JPS6080055A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6080055A
JPS6080055A JP18788483A JP18788483A JPS6080055A JP S6080055 A JPS6080055 A JP S6080055A JP 18788483 A JP18788483 A JP 18788483A JP 18788483 A JP18788483 A JP 18788483A JP S6080055 A JPS6080055 A JP S6080055A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
coating layer
powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18788483A
Other languages
Japanese (ja)
Other versions
JPS6345025B2 (en
Inventor
Yu Fukuda
祐 福田
Yasunori Kaneko
金子 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18788483A priority Critical patent/JPS6080055A/en
Publication of JPS6080055A publication Critical patent/JPS6080055A/en
Publication of JPS6345025B2 publication Critical patent/JPS6345025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Abstract

PURPOSE:To improve the durability of the heat exchanger, prevent incomplete combustion or deterioration of heat exchanging efficiency and improve a reliability as an instrument by preventing the corrosion of the heat exchanger due to acidic dew water in which the exhaust gas of combustion is dissolved. CONSTITUTION:Layer of plating 5, constituted of a metal consisting of the principal constituent of either one kind of nickel, lead and aluminum, is formed on the surface of a heat tranfer member of copper by a means either one of non- electrolyte, electrolyte and fusion, then, a coating, obtained by dispersing and mixing the binder of organic silicon polymer, consisting of the principal constituent of polyborosiloxane, inorganic filler of mica powder 6b, glass powder 6c and silicon carbide powder 6d and a solvent such as toluene or the like, is coated thereon, thereafter, the coating is hardened by heating and thereby forming the layer of coating 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は瞬間湯沸器、給湯機器、暖房機器などに使用さ
れる銅製伝熱部材よりなる熱交換器に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger made of a copper heat transfer member used in instantaneous water heaters, water heaters, heating equipment, and the like.

従来例の構成とその問題点 従来のガス瞬間湯沸器に使用されている熱交換器を第1
図に示す。同図に示す如く熱交換器は燃2 ミーう゛ 焼室を内部に設けたドラム1と熱交換される水が通過す
る熱交換チー−ブ2と前記ドラム1の上部に設けられた
吸熱フィン3の銅製伝熱部材より構成され、さらにこの
表面に鉛を主成分とする溶融金属メッキが施されている
The structure of the conventional example and its problems The first heat exchanger used in the conventional gas instantaneous water heater
As shown in the figure. As shown in the figure, the heat exchanger consists of a drum 1 having a combustion chamber inside, a heat exchange tube 2 through which water to be heat exchanged passes, and heat absorption fins 3 provided on the upper part of the drum 1. It is composed of a copper heat transfer member, and its surface is further plated with a molten metal whose main component is lead.

この構成において、燃焼排ガスの接触する部分、特にド
ラム1と熱交換チー−ブ2との接触部や熱交換チー−ブ
2と吸熱フィン3との接触部の低温部分では燃焼排ガス
中に含まれるN OX、S OX。
In this configuration, in the parts where the combustion exhaust gas comes into contact, especially in the low-temperature parts of the contact parts between the drum 1 and the heat exchanger 2 and the contact parts between the heat exchanger fins 2 and the heat-absorbing fins 3, the amount of water contained in the combustion exhaust gas is Nox, sox.

CO、CO2、水蒸気などが凝縮して酸性の結露・ 水
を生成し、これが前記溶融金属メッキや母材である銅を
激しく腐食させるという問題が発生している。
A problem has arisen in that CO, CO2, water vapor, etc. condense to produce acidic condensation/water, which severely corrodes the molten metal plating and the base material copper.

このような腐食が起こると炭酸鉛、硝酸鉛、緑青などの
腐食生成物が多量に生成するためにこれらが吸熱フィン
3やドラム1の部分に堆積し、排ガスの流れが阻害され
不完全燃焼を引き起こしたり、熱交換チー−ブ2中を通
過する水への熱伝導が悪くなるために熱交換効率が著し
く低下するとともに、前記腐食生成物が粉状に剥離し周
囲を汚3ベーン 染するなど安全衛生上好ましいものではなかった。
When such corrosion occurs, a large amount of corrosion products such as lead carbonate, lead nitrate, and patina are generated, which accumulate on the heat absorption fins 3 and the drum 1, obstructing the flow of exhaust gas and causing incomplete combustion. In addition, the heat exchange efficiency is significantly reduced due to poor heat conduction to the water passing through the heat exchange tube 2, and the corrosion products peel off into powder and stain the surrounding area. It was not favorable from a safety and health standpoint.

