JPS6079641A - Gas electric discharge panel - Google Patents

Gas electric discharge panel

Info

Publication number
JPS6079641A
JPS6079641A JP58186628A JP18662883A JPS6079641A JP S6079641 A JPS6079641 A JP S6079641A JP 58186628 A JP58186628 A JP 58186628A JP 18662883 A JP18662883 A JP 18662883A JP S6079641 A JPS6079641 A JP S6079641A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
float
gas discharge
discharge panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58186628A
Other languages
Japanese (ja)
Other versions
JPS6323611B2 (en
Inventor
Kenji Horio
堀尾 研二
Akira Otsuka
晃 大塚
Takeshi Tanioka
毅 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58186628A priority Critical patent/JPS6079641A/en
Publication of JPS6079641A publication Critical patent/JPS6079641A/en
Publication of JPS6323611B2 publication Critical patent/JPS6323611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/30Floating electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE:To simplify the positioning of electrodes in an AC-type gas discharge panel without forming the electrodes to multiple electrodes at the indicator section, by extending float electrodes in the gas discharge panel and by capacitively coupling them to drive electrodes at the extended portion of the floated electrodes. CONSTITUTION:Crossover side drive electrodes 23 and a short side drive electrode 24 are formed at the peripheries of a glass substrate 21 so that they extend to Y-axis direction, and float electrodes 25 are extended so that their extended portions 25a, 25b oppose to the drive electrodes 23, 24 respectively. On the other hand, Y-axis direction electrodes 30 are formed on a glass substrate 22 and the substrates 21, 22 are arranged so that electrodes on them orthogonally oppose, intermediated by a gap 33 sealed up with a mixed gas mainly composed of neon gas, and all these components form an AC-type gas discharge panel. Therefore, the float electrodes 25 obtain electrostatic capacity at their extended portions 25a, 25b, so that the structure and positioning of the electrodes are much simplified, eliminating the necessity of forming the electrodes to multiple electrodes at the indicator section.

Description

【発明の詳細な説明】 発明の技術分野 本発明はAC形ガス放電パネルに係υ、特にフロート電
極を有しパネルの周辺部にクロスオーバ側駆動電極及び
ショート側駆動電極を形成して多重駆動するAC形ガス
放電パネルの電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an AC type gas discharge panel, in particular, it has a float electrode and a crossover side drive electrode and a short side drive electrode are formed on the periphery of the panel to achieve multiple driving. The present invention relates to an electrode structure of an AC type gas discharge panel.

技術の背景 複数のX軸方向電極とそれに対向し直交するY軸方向電
極とをマトリックス状に選択して多重駆動し、電極間に
存在する電気光学効果性物質例えばネオンガスを主体と
する混合ガスを励起させその発光等によシ表示を行うA
C形ガス放電パネルの表示容量全増大させるためには、
X軸方向及びY軸方向の電極数を増加する必要がある。
Background of the technology A plurality of X-axis direction electrodes and Y-axis direction electrodes facing and perpendicular to the X-axis direction electrodes are selected and multi-driven in a matrix, and an electro-optic effective substance present between the electrodes, such as a mixed gas mainly composed of neon gas, is A that displays by excitation and emitted light, etc.
In order to increase the total display capacity of the C-type gas discharge panel,
It is necessary to increase the number of electrodes in the X-axis direction and the Y-axis direction.

従来技術と問題点 この種のガス放電パネルの衣示容量を増大させる場合、
上述のように各方向の電極数が増加し、これに伴なって
駆動回路数が増加する。
Prior art and problems When increasing the apparent capacity of this type of gas discharge panel,
As described above, the number of electrodes in each direction increases, and the number of drive circuits increases accordingly.

この問題を解決するものとして、第1図に示すガス放電
パネルが本出願人によシ既に提案されている。なお、第
1図はガス放電パネルの一部分の断面を示している。
As a solution to this problem, a gas discharge panel shown in FIG. 1 has already been proposed by the applicant. Note that FIG. 1 shows a cross section of a portion of the gas discharge panel.

