができる。
As described above, the semiconductor laser and the device according to the present invention penetrate the n-type rad layer, the n-type or p-type active layer, the p-type cladding layer, and the 01 layer, which are sequentially formed on the n-type semiconductor substrate, and pass through the p-type cladding layer. In a semiconductor laser device equipped with a striped ohmic contact layer having a predetermined width and a depth reaching 1, from the surface of the n-type cap layer to the p-type clad layer, 1.
The side surface of the n-type rad layer along the 1-type or p-type active layer is surrounded by an insulating region, and the electrode extends to the insulating region by covering the surface of the n-type cap layer including the ohmic contact layer. By providing an electrode covering the back surface of the n-type semiconductor substrate, in a wafer state in which a plurality of chips of the present semiconductor laser device are arranged adjacent to each other, the lattice-shaped insulating region surrounding each ohmic contact layer becomes an n-type semiconductor substrate. , from the surface of the top layer to a depth reaching the n-shaped rad layer, and each semiconductor laser chip independently forms a semiconductor laser device with the interface of the insulating region as the effective resonator surface. By making a pair of semiconductor laser chips function as a laser diode and a photodiode, laser characteristics can be measured electro-optically in the wafer state. Further, since the measurement results in the wafer state can be immediately fed back to the epitaxial growth process, it is possible to obtain a semiconductor laser device of high quality, high reliability, and easy to manufacture. Note that even if the formation of the lattice-shaped insulating regions in the wafer state is replaced with the formation of lattice-shaped grooves by chemical etching, the same effect as described above can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体レーザ装置の一実施例の製
造工程において、n形半導体基板上の多層膜にオーミッ
ク接触層を形成したウェーハを示す断面図、第2図は上
記ウェーハに格子状の絶縁領域を形成した工程を示す断
面図、第6図は上記ウェーハに電極を形成した工程を示
す断面図、第4図は本発明による半導体レーザ装置の断
面図である。 1・・・n形半導体基板 2・・・n形りラッド層6・
・・n形またはp形活性層 4・・・p形りラット層 5・・・n形キャップ層6゛
°°オーミック接触層 7・・・絶縁領域8.9・・・
電極 代理人弁理土中村純之助
FIG. 1 is a cross-sectional view showing a wafer in which an ohmic contact layer is formed on a multilayer film on an n-type semiconductor substrate in the manufacturing process of an embodiment of a semiconductor laser device according to the present invention, and FIG. FIG. 6 is a cross-sectional view showing the step of forming an insulating region, FIG. 6 is a cross-sectional view showing the step of forming electrodes on the wafer, and FIG. 4 is a cross-sectional view of a semiconductor laser device according to the present invention. 1... N-type semiconductor substrate 2... N-type rad layer 6.
... N-type or p-type active layer 4... P-type rat layer 5... N-type cap layer 6゛°° ohmic contact layer 7... Insulating region 8.9...
Electrode attorney Junnosuke Donakamura

Claims (1)

【特許請求の範囲】[Claims] n形半導体基板上に順次形成されたn形りラッド層、n
形またはp形活性層、p形りラッド層、n形キャップ層
よりなる多層膜と、上記n形キャップ層を貫きp形りラ
ッド層に達する深さで所定の幅を有するストライプ状の
オーミック接触層とを備えた半導体レーザ装置において
、上記n形キャップ層表面からp形、クラッド層、n形
またはp形活性層に沿ってn形りラッド層に達する深さ
の側面を絶縁領域で囲み、オーミック接触層を含むn形
キャップ層の表面を蔽って上記絶縁領域に達する電極と
、n形半導体基板の裏面を蔽う電極とを設けたことを特
徴とする半導体レーザ装置。
n-type rad layers formed sequentially on an n-type semiconductor substrate, n
or a multilayer film consisting of a p-type active layer, a p-type rad layer, and an n-type cap layer, and a stripe-shaped ohmic contact having a predetermined width at a depth that penetrates the n-type cap layer and reaches the p-type rad layer. In a semiconductor laser device comprising a layer, a side surface at a depth extending from the surface of the n-type cap layer to the n-type rad layer along the p-type, cladding layer, n-type or p-type active layer is surrounded by an insulating region; A semiconductor laser device comprising an electrode covering the surface of an n-type cap layer including an ohmic contact layer and reaching the insulating region, and an electrode covering the back surface of the n-type semiconductor substrate.
JP18840383A 1983-10-11 1983-10-11 Semiconductor laser device Pending JPS6080291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18840383A JPS6080291A (en) 1983-10-11 1983-10-11 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18840383A JPS6080291A (en) 1983-10-11 1983-10-11 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6080291A true JPS6080291A (en) 1985-05-08

Family

ID=16223030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18840383A Pending JPS6080291A (en) 1983-10-11 1983-10-11 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6080291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011984A1 (en) * 2013-07-22 2015-01-29 株式会社村田製作所 Vertical-cavity surface-emitting laser array, and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979781A (en) * 1972-12-08 1974-08-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979781A (en) * 1972-12-08 1974-08-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011984A1 (en) * 2013-07-22 2015-01-29 株式会社村田製作所 Vertical-cavity surface-emitting laser array, and production method therefor
TWI562486B (en) * 2013-07-22 2016-12-11 Murata Manufacturing Co
US9865994B2 (en) 2013-07-22 2018-01-09 Murata Manufacturing Co., Ltd. Vertical cavity surface emitting laser array and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7149235B2 (en) Multi-beam semiconductor laser device
US6337871B1 (en) Multiple edge-emitting laser components located on a single wafer and the on-wafer testing of the same
TWI737336B (en) Semiconductor optical integrated component and manufacturing method of semiconductor optical integrated component
JP7260277B2 (en) LASER DIODE BAR MANUFACTURING METHOD AND LASER DIODE BAR
JP3257219B2 (en) Multi-beam semiconductor laser
GB2156585A (en) Light-emitting device electrode
US5173913A (en) Semiconductor laser
JPS6080291A (en) Semiconductor laser device
JP2007184556A (en) Semiconductor laser, its fabrication process and evaluation device
JP4799847B2 (en) Semiconductor laser device and manufacturing method thereof
US5365537A (en) Method of producing a semiconductor laser
JP3505913B2 (en) Method for manufacturing semiconductor light emitting device
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPH0677530A (en) Semiconductor light emitting device and its evaluation method
JPH1022582A (en) Method for measuring photoluminescence of semiconductor laser
JPS6342874B2 (en)
JPH06120615A (en) Manufacture of semiconductor laser element
JPH0666512B2 (en) Method for manufacturing semiconductor laser
JPS6373682A (en) Semiconductor laser
JP3369813B2 (en) Method of manufacturing semiconductor laser device
JPH04320071A (en) Light emitting element
JPH09232667A (en) Compound semiconductor device and manufacture thereof
Wellen et al. The manufacturing and characterization of GaAs/AlGaAs multiple quantumwell ridge waveguide lasers
JPH1012965A (en) Gain waveguide type semiconductor laser
JPS61269389A (en) Manufacture of semiconductor laser device