JPS6079636A - Thermoelectric field emission cathode and applied device - Google Patents

Thermoelectric field emission cathode and applied device

Info

Publication number
JPS6079636A
JPS6079636A JP58186728A JP18672883A JPS6079636A JP S6079636 A JPS6079636 A JP S6079636A JP 58186728 A JP58186728 A JP 58186728A JP 18672883 A JP18672883 A JP 18672883A JP S6079636 A JPS6079636 A JP S6079636A
Authority
JP
Japan
Prior art keywords
field emission
tip
large needle
needle
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58186728A
Other languages
Japanese (ja)
Other versions
JPH0782803B2 (en
Inventor
Yukio Honda
幸雄 本多
Shigeyuki Hosoki
茂行 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18672883A priority Critical patent/JPH0782803B2/en
Publication of JPS6079636A publication Critical patent/JPS6079636A/en
Publication of JPH0782803B2 publication Critical patent/JPH0782803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Abstract

PURPOSE:To obtain a plurality of electric field emission beams having high luminance and high stability simultaneously from a single electric field emission chip, by taking out a plurality of electric field emission beams with restricted, radiant angle of W(100) plane from a single sharp needle. CONSTITUTION:A wire of W having axial bearings <110> of such as 0.1- 0.15mm. in diameter is spot welded to the top end of a heating element 11 of W formed to V-shape, and the tip of the wire is sharp-pointed by electrolytic grinding by using such as aqueous solution of KOH to make a sharp needle 12. Subsequently, Ti is adhered to the V-shaped tip of the heating element 11 and a Ti supply source 13 is formed by passing a heating current to the heating element 11 in a vacuum. At the tip of the sharp needle 12, atmospheric oxygen is taken in and an absorption layer of Ti and oxygen is formed thereon. When a high voltage is applied to an opposing anode 14 in this condition, the work function on the (100) crystal plane of the sharp needle 12 of W having axial bearings of <100> decreases, and two electric field emission beams 15a, 15b having high luminance with restricted radiant angles to bearings of <100> are obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電界放射陰極に係り、特に高輝度で高安定な
複数個の電子線源を同時に得るのに好適な熱電界放射陰
極(’l’hermal pield En1issi
onCath□de 以下TFEカソードと言う)に関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a field emission cathode, and particularly to a thermal field emission cathode ('l) suitable for simultaneously obtaining a plurality of high-brightness and highly stable electron beam sources. 'hermal pield En1issi
onCath□de (hereinafter referred to as TFE cathode).

〔発明の背景〕[Background of the invention]

電子線源としては、高温に熱せられた金属等の表面から
放出される熱電子を利用する熱隘極と、先端の曲率半径
が杓子オングストロームの針状チップに強電界を印加し
て、トンネル効果によシ陰極表面から放出される電子を
利用する電界放射陰極に大別できる。熱陰極としては、
低温動作で高電流密度動作可能なバリウム・ストロチウ
ム酸化物陰極やバリウム・ディスペンサ陰極が電子管用
電子線源として知られている。また、近年、高輝度電子
線源として六硼化ランタンが実用化されてきたが、これ
ら熱陰極の輝度は鳥々10 フh/c4 S r程度で
ある。一方、電界放射は大別して、チップ温度が室温近
傍である冷電界放射(Co ld pieldEmis
sion、以下CFEと言う)とTFEがある。
As an electron beam source, there is a thermal pole that uses thermionic electrons emitted from the surface of a metal etc. heated to a high temperature, and a tunnel effect that applies a strong electric field to a needle-shaped tip with a radius of curvature of a ladle angstrom. Field emission cathodes can be broadly divided into field emission cathodes that utilize electrons emitted from the cathode surface. As a hot cathode,
Barium-strotium oxide cathodes and barium dispenser cathodes, which can operate at low temperatures and at high current densities, are known as electron beam sources for electron tubes. Furthermore, in recent years, lanthanum hexaboride has been put into practical use as a high-brightness electron beam source, but the brightness of these hot cathodes is about 10 h/c4 Sr. On the other hand, field radiation can be roughly divided into cold field radiation where the chip temperature is near room temperature.
sion (hereinafter referred to as CFE) and TFE.