このガス放電パネル1は、次のように構成されている。This gas discharge panel 1 is constructed as follows.

2.3はガラス基板で、ガラス基板2上には、紙面と垂
直なX軸方向電極として複数の主電極4が所定の間隔を
保って平行に形成され、該6主電極4の両側には、制御
電極5が所定の間隔、例えば数μmの間隔を保って形成
されている。6はこれらの電極を覆う絶縁層で、該絶縁
層6内にはこれらの電極上に対向するフロート電極7が
埋設されている。絶縁層60表面には保護層8が形成さ
れている。また、カラス基板3上には、複数のY軸方向
(図の左右方向)電極9が所定の間隔を保って平行に形
成され、その上には透明絶縁層10 、保護層11が順
次形成されている。そして、これら2つのガラス基板2
.3をそれぞれ保護層8,11が所定の間隔を介し対向
しかつ主電極12とY電極9が直交するように一体化す
るとともに、☆保護層間の間隙n内に電気光学効果性物
質1例えばネオンガスを主体とする混合ガスを封入して
カス放電パネル1が構成される。
2.3 is a glass substrate, on the glass substrate 2, a plurality of main electrodes 4 are formed in parallel with a predetermined interval as electrodes in the X-axis direction perpendicular to the paper surface, and on both sides of the 6 main electrodes 4. , control electrodes 5 are formed at predetermined intervals, for example, at intervals of several μm. Reference numeral 6 denotes an insulating layer covering these electrodes, and a float electrode 7 facing above these electrodes is buried in the insulating layer 6. A protective layer 8 is formed on the surface of the insulating layer 60. Further, on the glass substrate 3, a plurality of Y-axis direction (horizontal direction in the figure) electrodes 9 are formed in parallel with a predetermined interval, and a transparent insulating layer 10 and a protective layer 11 are sequentially formed on the electrodes 9. ing. And these two glass substrates 2
.. 3 are integrated so that the protective layers 8 and 11 face each other with a predetermined gap between them, and the main electrode 12 and the Y electrode 9 are orthogonal to each other, and an electro-optic effective substance 1 such as neon gas is placed in the gap n between the protective layers. The waste discharge panel 1 is constructed by filling a mixed gas mainly consisting of:

第2図は、上述の構成のカス放電パネルにおいて、(X
軸方向: 9)X(Y軸方向:9)=81の表示を行う
場合の主電極群4+、4+、4gと制御電極群51,5
2,511の配置を示したものである。図中、鎖線で示
す71゜72、・・・、79はフロート電極を示してお
シ、Y電極は図示していない。主電極群41.42.4
+lは、それぞれ3本の主電極4よシなる櫛歯状電極構
造をなしており、それぞれ独立して一端が電気的に接続
されて一体として同電位になっている。この接続部はシ
ョート側駆動電極に相当するもので、パネルの一方の周
辺部に形成されている。一方、制御電極群51,5i、
5gも、それぞれ6主電極40両側の制御電極5を図示
のように接続してなる櫛歯状電極構造をなしておシ、そ
れぞれ独立して一端が電気的に接続されて同電位になっ
ている。この接続部はクロスオーバ側駆動電極に相当す
るもので、パネルの他方の周辺部(ショート側駆動電極
形成周辺部と対向する周辺部)に形成されている。
FIG. 2 shows that (X
Axial direction: 9) Main electrode groups 4+, 4+, 4g and control electrode groups 51, 5 when displaying X (Y-axis direction: 9) = 81
This shows the arrangement of 2,511. In the figure, the dashed lines 71, 72, . . . , 79 indicate float electrodes, and the Y electrodes are not shown. Main electrode group 41.42.4
+l has a comb-like electrode structure consisting of three main electrodes 4, each of which is electrically connected at one end and has the same potential as a unit. This connection portion corresponds to the short side drive electrode and is formed at one peripheral portion of the panel. On the other hand, control electrode groups 51, 5i,
5g also has a comb-shaped electrode structure in which six main electrodes 40 and control electrodes 5 on both sides are connected as shown in the figure, and one end of each is electrically connected independently to have the same potential. There is. This connection portion corresponds to the crossover side drive electrode and is formed on the other peripheral portion of the panel (the peripheral portion opposite to the short side drive electrode forming peripheral portion).

