JPS6080111A - Method and device for manufacturing thin film magnetic head - Google Patents

Method and device for manufacturing thin film magnetic head

Info

Publication number
JPS6080111A
JPS6080111A JP58188373A JP18837383A JPS6080111A JP S6080111 A JPS6080111 A JP S6080111A JP 58188373 A JP58188373 A JP 58188373A JP 18837383 A JP18837383 A JP 18837383A JP S6080111 A JPS6080111 A JP S6080111A
Authority
JP
Japan
Prior art keywords
thin film
etching
magnetic head
base material
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58188373A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanai
金井 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP58188373A priority Critical patent/JPS6080111A/en
Publication of JPS6080111A publication Critical patent/JPS6080111A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • ing And Chemical Polishing (AREA)
  • Magnetic Heads (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the resticking of removed particles by backing a thin metallic film to be etched with a substrate of a different quality to obtain a double structure, and feeding back a characteristic signal of the substrate in accordance with the progress of the etching to control the etching. CONSTITUTION:A substrate 1 consisting of glass, etc., a thin metallic film 2 of Cu, Al, etc. as a conductor, and a photoresist film 3 formed by photoengraving a desired etching pattern are provided. And a thin film 9 of thin Ti or Cr is formed between the substrate 1 and the thin metallic film 2 as a backing layer for the thin metallic film 2. The laminate thus pretreated is placed in an etching device and etched. In this case, characteristic signals of the substrate are fed back in accordance with the progress of etching to continue the etching.

Description

【発明の詳細な説明】 本発明は薄膜プロセスをへて作られる磁気ヘッド(以下
薄膜ヘッドと略記)に閃し特にドライエツチングによる
パターン形成に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head manufactured through a thin film process (hereinafter abbreviated as a thin film head), and particularly relates to pattern formation by dry etching.

発明の背景 薄膜ヘッドには多くの形態が考えられ又多くの製造方法
があるが必要な微細パターンを形成する方法は大別すれ
ば2つの方法がある。その内、1つの方法は所望形状を
形成したフォトレジストパターンを、化学溶液中に浸漬
して最終パターンを形成する、所謂湿式エツチング(ウ
ェット、エツチングとも呼ばれる。)である。この例を
第1図に示す。1は例えばガラス、サファイア、シリコ
ン1或いは磁性材料等の基板、2はCm、AI等の導体
用金属膜或こ・はパーマpイ、センダスト等のコア用磁
性膜、3は所望エツチング形状を写真蝕刻技術により形
成したフォトレジスト膜である。
BACKGROUND OF THE INVENTION There are many possible forms of thin film heads and many manufacturing methods, but there are two methods for forming the necessary fine patterns. One of these methods is so-called wet etching (also called wet etching), in which a photoresist pattern having a desired shape is immersed in a chemical solution to form the final pattern. An example of this is shown in FIG. 1 is a substrate made of glass, sapphire, silicon 1 or a magnetic material, 2 is a metal film for a conductor such as Cm, AI, or a magnetic film for a core such as permanent pi or sendust, and 3 is a photograph of the desired etched shape. This is a photoresist film formed by etching technology.