CFEを安定に動作させるには、エミッタ先端へのガス
吸着を減らし、かつイオン衝撃によるエミッタのダメー
ジをなくすために、エミッタのある空間は10−I0’
L’orr以下の超高真空に保つことが要求され、安定
に動作できるエミッション電流は10μ八以下で心る。
In order to operate CFE stably, the space where the emitter is located must be 10-I0' in order to reduce gas adsorption to the emitter tip and eliminate damage to the emitter due to ion bombardment.
It is required to maintain an ultra-high vacuum of less than L'orr, and the emission current for stable operation should be less than 10μ8.

また輝度は約10 ’A/c+MS rである。一方、
TFEは、エミッタ先端を熱電子が発生しない程度の温
度範囲で加熱した状態で、強電界を印加してエミッショ
ンを引出す方法でちる。特に、Wolfe ら(U S
 Patent 3,814,975)により提案され
た手法によれば、10−7Torr程度の真空中でも高
輝度で安定なエミッション電流を得ることができる。す
なわち、10−7T□rr程度の02ガス雰囲気下で1
750〜18501ぐにエミッタを加熱し、かつ先端に
ジルコニウム(Zr)を吸着せしめると、エミッタ先端
ではZr0−Wなる吸着状態が形成され、w < t 
o o )面の仕事1夕J数は2.6〜2.8 e V
まで低下する。その結果、エミッタ先端からのエミッシ
ョン電流はW(100)面から選択的に大電流が得られ
る、いわゆるエミッション電流の角度分布制限が可能と
なる。同様の効果は、チタン(Tim、ハフニウム(H
f)。
Also, the brightness is about 10'A/c+MS r. on the other hand,
TFE is fired by heating the emitter tip to a temperature range that does not generate thermoelectrons, and then applying a strong electric field to draw out the emissions. In particular, Wolfe et al.
According to the method proposed in Patent No. 3,814,975), a stable emission current with high brightness can be obtained even in a vacuum of about 10 −7 Torr. That is, 1 in an 02 gas atmosphere of about 10-7T□rr.
When the emitter is heated between 750 and 18501 and zirconium (Zr) is adsorbed at the tip, an adsorption state of Zr0-W is formed at the emitter tip, and w < t.
o o ) surface work per night J number is 2.6 to 2.8 e V
decreases to As a result, a large emission current from the emitter tip can be selectively obtained from the W (100) plane, which is what is called the angular distribution restriction of the emission current. Similar effects can be seen in titanium (Tim), hafnium (H
f).

ニオブ(Nb)、)リウム(Tll)、マグネシウム(
Mg ) 、セリウム(Ce)でも得られる。特に、エ
ミッタへの吸着体としてTiを用いた場合、エミッタ温
度を1000〜1200t:’に低温化でき、酸素分圧
も〜10−9Torrで済む上に、傅度も10 ’ 〜
1010A/ crrl S rの高い性能を得ること
ができる。
Niobium (Nb), ) Lium (Tll), Magnesium (
It can also be obtained from Mg) and cerium (Ce). In particular, when Ti is used as an adsorbent for the emitter, the emitter temperature can be lowered to 1000 to 1200 t:', the oxygen partial pressure can be as low as 10-9 Torr, and the amplitude is 10' to 10'.
High performance of 1010A/crrl Sr can be obtained.

さて、電界放射陰極は、高輝度で放射電子のエネルギー
幅の広がシも小さく、高分解能の電子顕微鏡、走査電子
顕微鏡(SEM)、オージェ電子分析装置(AES)、
X−マイクロアナライザ(XMA)等の電子線源として
用いられている。
Now, field emission cathodes have high brightness and a small spread of the energy width of emitted electrons, and can be used in high-resolution electron microscopes, scanning electron microscopes (SEM), Auger electron analyzers (AES),
It is used as an electron beam source for X-micro analyzers (XMA) and the like.