フロート電極7は、主電極4.制御電極5と所定の静電
容量C?4.C75k持つように設けられている。従っ
て、主電極4に電圧va r制御電極5に電圧VBを印
加した場合、フロート電極7の電位■、は路次式の値に
なる。
The float electrode 7 is connected to the main electrode 4. Control electrode 5 and predetermined capacitance C? 4. It is designed to carry C75k. Therefore, when the voltage var is applied to the main electrode 4 and the voltage VB is applied to the control electrode 5, the potential ■ of the float electrode 7 becomes a value according to the following equation.

すなわち、フロート電極7の電位■5を、主電極の電圧
Vz、制御電極の電圧■3によシ変化させることができ
る。いま簡単にするためにcya=c’ysとし、v8
の最大値とv8の最大値を同じVとした場合、v8とv
2の値によシ■6は次のように変化する。
That is, the potential 5 of the float electrode 7 can be changed depending on the voltage Vz of the main electrode and the voltage 3 of the control electrode. For simplicity, let cya=c'ys and v8
If the maximum value of and the maximum value of v8 are the same V, then v8 and v
Depending on the value of 2, 6 changes as follows.

Vg = 0 * Vs = 0のとき、v5−OVs
 =V 、VB = 0 (D (!:き、V3=V/
2v2=0.Vs−■のとき、V、=V/2V* −V
 t Va ”’V (Dとき、Vs = Vこの例の
関係を第2図について見ると、主電極群41,42.4
8と制御電極群5 t * 52 + 5 gに印力口
される電圧によシ、フロート電極71,7g+・・・7
9の電位は上記のいずれかになる。例えに1主電極群4
1に電圧■が印加され制御電極群51に電圧Vが印加さ
れた場合、フロート電極71の電圧が■、フロート電極
74.7?の電圧が■/2、その他の電圧は0になる。
When Vg = 0 * Vs = 0, v5 - OVs
=V, VB = 0 (D (!:ki, V3=V/
2v2=0. When Vs-■, V, =V/2V*-V
t Va "'V (When D, Vs = V
8 and control electrode group 5 t*52+5g, float electrodes 71, 7g+...7
The potential of 9 is one of the above. For example, 1 main electrode group 4
When the voltage ■ is applied to the control electrode group 51 and the voltage V is applied to the control electrode group 51, the voltage of the float electrode 71 becomes ■, and the float electrode 74.7? The voltage at is /2, and the other voltages are 0.

ここで、制御電極群51,52,511と主電極群4 
l、4 m +48とはマトリックス状に配置されてお
シ、Cの組合せによシ、フロート電極の電位がVになる
位置は1つに限られている。従って、これらの電極群の
選択駆動により電位がVになるフロー)!極を1つ選択
することができる。そして、選択された1つのフロート
電極とそれに直交するY電極の1つの交点において、間
隙12に封入された放電圧ガスが放電される。なお、フ
ロート電極の電位−7EV/2または0である部分と交
叉する部分は、放電が停止するかまたは前の消去状態を
維持するように設定しておく。
Here, the control electrode groups 51, 52, 511 and the main electrode group 4
1, 4 m +48 are arranged in a matrix, and depending on the combination of C and C, there is only one position where the potential of the float electrode becomes V. Therefore, the potential becomes V by selectively driving these electrode groups)! One pole can be selected. Then, the discharge voltage gas sealed in the gap 12 is discharged at the intersection of the selected one float electrode and the Y electrode orthogonal thereto. Note that a portion where the potential of the float electrode intersects with a portion where the potential is -7EV/2 or 0 is set so that the discharge stops or the previous erased state is maintained.