これを適当な化学溶液中に浸漬すると第1図4のように
フォトレジストで覆われていない部分が溶解され斜線で
示すような金属微細パターンが得られる。この場合、化
学溶液による溶解は等方的に進行する為にエツチングさ
れたパターン形状はフォトレジストパターンより拡がっ
たり又アンダーカントと呼ばれる現象が起きるという欠
点があった(第1図20の部分)。これら欠点を克服す
るもう一つの方法がドライエツチング(前者が湿式=ウ
ェットであるのに対応した呼び方である。)と呼ばれる
方法であり、薄膜ヘッドがマルチチャネル化し微細パタ
ーンの精度が高くなってきたときに最も有効と考えられ
る方法である。このドライエツチングによるパターン作
成方法を第2図に示す。ドライエツチングと呼ばれる方
法にも装置の構成によりさまざまな方法が考えられるが
本発明の説明にあたっては不活性ガス、例えばAr(ア
ルゴン)をイオン化し、加速して被加工物に入射、衝突
させ物理的にエツチングを行なう方法を例にする。しか
し他のドライエツチング方法によっても可能であること
は説明を要しない。第2図に於いて写真蝕刻技術により
フォトレジストパターンを形成する迄は同じ手段による
ものなので同一番号を記しである。ここに5で示された
方向にアルゴンイオンが入射しフォトレジストで覆われ
ていない部分に衝突し所謂スパッタリングにより、パタ
ーン形成がなされる。この場合、湿式エツチングが化学
反応による等方的な進行であるのに対し、ドライエツチ
ングでは異方的に進行しアンダーカットが起こりにくく
微細パターンを容易に形成出来、薄膜ヘッドのマルチチ
ャネル化に有利である。しかしこのイオンエツチングは
その処理時間が長いという欠点がある。例えば膜厚2μ
mノハーマロイ(Fe−Ni合金)を湿式エツチングで
行なう場合には5(分)程度で処理出来るのに対しイオ
ンシリングでは例えばイオンエネルギー1K(eV)と
しても30〜40(分)を要する。
When this is immersed in a suitable chemical solution, the portions not covered with the photoresist are dissolved and a fine metal pattern as shown by diagonal lines is obtained as shown in FIG. 1. In this case, since the dissolution by the chemical solution proceeds isotropically, the etched pattern shape has the disadvantage that it becomes wider than the photoresist pattern, and a phenomenon called undercant occurs (part 20 in FIG. 1). Another method to overcome these drawbacks is a method called dry etching (the name corresponds to the fact that the former is wet etching), and thin film heads have become multi-channel and the precision of fine patterns has increased. This method is considered to be the most effective when FIG. 2 shows a pattern creation method using this dry etching. Various methods can be considered for the method called dry etching, depending on the configuration of the equipment, but in order to explain the present invention, an inert gas such as Ar (argon) is ionized, accelerated, and impinged on the workpiece, causing it to collide with the workpiece. Let's take an example of how to perform etching. However, it is unnecessary to explain that other dry etching methods are also possible. In FIG. 2, the same means are used until the photoresist pattern is formed by photolithography, so the same numbers are used. Argon ions are incident here in the direction shown by 5 and collide with the portions not covered with photoresist to form a pattern by so-called sputtering. In this case, while wet etching progresses isotropically due to a chemical reaction, dry etching progresses anisotropically, making it difficult to undercut and easily forming fine patterns, which is advantageous for making multi-channel thin film heads. It is. However, this ion etching has the disadvantage that the processing time is long. For example, film thickness 2μ
When performing wet etching of mnohermalloy (Fe-Ni alloy), it can be processed in about 5 (minutes), whereas in ion silling, for example, 30 to 40 (minutes) is required even if the ion energy is 1K (eV).

一般にイオンエネルギーが大きくなればエツチングレー
トも大きくなり処理時間も少なくて済む。
Generally, the higher the ion energy, the higher the etching rate and the shorter the processing time.

これを第5図に示す。しかしイオンの加速エネルギーを
無制限に大きく出来る訳ではない。第2図に於いてパタ
ーン形成を説明したが最終的には第2図中3で示される
フォトレジストは除去されなければならない。このとき
イオンの加速エネルギーが大きいとマスクの役割を果た
している有機材料であるフォトレジストが架橋反応や化
学変化を起こし除去出来なくなってしまうからである。
This is shown in FIG. However, it is not possible to increase the acceleration energy of ions without limit. Although pattern formation has been explained in FIG. 2, the photoresist shown by 3 in FIG. 2 must be finally removed. This is because if the acceleration energy of the ions is large at this time, the photoresist, which is an organic material that plays the role of a mask, will undergo a crosslinking reaction or chemical change, making it impossible to remove it.

従ってこのような反応を起こさずになるべくエツチング
を速く進行させる為のイオンエネルギーとしてはs o
 o (eV)〜a o o (eV)が選ばれる頒が
ある。しかしこの程度のイオンエネルギー領域でもイオ
ンエツチングでは再付着効果と呼ばれる現象が問題とな
る。これを第4図に於いて説明する。矢印方向から入射
してきたArイオンによってたたき出された原子、粒子
例えば6で示される金◆ 異原子や7で示されるフォトレジストを構成する原子、
粒子は確率に従い再び試料周辺に付着する。
Therefore, the ion energy to make etching proceed as quickly as possible without causing such a reaction is so
There is a distribution where o (eV) to ao o (eV) are selected. However, even in this ion energy range, ion etching poses a problem called the redeposition effect. This will be explained with reference to FIG. Atoms and particles ejected by Ar ions entering from the direction of the arrow, such as the gold shown by 6 ◆ Different atoms and atoms constituting the photoresist shown by 7,
The particles re-adhere around the sample according to probability.