特に、AESやXMA等の分析装置においては、高分解
能の像観察と分析の他に、分析感度を向上し、かつ分析
信号のS/N(信号対イイズ比)を向上するために電子
ビーム電流を増加して用いる要求がある。電子ビーム電
流を増加するには、電界放射電圧を増加したシ、電子光
学系の絞シ径を大きくする、すなわちビームスポットに
入射角を大きくするために、電子光学的な収差によシ第
1図に示したように、ビーム電流の増加と共にスボ′ッ
ト径が増大し、分解能が低下する。従って、例えば従来
のAESやXMA等では、分析試料表面の像観察におい
ては電子ビーム電流を低下して行い、また分析に際して
は分解能を犠牲にして電子ビーム電流を増加して行って
おシ、像観察と分析のたびに電子光学系の調整を必要と
していた。
In particular, in analyzers such as AES and XMA, in addition to high-resolution image observation and analysis, electron beam current is There is a demand for increased use of . In order to increase the electron beam current, it is necessary to increase the field emission voltage, and to increase the aperture diameter of the electron optical system, that is, to increase the angle of incidence on the beam spot, it is necessary to As shown in the figure, as the beam current increases, the sbot diameter increases and the resolution decreases. Therefore, in conventional AES and XMA, for example, the electron beam current is lowered to observe the image of the surface of the analysis sample, and the electron beam current is increased during analysis at the expense of resolution. It was necessary to adjust the electron optical system each time observation and analysis were performed.

また、従来電子管等において、同時に複数個、例えば3
個の電子線源を必要とする場合、第2図に示すように、
各々分離された3個のカン、−ドlを配置して用いてい
る。今、電子管においてカラー表示する場合について説
明する。電子線源としては、赤(几)、緑CG)、i%
’(E)色に各々対応する3個の個別のカソード1を用
いる。カソードlから発生した電子は制御電極2の孔を
通過し、この電子ビーム3は、収束レンズ4によって収
束サレスクリーン5の上に投影される。スクリーン上に
は、各々几、G、Bに発光する蛍光体が塗布されている
。■、G、83個の電子ビーム3の強度はカソードエの
電位を制御することによって変えられ、これに対応して
スクリーン5上の蛍光体の発光量が変化して様々な色を
発する。また、電子ビーム3は偏向コイル6にょシ、任
意の場所に移動できる。
In addition, in conventional electron tubes, etc., multiple, for example, 3
As shown in Figure 2, if you need several electron beam sources,
Three separate cans are arranged and used. Now, the case of color display in an electron tube will be explained. As an electron beam source, red (几), green CG), i%
'(E) Three individual cathodes 1 are used, each corresponding to a color. Electrons generated from the cathode 1 pass through a hole in the control electrode 2, and this electron beam 3 is projected onto a converging screen 5 by a converging lens 4. The screen is coated with phosphors that emit light in the colors B, G, and B, respectively. The intensity of the 83 electron beams 3 is changed by controlling the potential of the cathode, and the amount of light emitted by the phosphors on the screen 5 changes accordingly, emitting various colors. Furthermore, the electron beam 3 can be moved to any desired location by means of the deflection coil 6.

さて、近年電子管等の高精細化に伴ない、低消費電力で
かつ従来の電子線源(主として酸化物陰極)に比べて5
倍以上も商い高輝度電子線源がめられている。しかし、
これら要求を満たす実用的な電子線源がこれまでなかっ
た。
Now, in recent years, with the advancement of high-definition electron tubes, etc., it has become possible to use a
High-brightness electron beam sources are now being sought after. but,
Until now, there has been no practical electron beam source that meets these requirements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、単一の電界放射チップから、同時に複
数個の高輝度で高安定な電界放射ビームを得ることので
きる熱電界放射陰極及びこの陰極を用いた電子線装置を
提供することにある。
An object of the present invention is to provide a thermal field emission cathode that can simultaneously obtain a plurality of high-intensity and highly stable field emission beams from a single field emission chip, and an electron beam device using this cathode. be.

〔発明の概要〕[Summary of the invention]