さらに、腐食が進行するとドラム1や吸熱フィン3など
の部材に穴があくなどの問題も発生し、機器としての耐
久性にも欠けるという問題点があった。
Further, as the corrosion progresses, problems such as holes are created in members such as the drum 1 and the heat absorbing fins 3, resulting in a lack of durability as a device.

また、前記溶融金属メッキの耐食性を改善するために有
機系、無機系の塗料をコーティングする方法も試みられ
たが、シリコン樹脂、ポリイシド樹脂などをバインダー
とする有機系塗料は耐熱性が低いために、長時間の使用
に耐え難く、ケイ酸塩系、リン酸塩系などの無機系塗料
は、コーティング層にピンホールが多数存在するために
耐食性が悪く、前記問題を解決できるものではなかった
In addition, attempts have been made to coat the molten metal plating with organic and inorganic paints to improve its corrosion resistance, but organic paints with binders such as silicone resin and polyamide resin have low heat resistance. However, inorganic paints such as silicate-based and phosphate-based paints have poor corrosion resistance due to the presence of many pinholes in the coating layer, and have not been able to solve the above problems.

発明の目的 本発明はかかる従来の欠点を解消するもので燃焼排ガス
が溶解した酸性結露水による熱交換器の腐食を防止する
ことにより、熱交換器の耐久性の向上を図るとともに、
不完全燃焼や熱交換効率の低下を防止し、機器としての
信頼性の向上を図ることを目的とする。
OBJECTS OF THE INVENTION The present invention solves these conventional drawbacks, and improves the durability of the heat exchanger by preventing corrosion of the heat exchanger due to acidic condensation water in which combustion exhaust gas is dissolved.
The purpose is to prevent incomplete combustion and a decrease in heat exchange efficiency, and to improve the reliability of the device.

発明の構成 この目的を達成するために本発明は、銅製伝熱部材表面
に金属からなるメッキ層を形成し、さらに前記メッキ層
上にポリボロシロキサンを主成分とする有機ケイ素重合
体をバインダーとし、前記バインダーにマイカ粉末、ガ
ラス粉末、炭化ケイ素粉末の無機充てん材を分散混合し
た塗料でコーティング層を形成したものであり、前記コ
ーティング層が耐熱性に優れ、かつ緻密な膜となってい
るので熱によるコーティング層の劣化は無く、燃焼排ガ
スが溶解した結露水を生じてもコーティング層中への前
記結露水の浸入を防止することができ、銅製伝熱部材や
メッキ層の腐食が無くなるので前述の腐食生成物の堆積
により生ずる不完全燃焼や腐食生成物の飛散、落下によ
る周囲の汚染、熱交換効率の低下を防止することができ
る。
Structure of the Invention In order to achieve this object, the present invention forms a plating layer made of metal on the surface of a copper heat transfer member, and further forms an organosilicon polymer containing polyborosiloxane as a binder on the plating layer. , a coating layer is formed with a paint in which inorganic fillers such as mica powder, glass powder, and silicon carbide powder are dispersed and mixed in the binder, and the coating layer has excellent heat resistance and is a dense film. There is no deterioration of the coating layer due to heat, and even if condensed water is generated by dissolving combustion exhaust gas, it is possible to prevent the condensed water from entering the coating layer, and corrosion of the copper heat transfer member and the plating layer is eliminated. It is possible to prevent incomplete combustion caused by accumulation of corrosion products, contamination of the surrounding area due to scattering and falling of corrosion products, and reduction in heat exchange efficiency.