これが再付着効果と呼ばれるが、この現象では入射する
イオンのエネルギーが高いと再付着する原子、粒子のエ
ネルギーも大きくなり付着というよりむしろ膜中にもぐ
り込んでしまう。この状態になるとこれを除去すること
は非常に困硫となる。
This is called the redeposition effect, and in this phenomenon, if the energy of the incident ions is high, the energy of the redeposited atoms and particles will also be high, and they will sink into the film rather than stick. In this state, it becomes very difficult to remove it.

これはイオンエネルギーが500 (sV)前後でも起
こることが実験の結果判明した。
Experiments have shown that this occurs even when the ion energy is around 500 (sV).

この状態となった部分の電子顕微鏡による写真を第5図
に示す。図中8で示したものが再付着粒子である。この
再付着現象はエツチングの初期に起きるものは再びエツ
チングされることを期待出来るがエツチング終了付近で
はもはや回避する手段がない。
An electron microscope photograph of the portion in this state is shown in FIG. The particles indicated by 8 in the figure are reattached particles. If this re-deposition phenomenon occurs at the beginning of etching, it can be expected that the film will be etched again, but there is no way to avoid it near the end of etching.

発明の目的と概要 従って、本発明の目的はドライエツチング工程を用いる
薄膜磁気ヘッドの製造において、除去された粒子が再付
着する現象を防止した薄膜磁気ヘッドのlI造方法を提
供することを目的とする。
OBJECTS AND SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a thin film magnetic head that prevents the phenomenon of re-deposition of removed particles when manufacturing a thin film magnetic head using a dry etching process. do.

本発明のこの目的は、エツチングされる金属薄膜に異種
材質の他の基材を裏打ちして二層構造となし、エツチン
グ過程におけるこの二層構造体の特性、例えばm威原子
等を表わす信号を検出し、この信号をスィートバックし
てエッチング工程番制御することを特徴とする方法によ
り達成される。
This object of the present invention is to form a two-layer structure by backing the metal thin film to be etched with another base material of a different material, and to generate a signal representing the characteristics of the two-layer structure, such as m-power atoms, during the etching process. This is achieved by a method characterized in that the etching process number is controlled by detecting the signal and sweet-backing this signal.

特に、エツチングがその終了点に接近したときに全屈薄
膜層が一部貫通してその下層の異種基材が露出し、検出
される特性が急変することを利用して、エツチング速度
を低下させることにより粒子の再付着現象を回避する。
In particular, when etching approaches its end point, the etching rate is reduced by taking advantage of the fact that the fully refracted thin film layer partially penetrates, exposing the underlying foreign base material, and the detected characteristics suddenly change. This avoids particle redeposition phenomena.

3、発明の詳細な説明 以下に本発明を具体例に関連して詳しく説明する。以下
の例は、二層構造体がイオンによりエツチングされる際
に放出される粒子を質量分析し、エツチング終期に基材
が露出される際の検出質量(すなわち化学種)の急変か
ら得られる検出信号をイオン源へフィードバックする方
法に関連して述べるが、他の検出方法を用いても良%、
1゜本発明でエツチングされる材料は/ぐ−マロイ(F
e−Ni合金)等の鴻透磁¥の金属薄膜、そのスペーサ
薄膜、AI、Cu等の導体薄膜等の材料である。また、
裏打ちに使用される基材の素材(まこれが磁性金属薄膜
の基板として恒久的に用(・られる場合にはTi、Cr
等の材料が好まし−1゜なおこの例は磁性金属簿膜との
接着性が良好である点でも好まい、λ。基材の材料は金
へ薄膜辷メ4して相対的に選択されるもので、検出能率
やその他の因子を考慮して適宜に行えば良い。
3. Detailed Description of the Invention The present invention will be described in detail below with reference to specific examples. The following example shows the detection obtained by mass spectrometry of the particles released when a bilayer structure is etched by ions, and the sudden change in detected mass (i.e., chemical species) when the substrate is exposed at the end of etching. This will be described in connection with the method of feeding back the signal to the ion source, but other detection methods may also be used.
1゜The material to be etched in the present invention is/gumalloy (F
These are materials such as metal thin films of magnetic permeability such as e-Ni alloy), spacer thin films thereof, and conductive thin films such as AI and Cu. Also,
The material of the base material used for the backing (if this is used permanently as a substrate for a magnetic metal thin film), Ti, Cr, etc.
Materials such as -1° are preferred, and this example is also preferred in terms of good adhesion to the magnetic metal film, λ. The material of the base material is selected relative to the thin film layer 4 of gold, and may be selected as appropriate in consideration of detection efficiency and other factors.