本発明の電界放射陰極は、先端が鋭く尖った大剣と、大
剣を加熱する発熱体と、大針に吸着させる吸着体及びこ
れを貯える補給源から構成され、大針の先端において、
吸着体と酸素の単原子吸着層を形成して、例えばW (
100)面の仕事関数を下げて、放射角制限をした電子
放射を行うため少鎗の酸素を必要とする。従来、電子顕
微鏡などの理化学機器においては、単一の光源があれば
充分であるから、尖釧として例えば軸方位(100)(
7)直ff10.1〜0.15 ntrnの単結晶タン
グステン(W)を用いる。また、発熱体は、電気抵抗が
大きく、高温強度が高く、かつ補給源との反応性が低い
ことが望ましい。主として、タングステン(W)。
The field emission cathode of the present invention is composed of a large sword with a sharp tip, a heating element that heats the large sword, an adsorbent that is attracted to the large needle, and a supply source that stores the same, and at the tip of the large needle,
By forming a monatomic adsorption layer of adsorbent and oxygen, for example, W (
100) A small amount of oxygen is required to lower the work function of the surface and emit electrons with a limited radiation angle. Conventionally, in physical and chemical instruments such as electron microscopes, it is sufficient to have a single light source, so for example, the axis direction (100) (
7) Single crystal tungsten (W) with a direct ff of 10.1 to 0.15 ntrn is used. Further, it is desirable that the heating element has high electrical resistance, high high temperature strength, and low reactivity with the supply source. Mainly tungsten (W).

モリブデン(Mol、レニウム(lLe)、 タンタル
(Ta)及びこれらの合金を用いる。補給源としては、
Zr+ Ti、I4f、Nb、Th+ Mg及びこれら
の酸化物を用いる。前記したように、従来の理化学機器
用の電子線源としては、単一の電子線源で良いため軸方
位<100>のW単結晶の大針で要求を満していた。
Molybdenum (Mol, rhenium (lLe), tantalum (Ta), and alloys thereof are used. As a supply source,
Zr+ Ti, I4f, Nb, Th+ Mg and oxides thereof are used. As described above, since a single electron beam source is sufficient as a conventional electron beam source for physical and chemical equipment, a large needle made of W single crystal with an axial orientation of <100> satisfies the requirements.

一方、本発明では同時に複数個、例えば3個の電子線源
を提供し、高電流密度を得るのに容易な電子線装置を提
供することを目的としている。さて、第3図のタングス
テンの格子模型を参照すれば、軸方位W(111)の結
晶を大針として用いれば、各々近接して3つの(100
)而が三角状に配置される。今、軸方位W<111>の
大針12を用いて、電界放射を行わしめると、第4図の
ごとく、大針12の各々の結晶面に対応した電界放射像
lOが陽極14上に投影される。次に、例えば大針12
を約1ioot:’に加熱して、Ill i補給源13
よシ大針12の先端に補給し、大針12の先端部におい
てIf iと酸素の単原子吸着層を形成させると、W(
100)、(010)、(001)面の仕事関数が約2
.66−V(Wの仕事関数は約4、56 V )に低下
し、w(ioo)、(oio)。
On the other hand, an object of the present invention is to provide an electron beam device that can simultaneously provide a plurality of electron beam sources, for example, three electron beam sources, and easily obtain a high current density. Now, referring to the tungsten lattice model in Figure 3, if a crystal with an axial direction W (111) is used as a large needle, three (100
) are arranged in a triangular shape. Now, when electric field emission is performed using the large needle 12 with the axial direction W<111>, a field emission image lO corresponding to each crystal plane of the large needle 12 is projected onto the anode 14, as shown in FIG. be done. Next, for example, the large needle 12
Illi supply source 13 by heating to about 1ioot:'
When replenishing the tip of the large needle 12 and forming a monatomic adsorption layer of If i and oxygen at the tip of the large needle 12, W(
100), (010), and (001) planes have work functions of approximately 2.
.. 66-V (the work function of W is about 4,56 V), w(ioo), (oio).

(001)面から選択的に大きなエミッション電流が流
れ、3個の高輝度の電子線源を得ることができる。
A large emission current flows selectively from the (001) plane, making it possible to obtain three high-brightness electron beam sources.

また、大針として軸方位W<tto>のチップを用いれ
ば、同様に2個の高輝度の電子線源を得ることができる
Furthermore, if a tip with the axial direction W<tto> is used as the large needle, two high-intensity electron beam sources can be obtained in the same way.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によシ本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail by way of examples.

実施例1 本発明の多元の熱電界放射陰極を用いた電子線装置の一
実施例を第5図によシ説明する。まず、7字形に形成さ
れた直径0.1〜0.15mmのタングステン(W)製
発熱体11の先端に直径0.1〜0.1511O++の
例えば軸方位(110)のタングステ12を作製する。
Embodiment 1 An embodiment of an electron beam apparatus using a plurality of thermal field emission cathodes of the present invention will be described with reference to FIG. First, a tungsten (W) heating element 11 having a diameter of 0.1 to 0.15 mm and having a diameter of 0.1 to 0.1511 O++ and an axial direction (110), for example, is fabricated at the tip of a tungsten (W) heating element 11 formed in a figure 7 shape.