実施例の説明 以下、本発明の一実施例について第2図により説明する
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

図において4は燃焼室を内部に形成したドラム5ベーレ
゛ 吸熱フィン、熱交換チー−ブよりなる熱交換器の要部断
面した銅製伝熱部材であり、この表面に無電解、電解、
溶融のいずれかの手段により、ニッケル、鉛、アルミニ
ウムのいずれか1種を主成分とする金属からなるメッキ
層5が形成され、さらにこの上にポリボロシロキサンを
主成分とする有機ケイ素重合体6aをバインダーとし、
これにマイカ粉末6b、ガラス粉末6c、炭化ケイ素粉
末6dの無機充てん材を添加し、トルエンなどの溶剤と
ともに分散、混合して得た塗料を塗布、加熱硬化させる
ことによりコーティング層6が形成される。
In the figure, 4 is a copper heat transfer member which is a cross-section of the main part of a heat exchanger consisting of a drum 5 with a combustion chamber formed therein, heat absorption fins, and heat exchanger tubes.
A plating layer 5 made of a metal whose main component is one of nickel, lead, and aluminum is formed by melting, and an organosilicon polymer 6a whose main component is polyborosiloxane is further formed on this plating layer 5. as a binder,
A coating layer 6 is formed by adding inorganic fillers such as mica powder 6b, glass powder 6c, and silicon carbide powder 6d to this, dispersing and mixing the resulting paint with a solvent such as toluene, and heating and curing. .

このコーティング層6は第2図に示す如く、マイカ粉末
6bが表面近くにその多くが木の葉状に重なり合いメッ
キ層5に対し平行配列し、ガラス粉末6cと炭化ケイ素
粉末6dが均一に分散した塗膜となっている。
As shown in FIG. 2, this coating layer 6 is a coating film in which mica powder 6b is arranged parallel to the plating layer 5, with many of the mica powders overlapping like leaves near the surface, and glass powder 6c and silicon carbide powder 6d are uniformly dispersed. It becomes.

この構成において、第1図に示す熱交換器のドラム1内
の燃焼室下部に配置されたバーナが燃焼した際、ドラム
1及び吸熱フィン3が熱交換チー6 目′ −ブ2内を流れる水によって冷却され、水蒸気の凝縮に
より結露水が生成し、燃焼排ガス中のNOx。
In this configuration, when the burner disposed at the bottom of the combustion chamber in the drum 1 of the heat exchanger shown in FIG. The NOx in the combustion exhaust gas is cooled by condensation of water vapor to produce dew water.

SOX、CO2などが前記結露水中に溶解し、濃縮され
て腐食性の強いPH3〜4の酸となるとともに吸熱フィ
ン3の先端部は250”C以上の高温に達し極めて厳し
い環境となる。
SOX, CO2, etc. are dissolved in the dew condensation water and concentrated to become a highly corrosive acid with a pH of 3 to 4, and the tip of the heat absorbing fin 3 reaches a high temperature of 250''C or more, creating an extremely harsh environment.

本発明のコーティング層6に用いるバインダーはケイ素
、炭素、ホウ素、酸素を骨格としたポリボロシロキサン
を主成分とする有機ケイ素重合体であるので300℃以
上の優れた耐熱性を有し、前述の熱交換器使用温度には
充分耐え得るものである。しかし、コーティング層6の
加熱硬化の際、前記バインダーの有機成分の一部が分解
するため膜としてはポーラスでピンホールが多く存在し
、前記バインダー単独で用いた場合にはこのピンポール
を介して前記酸性結露水が侵入し、メッキ層5と銅製伝
熱部材4を腐食させる。
The binder used in the coating layer 6 of the present invention is an organosilicon polymer whose main component is polyborosiloxane with silicon, carbon, boron, and oxygen skeletons, so it has excellent heat resistance of 300°C or higher, and has excellent heat resistance as described above. It can sufficiently withstand the operating temperature of the heat exchanger. However, when the coating layer 6 is heated and cured, some of the organic components of the binder decompose, resulting in a porous film with many pinholes. Acidic condensation water enters and corrodes the plating layer 5 and the copper heat transfer member 4.