この第2図で例示した(X軸方向: 9 )X(Y軸方
向:9)の表示を行う場合、通常のガス放電パネルでは
X電極の駆動回路として9個、Y電極の駆動回路として
9個、合計18個の駆動回路が必要であるのに対し、7
0−ト電極を用いた第2図の場合は、X電極の駆動回路
として主電極用及び制御電極用にそれぞれ3個、Y電極
の駆動回路として9個、合計15個と減少する。
When displaying (X-axis direction: 9)X (Y-axis direction: 9) as shown in FIG. 2, a normal gas discharge panel uses 9 X electrode drive circuits and 9 Y electrode drive circuits. A total of 18 drive circuits are required, whereas 7 drive circuits are required.
In the case of FIG. 2 in which the 0-toe electrode is used, the number of drive circuits for the X electrode is reduced to 3 each for the main electrode and the control electrode, and 9 for the Y electrode, resulting in a total of 15 drive circuits.

この例示に明らかなように、パネルの周辺部にクロスオ
ーバ電極及びショート電極を形成して多重駆動を行う従
来のフロート電極方式のAC形ガス放電パネルによれば
、駆動回路を減小することが可能である。
As is clear from this example, with the conventional float electrode AC type gas discharge panel that performs multiple driving by forming crossover electrodes and short electrodes on the periphery of the panel, it is possible to reduce the number of drive circuits. It is possible.

しかしながら、この場合、表示部分にフロート電極を下
の電極(主電極、制御電極)に対向させて形成するため
に、該フロート電極と下の電極とを高精度で位置合せす
る必要があり、またクロスオーバ電極の形成にも高度な
技術を必要とするという欠点があった。
However, in this case, since the float electrode is formed in the display area so as to face the lower electrode (main electrode, control electrode), it is necessary to align the float electrode and the lower electrode with high precision. The disadvantage is that the formation of the crossover electrode also requires advanced technology.

発明の目的 本発明は上述の欠点を解決するためのもので、フロート
電極の位置合せを容易に行うことのできる簡単な電極構
造のガス放電パネルを提供することを目的としている。
OBJECTS OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks, and it is an object of the present invention to provide a gas discharge panel with a simple electrode structure in which the float electrodes can be easily aligned.

発明の構成 本発明では、フロート電極をクロスオーバ側駆動電極形
成部及びショート電極形成部まで延長し、該延長部にお
いて駆動電極と容量結合させることにより上記目的の達
成を図っている。
Structure of the Invention In the present invention, the above object is achieved by extending the float electrode to the crossover side drive electrode formation part and the short electrode formation part, and capacitively coupling the float electrode to the drive electrode at the extension part.

発明の実施例 以下、第3図乃至第5図に関連して本発明の詳細な説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to FIGS. 3 to 5.

第3図及び第4図に第1の実施例を示す。A first embodiment is shown in FIGS. 3 and 4.

第3図は本発明に係るガス放電パネルの正面断面図で、
図中、21 、22はガラス基板である。
FIG. 3 is a front sectional view of a gas discharge panel according to the present invention.
In the figure, 21 and 22 are glass substrates.

ガラス基板21上の周辺部には、Y軸方向(図の紙面と
垂直方向)に伸びるクロスオーバ側駆動電極23とショ
ート側駆動電極24とが形成され、該ガラス基板21上
にX軸方向(図の左右方向)に形成されたフロート電極
25はパネル周辺部まで延長されて該延長部25&、2
5bが各駆動電極と絶縁層26゜保護層29が順次形成
されている。
A crossover-side drive electrode 23 and a short-side drive electrode 24 extending in the Y-axis direction (perpendicular to the plane of the drawing) are formed on the glass substrate 21 at the periphery. The float electrode 25 formed in the horizontal direction (in the left and right direction in the figure) is extended to the periphery of the panel.
5b, each drive electrode, an insulating layer 26, and a protective layer 29 are sequentially formed.