次に発熱体11のV字形の先端部にチタン(Ti)を付
着させ、真空中で発熱体11を通電加熱してIll、i
補給源13を形成し、大針12と発熱体重1及び補給源
13よ構成る熱電界放射陰極を作製する。この熱電界放
射陰極を10”9〜10−”l”orrの真空中で発熱
体iiを通電加熱し、補給源13と大針12を1000
〜1500Cに加熱すると、熱拡散により大針12の先
端まで補給源13からTiが供給される。大針12の先
端では雰囲気中の酸素を取り込み、Tlと酸素の吸着層
が形成される。この状態で対向する陽極14に高電圧を
印加すると、軸方位<110>のタングステン大針12
の(100)結晶面の仕事関数が低下して、く100〉
方位に放射角度制限された、高輝度の2つの電界放射電
子ビーム15a、15bを得ることができる。これら2
つの電子ビームisa、isbは各々の収束レンズ16
a、16bにより収束され、スリット17を通過して試
料面18上の一点に投影される。電子ビーム15a、1
5bは偏向コイル19を用いて試料18の表面を走査で
きる。また、電子ビーム15bの通路には偏向板20を
設けて、必要に応じて偏向電圧を0N−OFFして、電
子ビーム15bの試料20上への照射を0N−OFFす
ることができる。本構成の電子線装置をAESへ応用し
た例によシその動作を説明する。AESに応用する場合
、試料表面の2次電子像観察のために2次電子検出器2
1とオージェ電子を検出し、工設ける。まず、高分解能
のSEM像観察とAES像観察においては、偏向板20
を作用させて電子ビーム15bを遮断して、細く収束さ
れた電子ビーム15aのみを作用させて行う。また、A
ES分析においては、試料18に照射される電子ビーム
電流を増加することにより、検出されたオージェ電子信
号のS/Nも向上することが知られておシ、S/Hの良
い高感度のAES分析に際しては、偏向板20の作用を
停止し、電子ビーム15bを電子ビーム15Hのスポッ
トと同じ位置に照射することによって、試料18上の電
子ビーム電流を容易に増加させることができる。また、
電子ビーム15bの電流量は、スリット17の直径を任
意に選ぶことによって増減できる。すなわち、本構成の
電子線装置によれば、2つの電子ビームを効果的に利用
することによシ、高解像肛の像観察と分析、及び良好な
S/Nで高感度の分析を容易に行うことができる。
Next, titanium (Ti) is attached to the V-shaped tip of the heating element 11, and the heating element 11 is heated with electricity in a vacuum to
A replenishment source 13 is formed, and a thermal field emission cathode consisting of the large needle 12, the heating weight 1, and the replenishment source 13 is manufactured. This thermal field emission cathode is heated by applying electricity to the heating element ii in a vacuum of 10"9 to 10-"l"orr, and the supply source 13 and the large needle 12 are
When heated to ~1500C, Ti is supplied from the replenishment source 13 to the tip of the large needle 12 due to thermal diffusion. At the tip of the large needle 12, oxygen in the atmosphere is taken in, and an adsorption layer of Tl and oxygen is formed. When a high voltage is applied to the opposing anode 14 in this state, the tungsten large needle 12 with the axial direction <110>
The work function of the (100) crystal plane of
Two high-intensity field emission electron beams 15a and 15b whose radiation angles are limited in direction can be obtained. These 2
The two electron beams isa and isb are connected to each convergent lens 16.
a, 16b, passes through the slit 17, and is projected onto a point on the sample surface 18. Electron beam 15a, 1
5b can scan the surface of the sample 18 using the deflection coil 19. Further, a deflection plate 20 is provided in the path of the electron beam 15b, and the deflection voltage can be turned on and off as necessary to turn off the irradiation of the electron beam 15b onto the sample 20. The operation will be explained using an example in which the electron beam device having this configuration is applied to AES. When applied to AES, a secondary electron detector 2 is used to observe the secondary electron image of the sample surface.
1 and Auger electrons are detected and set up. First, in high-resolution SEM image observation and AES image observation, the deflection plate 20
The electron beam 15b is blocked by acting on the electron beam 15a, and only the narrowly focused electron beam 15a is made to act on the electron beam 15b. Also, A
In ES analysis, it is known that by increasing the electron beam current irradiated onto the sample 18, the S/N of the detected Auger electron signal also improves. During analysis, the electron beam current on the sample 18 can be easily increased by stopping the action of the deflection plate 20 and irradiating the electron beam 15b to the same position as the spot of the electron beam 15H. Also,
The amount of current of the electron beam 15b can be increased or decreased by arbitrarily selecting the diameter of the slit 17. That is, according to the electron beam device with this configuration, by effectively utilizing two electron beams, it is possible to easily observe and analyze high-resolution anal images, and to perform high-sensitivity analysis with good S/N. can be done.