第6図及び第7図を参照して本発明の笑施例を詳しく説
明する。第6図において、1は例えばガラス、す7アイ
ヤ、シリコン、或いは磁性材料等の基板、2はCu、A
I等の導体用金属薄膜、或0はパーマロイ、センダスト
等のコア用磁性薄膜、及び3は所望エツチングパターン
を写真蝕刻技術により形成したフォトレジスト膜である
。本発明に従って、金属薄膜2と基板1との間には薄い
TlXCr等の薄膜9が介在して金属薄膜2に対する裏
打ち層を形成している。Ti5Cr等は本発明の所定の
作用の他に、層間の接着性を向上している。
A second embodiment of the present invention will be described in detail with reference to FIGS. 6 and 7. In FIG. 6, 1 is a substrate made of glass, silicon, silicon, or a magnetic material, and 2 is a substrate made of Cu, A
3 is a metal thin film for a conductor such as I, or a magnetic thin film for a core such as permalloy or sendust, and 3 is a photoresist film on which a desired etching pattern is formed by photolithography. According to the present invention, a thin film 9 of TlXCr or the like is interposed between the metal thin film 2 and the substrate 1 to form a backing layer for the metal thin film 2. Ti5Cr and the like improve the adhesion between layers in addition to the prescribed functions of the present invention.

上記のように予備処理された積層体は第7図に示すエツ
チング装置内へ装入されて本発明に従ったエツチング処
理に付される。第7図において、10はイオンエツチン
グ用真空室、11は例えば質量分析等を行なう質量検出
器、12は第6図に示した被エツチング試料、13は1
2を取付ける回転ステージ、14は例えばArをイオン
化し加速させるイオン化室、15は検出装置による検出
結果によりイオンの加速電圧を小さくするようスイッチ
ングを行う回路、16は加速電圧用電源、17は増幅器
及び18は質量判別回路である。
The laminate pretreated as described above is loaded into the etching apparatus shown in FIG. 7 and subjected to the etching process according to the present invention. In FIG. 7, 10 is a vacuum chamber for ion etching, 11 is a mass detector for performing, for example, mass spectrometry, 12 is the sample to be etched shown in FIG. 6, and 13 is 1
2 is attached, 14 is an ionization chamber for ionizing and accelerating Ar, 15 is a circuit that performs switching to reduce the ion acceleration voltage based on the detection result by the detection device, 16 is a power source for accelerating voltage, 17 is an amplifier and 18 is a mass discrimination circuit.

動作において真空室内の回転ステージ13に試料12を
取付け、真空室を所定圧力のArガスで満たし、高圧側
にあるスイッチング回路15を介して電源16を作動さ
せる。これによりイオン源14からイオンが放出されて
試料12の表面を衝撃してエツチングを開始する。この
場合の加速電圧は十分に高くて良く、先きに述べた粒子
の再付着が生じても良いのである。しかし、加速電圧が
大きいためエツチング速度は大きい。イオンで打撃され
た金属薄膜2(第6図参照)からはその構成金属の粒子
が放射され、−Cその一部は質量検出器11により検出
される。例えば第8図に示すように金属薄膜2及び基材
9の質量スペクトルがそれぞれ波形17.18で示され
るとすれば、金属薄膜のエツチング中は実線で示される
波形17が得られ、次いでエツチングの終了近くに基材
9の一部が露出されて点線で示される波形18の成分が
急増を始める。このとき判別回路18が作動し、てこの
急増時点を検出し、これによりスイッチング回路を低電
圧側へ切替える。これによりエツチングは低エネルギー
イオンにより続行され、エツチングの終了までには再付
着粒子はきれいに除去され、すぐれたエツチング特性の
金属パターンが得られる。
In operation, the sample 12 is mounted on the rotation stage 13 in a vacuum chamber, the vacuum chamber is filled with Ar gas at a predetermined pressure, and the power supply 16 is activated via the switching circuit 15 on the high pressure side. As a result, ions are emitted from the ion source 14 and impact the surface of the sample 12 to start etching. In this case, the accelerating voltage may be sufficiently high so that the above-mentioned re-deposition of the particles may occur. However, since the accelerating voltage is high, the etching rate is high. The metal thin film 2 (see FIG. 6) bombarded with ions emits constituent metal particles, some of which are detected by the mass detector 11. For example, if the mass spectra of the metal thin film 2 and the base material 9 are shown by waveforms 17 and 18, respectively, as shown in FIG. Near the end, a portion of the substrate 9 is exposed and the component of the waveform 18 indicated by the dotted line begins to increase rapidly. At this time, the discrimination circuit 18 is activated, detects the point in time when the lever increases rapidly, and thereby switches the switching circuit to the low voltage side. As a result, etching is continued by low-energy ions, and by the end of etching, redeposited particles are completely removed, resulting in a metal pattern with excellent etching characteristics.