一方、ガラス基板22上にはY軸方向電極30が形成さ
れ、その上には絶縁層31.保護層32が順次形成され
ている。
On the other hand, a Y-axis direction electrode 30 is formed on the glass substrate 22, and an insulating layer 31. A protective layer 32 is sequentially formed.

これらの2枚のガラス基板21 、22は、それぞれの
基板上の電極が直交しかつそれぞれの基板上の保護層同
士が間隙33(放電空間に相当)を介し対向するように
配置され、シールあによシ封止されている。各駆動電極
23 、24 、これらに対向するフロート電極5の延
長部25a+25tz及び絶縁層26゜27は、シール
あの外側(パネル周辺部)に形成されている。間隙間に
はネオンを主体とする混合ガスが封入されている。
These two glass substrates 21 and 22 are arranged so that the electrodes on each substrate are perpendicular to each other and the protective layers on each substrate face each other with a gap 33 (corresponding to a discharge space) in between, and are sealed. It is sealed tightly. The drive electrodes 23, 24, the extensions 25a+25tz of the float electrode 5 facing them, and the insulating layers 26.degree. 27 are formed outside the seal (periphery of the panel). The gap is filled with a gas mixture mainly consisting of neon.

このように、フロート電極25は、パネル周辺部まで延
長され、表示部以外の該延長部25B、25bが各駆動
電極23 、24と対向して結合の静電容量を得るよう
になっているため、第4図に示すように、該延長部25
a * 25bfc fc示部よシも大面積として位置
合せを容易化することができる。なお、第4図は、16
ラインのフロート電極25に対し、ショート側では端か
ら4本ずつの4グループ全構成して該各グループの延長
部25 bをそれぞれ独立した共通のショート側電極2
4に対向させるとともに、クロスオーバ側では4本おき
に4本ずつの4グループを構成して該各グループの延長
部25aをそれぞれ独立して並設された共通のクロスオ
ーバ側電極23に対向させた例を示している。
In this way, the float electrode 25 is extended to the periphery of the panel, and the extended parts 25B and 25b other than the display part face each of the drive electrodes 23 and 24 to obtain a coupling capacitance. , as shown in FIG.
The a*25bfc fc display section also has a large area to facilitate alignment. In addition, Fig. 4 shows 16
For the float electrode 25 of the line, on the short side, all 4 groups of 4 electrodes are formed from the end, and the extension part 25 b of each group is connected to an independent common short side electrode 2.
4, and on the crossover side, four groups of four electrodes are formed every fourth, and the extension portions 25a of each group are arranged to face the common crossover side electrode 23, which is arranged in parallel independently. An example is shown below.

本例の第3図には、一方のガラス基板のみにフロート電
極を形成して多重化した例を示したが、両方のガラス基
板ともフロート電極全形成して多重化することが可能で
ある。この場合には、X軸方向とY@方向のドライバ数
62Ji、2J’i(N。
Although FIG. 3 of this example shows an example in which float electrodes are formed on only one glass substrate for multiplexing, it is possible to perform multiplexing by forming all float electrodes on both glass substrates. In this case, the number of drivers in the X-axis direction and Y@ direction is 62Ji, 2J'i (N.

MはX軸方向、Y軸方向の表示電極数)まで少なくする
ことができるので、駆動回路の規模を太幅に縮小できる
Since M can be reduced to (the number of display electrodes in the X-axis direction and Y-axis direction), the scale of the drive circuit can be significantly reduced.

第5図に第2の実施例を示す。FIG. 5 shows a second embodiment.

本例の場合は、フロート電極の延長部を表面部と同一平
面上に形成(延長部を含むフロート電極全体をガラス基
板上に直接形成)シ、このことによシフロート電他延長
部、駆動電極間の絶縁層とフロート電極表示部上の絶縁
層とを同時に形成できるようにして工程の簡略化を図っ
たものである。
In this example, the extension part of the float electrode is formed on the same plane as the surface part (the entire float electrode including the extension part is formed directly on the glass substrate). The process is simplified by allowing the insulating layer between the two and the insulating layer on the float electrode display section to be formed at the same time.