本構成の熱電界放射陰極の大針12としては、軸方位<
4 i o>のタングステンの他に軸方位<111>の
タングステンを用いても良い。また、本発明の熱電界放
射陰極を用いた電子線装置としては、AESの他にXM
A及び類似した分析装置に応用しても良い。
The large needle 12 of the thermal field emission cathode of this configuration has an axial direction <
In addition to tungsten with an axial orientation of <111>, tungsten with an axial orientation of <111> may be used. In addition to AES, XM
It may be applied to A and similar analyzers.

実施例2 本発明の熱電界放射陰極を電子管に応用した例を第6図
によシ説明する。大針12としては、軸方位(111)
のタングステン線を用い、前記実施例1と同様な方法に
より、大針12の先端に1゛iと酸素の単原子吸着層を
形成し、大針12と陽極31の間に高電圧を印加すると
、尖*t i 2の(100)結晶面の仕事関数が低下
して<100>方位に放射角制限された3つの電界放射
電子ビーム32を得ることができる。今、大針12に対
向する陽極として、上記3つの電子ビーム32の放射位
置に対応する場所に孔をもった陽極31を用いれば、カ
ラー表示電子管等において、各々赤。
Example 2 An example in which the thermal field emission cathode of the present invention is applied to an electron tube will be explained with reference to FIG. As the large needle 12, the axial direction (111)
Using a tungsten wire, a monatomic adsorption layer of 1゛i and oxygen is formed at the tip of the large needle 12 by the same method as in Example 1, and a high voltage is applied between the large needle 12 and the anode 31. , the work function of the (100) crystal plane of the cusp *t i 2 decreases, and three field emission electron beams 32 whose radiation angle is restricted to the <100> direction can be obtained. If an anode 31 with holes corresponding to the emission positions of the three electron beams 32 is used as the anode facing the large needle 12, each of the three electron beams will be displayed in red in a color display electron tube or the like.