以上のように、本発明によると、再付着現象が少ない良
質なエツチングパターンが形成でき、かつ処理時間の短
かい薄膜ヘッドの製造方法が提供できた。
As described above, according to the present invention, a method for manufacturing a thin film head that can form a high-quality etching pattern with little re-deposition phenomenon and that requires a short processing time can be provided.

第1図は従来の湿式エツチング技術を示す断面図、第2
図は従来のドライエツチング技術を示す断面図、第3図
はイオンエネルギーと処理時間めMfMを示すグラフ、
第4図はドライエツチングにおける再付層現象を示す断
面図、第5図は再付着現象を示す拡大平面図、第6図は
本発明の方法で用いられる試料の構成を示す断面図、第
7図は本発明の装置の図式図、及び第8図は質量スペク
トルの1例を示すグラフである。図中主な部分は次の通
りである。
Figure 1 is a cross-sectional view showing conventional wet etching technology;
The figure is a cross-sectional view showing conventional dry etching technology, and Figure 3 is a graph showing ion energy and processing time MfM.
FIG. 4 is a cross-sectional view showing the re-deposition phenomenon in dry etching, FIG. 5 is an enlarged plan view showing the re-deposition phenomenon, FIG. 6 is a cross-sectional view showing the structure of the sample used in the method of the present invention, and FIG. The figure is a schematic diagram of the apparatus of the present invention, and FIG. 8 is a graph showing an example of a mass spectrum. The main parts in the figure are as follows.

2:金属薄膜 3ニアオドレジスト膜 9:基材層 10:真空室 11:買置検出器 12二試料 13:回転ステージ 14:イオン化室 15ニスイツチング回路 16:加速電圧用電源 18:質量判別器 第1図 第2図 第3図 第4図 第5図 第6図2: Metal thin film 3 Near odd resist film 9: Base material layer 10: Vacuum chamber 11: Purchase detector 122 samples 13: Rotating stage 14: Ionization chamber 15 Ni switching circuit 16: Accelerating voltage power supply 18: Mass discriminator Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 薄膜プロセスを経て作られる薄膜磁気ヘッドの製造
における金属薄膜のドライエツチング工程において、エ
ツチングすべき金属薄膜に異種材質の基材を裏打ちして
二層構造とし、エツチングの進行に応じて前記基材の特
性を表わす信号を検出し、該信号をフィードバックして
エツチングを制御することを特徴とする薄膜磁気ヘッド
の製造方法。 2 基材の特性は化学特性である前記第1項記載ノ薄膜
磁気ヘッドの製造方法。 工 エツチングはイオンを用いて行われ、化学特性は前
記イオンのi撃により放出される原子の質量特性である
前記第3項記載の薄膜磁気ヘッドの4、 薄膜プロセス
を経て作られる1v膜磁気ヘツドの製造における金桟薄
膜のドライエツチング工程で使用される装置において、
前記装置は、前記金属薄膜を裏面より支持する異質材料
の基材と、前記金属薄膜へエツチング用イオンを入射さ
せるイオン源と、前記イオンによりisされる基材の特
性を検出して該特性に対応する信号を生じる検出手段と
、前記検出された信号により前記イオン源から放出され
、るイオンの流れを制御する制御手段とより成ることを
特徴とする、薄膜磁気ヘッドの製造方法。 4、 検出手段は質量分析器である前記第3項に記載の
薄膜磁気ヘッドの製造方法。
[Claims] 1. In the dry etching process of a metal thin film in the production of a thin film magnetic head made through a thin film process, the metal thin film to be etched is lined with a base material of a different material to form a two-layer structure, and the etching progresses. A method for manufacturing a thin film magnetic head, comprising: detecting a signal representing characteristics of the base material according to the characteristics of the base material, and controlling etching by feeding back the signal. 2. The method for manufacturing a thin film magnetic head as described in item 1 above, wherein the characteristics of the base material are chemical characteristics. Etching is performed using ions, and the chemical property is the mass property of the atoms released by the ionic bombardment of the ions. 4. A 1V film magnetic head manufactured through a thin film process In the equipment used in the dry etching process of the metal frame thin film in the production of
The apparatus includes a base material made of a different material that supports the metal thin film from the back side, an ion source that injects etching ions into the metal thin film, and detects the characteristics of the base material that are exposed to the ions and determines the characteristics. A method for manufacturing a thin film magnetic head, comprising: a detection means for generating a corresponding signal; and a control means for controlling the flow of ions emitted from the ion source in accordance with the detected signal. 4. The method for manufacturing a thin film magnetic head according to item 3 above, wherein the detection means is a mass spectrometer.
JP58188373A 1983-10-11 1983-10-11 Method and device for manufacturing thin film magnetic head Pending JPS6080111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188373A JPS6080111A (en) 1983-10-11 1983-10-11 Method and device for manufacturing thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188373A JPS6080111A (en) 1983-10-11 1983-10-11 Method and device for manufacturing thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6080111A true JPS6080111A (en) 1985-05-08