そのだめの具体的構成は第5図に示す通)で、前例と回
−構成の部材には前例と同一符号を付している。図中、
41はフロー)・電極、42は絶縁層で、フロート電極
41は延長部41a、41bも含めてガラス基板21上
に平面状に形成され、絶縁層42はフロ−ト電極41を
覆って形成さilている。
The concrete structure of the device is as shown in FIG. 5), and the same reference numerals as in the previous example are given to the members of the circuit structure. In the figure,
41 is a flow electrode, 42 is an insulating layer, the float electrode 41 is formed in a planar shape on the glass substrate 21 including the extension parts 41a and 41b, and the insulating layer 42 is formed to cover the float electrode 41. I'm here.

本図と第3図の対比より明らかなように、本例の場合は
、フロート電極41が延長部41 a + 4113も
含めてガラス基板21上に平面状に形成されているがた
めに、前例では各駆動電極上及びフロート1L極表示部
上に別々に形成していた絶縁層を絶t1層42とし−C
1つにまとめて形成することができ、前例と同材の効果
の他に、絶縁層形成工程を簡略化できるという効果を併
せ奏することが可能である。
As is clear from the comparison between this figure and FIG. In this case, the insulating layer formed separately on each drive electrode and the float 1L electrode display section is replaced with an insulating layer 42 -C
They can be formed in one piece, and in addition to the effect of using the same material as the previous example, it is possible to have the effect of simplifying the insulating layer forming process.

発明の効果 以上述べたように、本発明によれば、フロート電極をパ
ネル周辺部まで延長し該延長部において駆動電極に容量
結合させるようになっておシ、表示部で多重電極を形成
しないため、電極の構造。
Effects of the Invention As described above, according to the present invention, the float electrode is extended to the peripheral part of the panel and capacitively coupled to the drive electrode at the extended part, and multiple electrodes are not formed in the display part. , structure of the electrode.

部で絶縁層を介し対向する上下電極でショート点を形成
する必要がないため、クロスオーバ電極の構造も簡単に
なる。そして、特にフロート電極を第5図のように構成
すれば、絶縁層の形成工程を簡略化することが可能であ
る。
Since there is no need to form a short point between the upper and lower electrodes that face each other with an insulating layer in between, the structure of the crossover electrode is also simplified. In particular, if the float electrode is configured as shown in FIG. 5, the process of forming the insulating layer can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフロート電極を有するガス放電パネルの
要部を示す断面図、第2図は同電極配置図、第3図乃至
第5図は本発明に係るガス放電ノ(ネルの実施例を示す
もので、第3図は第1の実施例のガス放電パネルの断面
図、第4図は同電極配置図、第5図は第2の実施例のガ
ス放電パネルの断面図である。 図中、21 、22はガラス基板、23はクロスオーバ
側駆動電極、24はショート側駆動電極、25 、41
はフロート電極、25a r25b 、41a 、41
bはフロート電極延長部、26 r 27 + 28 
+ 31 e 42は絶縁層、29 、32は保護層、
30はY軸方向電極、33は間隙、34はシール゛Cお
る。 第2図 第3図 第4図
FIG. 1 is a cross-sectional view showing the main parts of a conventional gas discharge panel having a float electrode, FIG. 2 is a layout diagram of the same electrode, and FIGS. 3 to 5 are examples of a gas discharge panel according to the present invention. 3 is a sectional view of the gas discharge panel of the first embodiment, FIG. 4 is a diagram of the electrode arrangement, and FIG. 5 is a sectional view of the gas discharge panel of the second embodiment. In the figure, 21 and 22 are glass substrates, 23 is a crossover side drive electrode, 24 is a short side drive electrode, 25 and 41
are float electrodes, 25a r25b, 41a, 41
b is the float electrode extension, 26 r 27 + 28
+ 31 e 42 is an insulating layer, 29 and 32 are protective layers,
30 is a Y-axis direction electrode, 33 is a gap, and 34 is a seal C. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 t フロート電極t−肩し、パネルの周辺部にクロスオ
ーバ側駆動電極及びショート側駆動電極を形成して多重
駆動するAC形ガス放電ノくネルにおいて、前記フロー
ト電極を、前記クロスオーツく側駆動電極形成部及び前
記ショート側駆動電極形成部まで延長し、該延長部にお
いて該各駆動電極と容量結合させてなシ、該フロート電
極の懺示部上には絶縁層が形成されたことを特徴とする
ガス放電パネル。 2 フロート電極を延長部も含めて平面状に形成し、該
フロート電極延長部、谷駆動電極間の絶縁層と、該フロ
ート電極の光示部上の絶縁層とを、該フロート電極を覆
って同一面に形成した特許請求の範囲第1項記載のガス
放電パネル。
[Scope of Claims] In an AC type gas discharge nozzle that carries out multiple driving by forming a cross-over side drive electrode and a short-side drive electrode on the periphery of the panel, the float electrode is An insulating layer extends to the cross-over side drive electrode forming part and the short side drive electrode forming part, and is capacitively coupled to each of the drive electrodes at the extension part, and an insulating layer is provided on the visible part of the float electrode. A gas discharge panel characterized in that: 2. The float electrode is formed into a planar shape including the extension part, and the insulating layer between the float electrode extension part and the valley drive electrode, and the insulating layer on the light display part of the float electrode are formed so as to cover the float electrode. The gas discharge panel according to claim 1, which is formed on the same surface.
JP58186628A 1983-10-05 1983-10-05 Gas electric discharge panel Granted JPS6079641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186628A JPS6079641A (en) 1983-10-05 1983-10-05 Gas electric discharge panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186628A JPS6079641A (en) 1983-10-05 1983-10-05 Gas electric discharge panel