緑、宵の3つの電子ビーム32に対応させることができ
る。さらに、陽極31の後方に、収束レンズ4.偏向コ
イル6、及び赤、緑、宵に発光する蛍光体を塗布したス
クリーン5を配置することによシ、スクリーン5の任意
の場所に、高輝度の色スポットを投影することができた
It can correspond to the three electron beams 32 of green and evening. Further, behind the anode 31, a converging lens 4. By arranging the deflection coil 6 and the screen 5 coated with phosphors that emit red, green, and evening light, it was possible to project a high-intensity color spot anywhere on the screen 5.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、低真空動作の可能な電界放射陰
極を用いて、単一の大針から同時に複数個の高輝度電子
ビームを得ることができ、また、複数個の電子ビームを
同時に一点に集束して動作することによシ、単一電子ビ
ームの場合に比べて2倍以上の高電流密度を達成できる
As described above, according to the present invention, multiple high-intensity electron beams can be obtained simultaneously from a single large needle using a field emission cathode capable of low-vacuum operation, and multiple electron beams can be simultaneously generated. By focusing the electron beam on a single point, it is possible to achieve a current density that is more than twice that of a single electron beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電子ビーム電流とスポット径の関係の説明図
、第2図は、従来のカラー表示電子管の説明図、第3図
は、タングステンの格子模型図、第4図は、本発明の熱
電界放射陰極からの放射電子像を示す説明図、第5図は
、本発明の実施例1の説明図、第6図は、本発明の実施
例2の説明図である。 1・・・カソード、2・・・制御電極、3,15a、1
5b。 32・・・電子ビーム、4,16a、16b・・、収束
レンズ、5・・・スクリーン、6.19・・・偏向コイ
ル、10・・・電界放射像、11・・・発熱体、12・
・・大針、13・・・補給源、14.31・・・陽極、
417・・・スリット、18・・・試料、20・・・偏
向板、21・・・2次電子茅1巳 茅2図 竿3図
Fig. 1 is an explanatory diagram of the relationship between electron beam current and spot diameter, Fig. 2 is an explanatory diagram of a conventional color display electron tube, Fig. 3 is a tungsten lattice model diagram, and Fig. 4 is an explanatory diagram of a conventional color display electron tube. FIG. 5 is an explanatory diagram showing an image of emitted electrons from a thermal field emission cathode, FIG. 5 is an explanatory diagram of Example 1 of the present invention, and FIG. 6 is an explanatory diagram of Example 2 of the present invention. 1... Cathode, 2... Control electrode, 3, 15a, 1
5b. 32... Electron beam, 4, 16a, 16b... Converging lens, 5... Screen, 6.19... Deflection coil, 10... Field emission image, 11... Heating element, 12...
... large needle, 13... supply source, 14.31... anode,
417... Slit, 18... Sample, 20... Deflection plate, 21... Secondary electron 1st and 2nd figure Rod 3rd figure

Claims (1)

【特許請求の範囲】 1、先端が針状のタングステンから成る大針と、該大針
を加熱する発熱体と、チタン、ジルコニウム、ハフニウ
ム、ニオ7”l )リウム、マグネシウムの少なくとも
一つからなる吸着体とから構成され、該大針の先端に前
記吸着体と酸素を吸着せしめて用いる電界放射陰極にお
いて、該単−の大針からw(ioo)面を放射角縮小せ
しめた複数個の電界放射ビームを取シ出すことを特徴と
する熱電界放射陰極。 2、特許請求の範囲第1項記載の熱電界放射陰極におい
て、大剣が軸方位(111:)のWチップである熱電界
放射陰極。 3、特許請求の範囲第1項記載の熱電界放射陰極におい
て、大針が軸方位(110)のWチップである熱電界放
射陰極。 4、先端が針状のタングステンから成る大針と、該大針
を加熱する発熱体と、チタン、ジルコニウム、ハフニウ
ム、ニオブ、トリウム、マグネシウムの少なくとも一つ
からなる吸着体とから構成され、該大針の先端に前記吸
着体と酸素を吸着せしめ、大針からW(100)面を放
射角縮小せしめた複数個の電界放射ビームを取シ出す電
界放射陰極と、該電界放射陰極から放出される複数の電
子ビームをそれぞれ所定の位置に
[Claims] 1. A large needle made of tungsten with a needle-like tip, a heating element for heating the large needle, and at least one of titanium, zirconium, hafnium, niobium, and magnesium. In a field emission cathode which is composed of an adsorbent and which is used by adsorbing the adsorbent and oxygen at the tip of the large needle, a plurality of electric fields are generated from the single large needle by reducing the radiation angle of the w(ioo) plane. A thermal field radiation cathode characterized in that it extracts a radiation beam. 2. The thermal field radiation cathode according to claim 1, wherein the large sword is a W tip with an axial direction (111:). Cathode. 3. The thermal field emission cathode according to claim 1, wherein the large needle is a W tip with an axial direction (110). 4. The large needle is made of tungsten and has a needle-like tip; , comprising a heating element that heats the large needle, and an adsorbent made of at least one of titanium, zirconium, hafnium, niobium, thorium, and magnesium, and adsorbs the adsorbent and oxygen at the tip of the large needle, A field emission cathode extracts a plurality of field emission beams with a W (100) plane having a reduced radiation angle from a large needle, and a plurality of electron beams emitted from the field emission cathode are placed at respective predetermined positions.
JP18672883A 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment Expired - Lifetime JPH0782803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18672883A JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18672883A JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Publications (2)

Publication Number Publication Date
JPS6079636A true JPS6079636A (en) 1985-05-07
JPH0782803B2 JPH0782803B2 (en) 1995-09-06