本発明では、コーティング層6にマイカ粉末6bを適用
することにより、前述の腐食問題を解決することができ
た。即ち、粒子形状がフレーク7・°−〕゛ 状であるマイカ粉末6bがコーティング層6の表面近傍
に木の葉状に重なり合いながら多く存在するのでコーテ
ィング層6表面のバリア性が高くなり、しかもマイカ粉
末6bはコーティング層6中に存在するピンホールを塞
ぐ効果を有するので前記酸性結露水の侵入が無くなりメ
ッキ層5と銅製伝熱部材4の腐食を防止することができ
るとともにマイカ粉末6bが耐酸性に優れた材料である
ので長期にわたり、優れた耐食性を実現することができ
る。したがって、従来のように吸熱フィン3やドラム1
の表面に腐食生成物の堆積が無くなり、不完全燃焼や周
囲への汚染を防止でき、燃焼機器としての安全性が大幅
に向上する。
In the present invention, by applying mica powder 6b to coating layer 6, the above-mentioned corrosion problem could be solved. That is, since a large amount of mica powder 6b having a flake-like particle shape is present in the vicinity of the surface of the coating layer 6, overlapping each other in a leaf-like manner, the barrier properties of the surface of the coating layer 6 are high, and the mica powder 6b has the effect of closing the pinholes existing in the coating layer 6, so that the acidic condensation water does not enter, preventing corrosion of the plating layer 5 and the copper heat transfer member 4, and the mica powder 6b has excellent acid resistance. Since it is a durable material, it can achieve excellent corrosion resistance over a long period of time. Therefore, unlike the conventional heat absorbing fins 3 and drum 1,
This eliminates the accumulation of corrosion products on the surface of the combustion equipment, prevents incomplete combustion and contamination of the surrounding area, and greatly improves the safety of combustion equipment.

また、コーティング層6に二酸化ケイ素を主成分とする
ガラス粉末6Cが均一に分散することによりコーティン
グ層6は非常に硬くしかも機械的衝撃に対して強くなる
ので熱交換器の運搬や取り付けの際に落下したり、ドラ
イバーなどの工具が接触してもコーティング層6の剥離
や傷の発生を防止できる。
Furthermore, by uniformly dispersing the glass powder 6C containing silicon dioxide as the main component in the coating layer 6, the coating layer 6 becomes extremely hard and resistant to mechanical shock, making it difficult to transport and install the heat exchanger. Even if the coating layer 6 is dropped or comes into contact with a tool such as a screwdriver, the coating layer 6 can be prevented from peeling off or being scratched.

特開昭Go−80055(3) さらに、コーティング層6中には熱伝導性に優れた炭化
ケイ素粉末6dを分散させているのでコーティング層6
が存在しても従来の熱交換器と熱交換効率の差は無く、
しかも従来のように腐食による熱交換効率の低下が無く
なるので長期にわたり、優れた熱交換効率を維持するこ
とができる。
JP-A-Sho Go-80055 (3) Furthermore, since silicon carbide powder 6d with excellent thermal conductivity is dispersed in the coating layer 6, the coating layer 6
Even if there is, there is no difference in heat exchange efficiency from conventional heat exchangers,
Furthermore, since there is no reduction in heat exchange efficiency due to corrosion as in the past, excellent heat exchange efficiency can be maintained over a long period of time.

また、マイカ粉末6b、ガラス粉末6c、炭化ケイ素粉
末6dの総添加量はバインダーである有機ケイ素重合体
6aの加熱残分(固形分)に対し重量比で10%以下に
なると有機ケイ素重合体6aの性質に支配されてくるの
でコーティング層6の表面がポーラスでピンホールが多
くなるために耐食性が悪くなり、40%以上になると充
てん材が多すぎるため、有機ケイ素重合体6aの接着力
が低下し、コーティング層6aの密着性が悪くなること
から、10〜40%の範囲であることが望ましい。
Furthermore, if the total amount of mica powder 6b, glass powder 6c, and silicon carbide powder 6d is 10% or less by weight relative to the heating residue (solid content) of organosilicon polymer 6a, which is the binder, organosilicon polymer 6a Since the surface of the coating layer 6 is porous and has many pinholes, its corrosion resistance deteriorates, and when it exceeds 40%, there is too much filler, which reduces the adhesive strength of the organosilicon polymer 6a. However, since the adhesion of the coating layer 6a deteriorates, it is preferably in the range of 10 to 40%.