Publications (2)

Publication Number Publication Date
JPS6079641A true JPS6079641A (en) 1985-05-07
JPS6323611B2 JPS6323611B2 (en) 1988-05-17

Family

ID=16191904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186628A Granted JPS6079641A (en) 1983-10-05 1983-10-05 Gas electric discharge panel

Country Status (1)

Country Link
JP (1) JPS6079641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173573A2 (en) * 1984-08-31 1986-03-05 Fujitsu Limited A gas discharge display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173573A2 (en) * 1984-08-31 1986-03-05 Fujitsu Limited A gas discharge display panel
EP0173573A3 (en) * 1984-08-31 1986-11-12 Fujitsu Limited A gas discharge display panel

Also Published As

Publication number Publication date
JPS6323611B2 (en) 1988-05-17

Similar Documents

Publication Publication Date Title
CN102156367B (en) Array substrate, liquid crystal panel and liquid crystal displayer
KR100218584B1 (en) Liquid crystal display device and driving method thereof
KR950014432B1 (en) Display device
KR101501497B1 (en) Liquid crystal display
US5841232A (en) AC plasma display panel
CN106873226A (en) A kind of touch-control display panel
CN111308802B (en) Array substrate and display panel
JPH02220330A (en) Gas discharge panel and method of driving same
US3716290A (en) Liquid-crystal display device
CN107589870A (en) A kind of touch-control display panel and touch control display apparatus
JP2000002871A (en) Plasma address liquid crystal panel and channel member thereof
KR880008674A (en) Matrix display device
GB2151832A (en) Electro optic flat panel display
KR900001741B1 (en) Gas discharge display pannel having capacitively coupled,multiplex wiring for display electrodes
JPH0219450B2 (en)
JPS6079641A (en) Gas electric discharge panel
JPH1020338A (en) Liquid crystal display device
CN206057760U (en) A kind of liquid crystal grating, 3D display floaters and display device
CN110383366A (en) Active-matrix substrate and display panel
US4547042A (en) Liquid crystal display with electrode shielding another electrode
JP2003098540A (en) Display device
JPH01311540A (en) Plasma display panel having three electrodes for one picture element
KR20000073837A (en) Plasma display panel
JPS6359222B2 (en)
JPH0635001A (en) Active matrix liquid crystal display device