Family

ID=16222478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188373A Pending JPS6080111A (en) 1983-10-11 1983-10-11 Method and device for manufacturing thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6080111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243546A (en) * 1988-03-25 1989-09-28 Toshiba Corp Manufacture of semiconductor device
JPH0762471A (en) * 1993-08-26 1995-03-07 Nec Corp Copper based conductive body alloy material and its etching method and magnetic head using the same
KR100606245B1 (en) * 2004-03-23 2006-07-28 학교법인 국민학원 Method for Forming Wiring Using Dry Etching in TFT-LCD Using Ti Glue Layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564006A (en) * 1978-10-25 1980-05-14 Mitsubishi Heavy Ind Ltd Liquid filling device of carton vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564006A (en) * 1978-10-25 1980-05-14 Mitsubishi Heavy Ind Ltd Liquid filling device of carton vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243546A (en) * 1988-03-25 1989-09-28 Toshiba Corp Manufacture of semiconductor device
JPH0762471A (en) * 1993-08-26 1995-03-07 Nec Corp Copper based conductive body alloy material and its etching method and magnetic head using the same
KR100606245B1 (en) * 2004-03-23 2006-07-28 학교법인 국민학원 Method for Forming Wiring Using Dry Etching in TFT-LCD Using Ti Glue Layer

Similar Documents

Publication Publication Date Title
Glöersen Ion− beam etching
US4278493A (en) Method for cleaning surfaces by ion milling
US4444618A (en) Processes and gas mixtures for the reactive ion etching of aluminum and aluminum alloys
US4098917A (en) Method of providing a patterned metal layer on a substrate employing metal mask and ion milling
US4597826A (en) Method for forming patterns
US6838389B2 (en) High selectivity etching of a lead overlay structure
US4337132A (en) Ion etching process with minimized redeposition
US6296741B1 (en) Method of making oxide barrier layer for a spin tunnel junction
US4614563A (en) Process for producing multilayer conductor structure
JP2757546B2 (en) Method and apparatus for etching Fe-containing material
US4075452A (en) Electroresistor and method of making same
JPS6080111A (en) Method and device for manufacturing thin film magnetic head
US4045318A (en) Method of transferring a surface relief pattern from a poly(olefin sulfone) layer to a metal layer
US20020011462A1 (en) Method of processing organic antireflection layers
JPH02244002A (en) Formation of optical diffraction grating core for injection molding
US4049521A (en) Cathode sputtering method for the manufacture of etched structures
JP2620952B2 (en) Fine pattern forming method
JPH06180277A (en) Preparation of sample for transmission electron microscope
JP2003208703A (en) Magnetic recording head, manufacturing method therefor and carbon protective film forming device
JP2752022B2 (en) Fine pattern forming method
JPS62243786A (en) Etching device
JPS62249420A (en) Apparatus for plasma treatment
JPH0774465B2 (en) Etching device
RU2205470C1 (en) Structure production method
JPH0426210B2 (en)