一方、ポリボロシロキサンを主成分とする有機ケイ素重
合体6aは伝熱部材である銅との密着性が著しく悪く、
銅製伝熱部材4の表面に直接ツー9ベジ ティング層6を形成することができなかったが、これは
前記銅製伝熱部材4の表面に耐酸化性の優れたニッケル
、鉛、アルミニウムのいずれか1種を主成分とする金属
よりなるメッキ層5を設けることにより、コーティング
層6との優れた密着性が実現することを見い出した。
On the other hand, the organosilicon polymer 6a mainly composed of polyborosiloxane has extremely poor adhesion to copper, which is a heat transfer member.
Although it was not possible to directly form the vegetating layer 6 on the surface of the copper heat transfer member 4, this is because the surface of the copper heat transfer member 4 was coated with nickel, lead, or aluminum, which has excellent oxidation resistance. It has been found that excellent adhesion with the coating layer 6 can be achieved by providing the plating layer 5 made of a metal containing one type of metal as the main component.

次に本実施例の効果を表わす実験結果について説明する
Next, experimental results showing the effects of this embodiment will be explained.

第1図に示す銅製伝熱部材よりなる熱交換器に第1表に
示すメッキ層を形成し、さらにこのメッキ層上に第1表
に示す材料をボールミルで24時間分散混合した塗料を
用いて、膜厚が10〜20μmになるようにスプレー塗
装し、300℃1時間の焼成を行ないコーティング層を
形成した。
A plating layer shown in Table 1 was formed on the heat exchanger made of the copper heat transfer member shown in FIG. A coating layer was formed by spray painting to a film thickness of 10 to 20 μm and baking at 300° C. for 1 hour.

10” 11 パージ 以上記載した本発明の実施品である熱交換器A〜Cにつ
いて、ガス瞬間湯沸器(5号タイプ)に組み込み、2分
間燃焼、2分間消火の繰返し燃焼実験を実施した。なお
、比較のため、従来の熱交換器(銅製伝熱部材表面に鉛
の溶融メッキを施したもの)についても同条件の試験を
実施した。
10" 11 Purge The heat exchangers A to C, which are implementation products of the present invention described above, were incorporated into a gas instantaneous water heater (No. 5 type), and a repeated combustion experiment of burning for 2 minutes and extinguishing for 2 minutes was conducted. For comparison, a test under the same conditions was also conducted on a conventional heat exchanger (with hot-dip lead plating on the surface of a copper heat transfer member).

その結果を第2表に示す。The results are shown in Table 2.

第2表、繰返し燃焼試験結果 以上の結果にみられるように、従来の熱交換器は激しい
腐食が発生したが、本発明の実施品である熱交換器A−
Cは腐食の発生は無く、優れた耐特開昭GO−8005
5(4) 食性を示した。
As seen in Table 2, repeated combustion test results, severe corrosion occurred in the conventional heat exchanger, but the heat exchanger A-
C is JP-A-Sho GO-8005 with no corrosion and excellent resistance.
5(4) Showed eating habits.

また、本発明の熱交換器A−Cの熱交換効率は従来の熱
交換器と同等の熱交換効率を示し、コーティング層を設
けることによる熱伝導性の低下がほとんど無いことを確
認した。
Furthermore, it was confirmed that the heat exchange efficiency of the heat exchanger A-C of the present invention was equivalent to that of a conventional heat exchanger, and that there was almost no decrease in thermal conductivity due to the provision of the coating layer.

発明の効果 以上、説明したように本発明は燃焼室を内部に形成した
ドラムと吸熱フィンと熱交換チー−ブよりなる銅製伝熱
部材の表面に耐酸化性、密着性に優れたメッキ層と耐食
性、耐熱性、熱伝導性に優れたコーティング層を形成し
ているので0)銅製伝熱部材の腐食がなくなり、熱交換
器としての耐久性が大幅に向上する。
Effects of the Invention As explained above, the present invention provides a coating layer with excellent oxidation resistance and adhesion on the surface of a copper heat transfer member consisting of a drum in which a combustion chamber is formed, heat absorption fins, and heat exchanger tubes. Since a coating layer with excellent corrosion resistance, heat resistance, and thermal conductivity is formed, 0) corrosion of the copper heat transfer member is eliminated, and the durability of the heat exchanger is greatly improved.

(2)ドラム、吸熱フィン部への腐食生成物の堆積がな
くなり、不完全燃焼を防止することができるとともに周
囲への汚染がなくなる。
(2) Accumulation of corrosion products on the drum and heat-absorbing fins is eliminated, making it possible to prevent incomplete combustion and eliminating contamination of the surrounding area.