Family

ID=16193593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18672883A Expired - Lifetime JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Country Status (1)

Country Link
JP (1) JPH0782803B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696043A1 (en) * 1994-08-03 1996-02-07 Hitachi, Ltd. Schottky emission cathode and a method of stabilizing the same
JP2003086127A (en) * 2001-09-10 2003-03-20 Toshiba Corp Electron beam device and device manufacturing method using it
JP2005222945A (en) * 2004-02-03 2005-08-18 Denki Kagaku Kogyo Kk Manufacturing method and operation method for electron source
JP2008239376A (en) * 2007-03-26 2008-10-09 Shimadzu Corp Single crystal tungsten chip, its application apparatus, and method for manufacturing single crystal chip having sharp end
JP2010118361A (en) * 2005-09-06 2010-05-27 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Device and method of selecting emission region of emission pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659422A (en) * 1979-10-19 1981-05-22 Hitachi Ltd Field emissive cathode
JPS5661733A (en) * 1979-10-24 1981-05-27 Hitachi Ltd Field emission cathode and its manufacture
JPS5718564A (en) * 1980-07-09 1982-01-30 Hitachi Ltd Controlling system for train operation of one track

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659422A (en) * 1979-10-19 1981-05-22 Hitachi Ltd Field emissive cathode
JPS5661733A (en) * 1979-10-24 1981-05-27 Hitachi Ltd Field emission cathode and its manufacture
JPS5718564A (en) * 1980-07-09 1982-01-30 Hitachi Ltd Controlling system for train operation of one track

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696043A1 (en) * 1994-08-03 1996-02-07 Hitachi, Ltd. Schottky emission cathode and a method of stabilizing the same
US5616926A (en) * 1994-08-03 1997-04-01 Hitachi, Ltd. Schottky emission cathode and a method of stabilizing the same
JP2003086127A (en) * 2001-09-10 2003-03-20 Toshiba Corp Electron beam device and device manufacturing method using it
JP2005222945A (en) * 2004-02-03 2005-08-18 Denki Kagaku Kogyo Kk Manufacturing method and operation method for electron source
JP2010118361A (en) * 2005-09-06 2010-05-27 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Device and method of selecting emission region of emission pattern
JP2008239376A (en) * 2007-03-26 2008-10-09 Shimadzu Corp Single crystal tungsten chip, its application apparatus, and method for manufacturing single crystal chip having sharp end

Also Published As

Publication number Publication date
JPH0782803B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6259765B1 (en) X-ray tube comprising an electron source with microtips and magnetic guiding means
JP4685115B2 (en) Electron beam exposure method
US3374386A (en) Field emission cathode having tungsten miller indices 100 plane coated with zirconium, hafnium or magnesium on oxygen binder
DE112010004053T5 (en) Gas field ionization ion source and ion beam device
Choi et al. Preparation of a miniature carbon nanotube paste emitter for very high resolution X-ray imaging
JPH08250054A (en) Diffusion supplementary electron beam source and electron beam device using this diffusion supplement electron beam source
JP6694515B2 (en) Electron beam equipment
JP3131339B2 (en) Cathode, cathode ray tube and method of operating cathode ray tube
JP2009301920A (en) Nano chip emitter construction method
JPS6079636A (en) Thermoelectric field emission cathode and applied device
JP3439590B2 (en) X-ray source
US2049781A (en) Braun tube especially for television purposes
CA2697845A1 (en) X-ray tube with enhanced small spot cathode and methods for manufacture thereof
Salançon et al. A low-energy electron point-source projection microscope not using a sharp metal tip performs well in long-range imaging
TWI728497B (en) Electron source and electron gun
JP2003115398A (en) X-ray equipment
JP3405506B2 (en) Scanning proton microscope
JPH11224629A (en) Diffusion supply type electron source, its manufacture and electron beam device
JPWO2004073010A1 (en) Electron gun
JP6116303B2 (en) Focused ion beam device
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method
JPH11354007A (en) Electron source and electron source device using the same
TW452819B (en) Electron gun and cathode-ray tube display machine
JP2002298755A (en) Electron gun, cathode-ray tube, and image display device
JPS6269424A (en) Lanthanum hexabromide hot cathode