(3)長期にわたり、初期の優れた熱交換効率を維持す
ることができる。
(3) The initial excellent heat exchange efficiency can be maintained over a long period of time.

などの効果を有し、実用的価値が極めて高いものである
It has the following effects and has extremely high practical value.

13 ページPage 13

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の瞬間湯沸器の熱交換器を示す外観斜視図
、第2図は本発明の一実施例の熱交換器を示す要部断面
図である。 4・・・銅製伝熱部材、5・・・メッキ層、6・・・コ
ーティング層、6a・・・有機ケイ素重合体、6b・・
・マイカ粉末、6c・・・ガラス粉末、6d・・・炭化
ケイ素粉末。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is an external perspective view showing a heat exchanger for a conventional instantaneous water heater, and FIG. 2 is a sectional view of a main part of a heat exchanger according to an embodiment of the present invention. 4... Copper heat transfer member, 5... Plating layer, 6... Coating layer, 6a... Organosilicon polymer, 6b...
- Mica powder, 6c...Glass powder, 6d...Silicon carbide powder. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 銅製伝熱部材表面にニッケル、鉛、アルミニウムのいず
れか1種を主成分とした金属からなるメッキ層を形成し
、さらに前記メッキ層上にポリボロシロキサンを主成分
とする有機ケイ素重合体をバインダーとし、前記バイン
ダーにマイカ粉末、ガラス粉末、炭化ケイ素粉末の無機
充てん材を分散混合した塗料でコーティング層を形成し
た熱交換器。
A plating layer made of a metal mainly composed of one of nickel, lead, and aluminum is formed on the surface of the copper heat transfer member, and an organosilicon polymer mainly composed of polyborosiloxane is further applied as a binder on the plating layer. A heat exchanger in which a coating layer is formed with a paint obtained by dispersing and mixing inorganic fillers such as mica powder, glass powder, and silicon carbide powder into the binder.
JP18788483A 1983-10-06 1983-10-06 Heat exchanger Granted JPS6080055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18788483A JPS6080055A (en) 1983-10-06 1983-10-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18788483A JPS6080055A (en) 1983-10-06 1983-10-06 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS6080055A true JPS6080055A (en) 1985-05-07
JPS6345025B2 JPS6345025B2 (en) 1988-09-07

Family

ID=16213882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18788483A Granted JPS6080055A (en) 1983-10-06 1983-10-06 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6080055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088465A1 (en) * 2007-01-17 2008-07-24 Dow Corning Corporation Wear resistant materials in the direct process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088465A1 (en) * 2007-01-17 2008-07-24 Dow Corning Corporation Wear resistant materials in the direct process
JP2010516990A (en) * 2007-01-17 2010-05-20 ダウ・コーニング・コーポレイション Wear resistant materials in the direct process

Also Published As

Publication number Publication date
JPS6345025B2 (en) 1988-09-07

Similar Documents

Publication Publication Date Title
WO2005118912A1 (en) Method for attaching metal powder to a heat transfer surface and the heat transfer surface
JPS6080055A (en) Heat exchanger
JPS60129552A (en) Heat exchanger
JPS6057152A (en) Heat exchanger
JPS60240956A (en) Heat exchanger
JPS604755A (en) Heat exchanger
JPS60164168A (en) Heat exchanger
JPS59229200A (en) Heat exchanger
JPS6020049A (en) Heat exchanger
JPH0282095A (en) Heat exchanger
JPS59200153A (en) Heat exchanger
JPS60213757A (en) Heat exchanger
JPH0133504B2 (en)
JPH02122199A (en) Heat exchanger
JPH02101396A (en) Heat exchanger
JP2006027919A (en) Heat resistant coating material, and insulating material using the same
JPS59199588A (en) Manufacture of infrared radiator
JPS60251186A (en) Heat resistant sintered body with ceramic infrared high effeciency radiation layer
JPS6015467A (en) Organic matter decomposing film
JPS6020048A (en) Heat exchanger
JPH02227246A (en) Heat exchanger
JPS60153973A (en) Preparation of heat exchanger for heating water
JPS58123096A (en) Heat exchanger
CN113446592B (en) Coating with multilayer structure for boiler heating surface
JPS5864498A (en) Surface treating material for use in manufacturing heat exchanger