JPH0782803B2 - Thermal field emission cathode and its application equipment - Google Patents

Thermal field emission cathode and its application equipment

Info

Publication number
JPH0782803B2
JPH0782803B2 JP18672883A JP18672883A JPH0782803B2 JP H0782803 B2 JPH0782803 B2 JP H0782803B2 JP 18672883 A JP18672883 A JP 18672883A JP 18672883 A JP18672883 A JP 18672883A JP H0782803 B2 JPH0782803 B2 JP H0782803B2
Authority
JP
Japan
Prior art keywords
needle
field emission
electron beam
electron
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18672883A
Other languages
Japanese (ja)
Other versions
JPS6079636A (en
Inventor
幸雄 本多
茂行 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18672883A priority Critical patent/JPH0782803B2/en
Publication of JPS6079636A publication Critical patent/JPS6079636A/en
Publication of JPH0782803B2 publication Critical patent/JPH0782803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電界放射陰極に係り、特に高輝度で高安定な
複数個の電子線源を同時に得るのに好適な熱電界放射陰
極(Thermal Field Emission Cathode以下TFEカソード
と言う)に関する。
Description: FIELD OF THE INVENTION The present invention relates to a field emission cathode, and particularly to a thermal field emission cathode (Thermal Field Cathode) suitable for obtaining a plurality of electron beam sources with high brightness and high stability at the same time. Emission Cathode (hereinafter referred to as TFE cathode)).

〔発明の背景〕[Background of the Invention]

電子線源としては、高温に熱せられた金属等の表面から
放出される熱電子を利用する熱陰極と、先端の曲率半径
が約千オングストロームの針状チツプに強電界を印加し
て、トンネル効果により陰極表面から放出される電子を
利用する電界放射陰極に大別できる。熱陰極としては、
低温動作で高電流密度動作可能なバリウム・ストロチウ
ム酸化物陰極やバリウム・デイスペンサ陰極が電子管用
電子線源として知られている。また、近年、高輝度電子
線源として六硼化ランタンが実用化されてきたが、これ
ら熱陰極の輝度は高々107A/cm2Sr程度である。一方、電
界放射は大別して、チツプ温度が室温近傍である冷電界
放射(Cold Field Emission、以下CFEと言う)とTFEが
ある。CFEを安定に動作させるには、エミツタ先端への
ガス吸着を減らし、かつイオン衝撃によるエミツタのダ
メージをなくすために、エミツタのある空間は、10-10T
orr以下の超高真空に保つことが要求され、安定に動作
できるエミツシヨン電流は10μA以下である。また輝度
は約108A/cm2Srである。一方、TFEは、エミツタ先端を
熱電子が発生しない程度の温度範囲で加熱した状態で、
強電界を印加してエミツシヨンを引出す方法である。特
に、Wolfeら(U S Patent 3,814,975)により提案され
た手法によれば、10-7Torr程度の真空中でも高輝度で安
定なエミツシヨン電流を得ることができる。すなわち、
10-7Torr程度のO2ガス雰囲気下で1750〜1850Kにエミツ
タを加熱し、かつ先端にジルコニウム(Zr)を吸着せし
めると、エミツタ先端ではZr−O−Wなる吸着状態が形
成され、W(100)面の仕事関数は2.6〜2.8eVまで低下
する。その結果、エミツタ先端からのエミツシヨン電流
はW(100)面から選択的に大電流が得られる、いわゆ
るエミツシヨン電流の角度分布制限が可能となる。同様
の効果は、チタン(Ti),ハフニウム(Hf),ニオブ
(Nb),トリウム(Th),マグネシウム(Mg),セリウ
ム(Ce)でも得られる。特に、エミツタへの吸着体とし
てTiを用いた場合、エミツタ温度を1000〜1200℃に低温
化でき、酸素分圧も〜10-9Torrで済む上に、輝度も109
〜1010A/cm2Srの高い性能を得ることができる。
As an electron beam source, a hot cathode that utilizes thermoelectrons emitted from the surface of metal or the like heated to a high temperature, and a strong electric field is applied to a needle-shaped chip with a tip radius of curvature of about 1,000 angstroms to produce the tunnel effect. Therefore, it can be roughly classified into a field emission cathode utilizing electrons emitted from the cathode surface. As a hot cathode,
A barium-strotium oxide cathode and a barium-dispenser cathode capable of operating at a low current and a high current density are known as electron beam sources for electron tubes. In recent years, lanthanum hexaboride has been put to practical use as a high-brightness electron beam source, but the brightness of these hot cathodes is at most about 10 7 A / cm 2 Sr. On the other hand, field emission is roughly classified into cold field emission (CFE), which has a chip temperature near room temperature, and TFE. In order to operate the CFE stably, the space with the emitter is 10 -10 T in order to reduce the gas adsorption to the tip of the emitter and to eliminate the damage of the emitter due to ion impact.
It is required to maintain an ultrahigh vacuum of orr or less, and the emission current for stable operation is 10 μA or less. The brightness is about 10 8 A / cm 2 Sr. On the other hand, in TFE, the tip of the emitter is heated in a temperature range where thermoelectrons are not generated,
This is a method of applying a strong electric field to draw out the emission. In particular, according to the method proposed by Wolfe et al. (US Patent 3,814,975), it is possible to obtain a stable emission current with high brightness even in a vacuum of about 10 -7 Torr. That is,
When the emitter is heated to 1750 to 1850K in an O 2 gas atmosphere of about 10 -7 Torr and zirconium (Zr) is adsorbed at the tip, an adsorption state of Zr-OW is formed at the tip of the emitter, and W ( The work function of the (100) plane drops to 2.6 to 2.8 eV. As a result, the emission current from the tip of the emitter can selectively obtain a large current from the W (100) plane, which makes it possible to limit the angular distribution of the emission current. Similar effects can be obtained with titanium (Ti), hafnium (Hf), niobium (Nb), thorium (Th), magnesium (Mg), and cerium (Ce). In particular, when Ti is used as the adsorbent for the emitter, the emitter temperature can be lowered to 1000 to 1200 ° C., the oxygen partial pressure can be set to 10 −9 Torr, and the brightness can be set to 10 9
High performance of up to 10 10 A / cm 2 Sr can be obtained.

さて、電界放射陰極は、高輝度で放射電子のエネルギー
幅の広がりも小さく、高分解能の電子顕微鏡,走査電子
顕微鏡(SEM),オージエ電子分析装置(AES),X線マイ
クロアナライザ(XMA)等の電子線源として用いられて
いる。特に、AESやXMA等の分析装置においては、高分解
能の像観察と分析の他に、分析感度を向上し、かつ分析
信号のS/N(信号対イイズ比)を向上するために電子ビ
ーム電流を増加して用いる要求がある。電子ビーム電流
を増加するには、電界放射電圧を増加したり、電子光学
系の絞り径を大きくする、すなわちビームスポツトに入
射角を大きくするために、電子光学的な収差により第1
図に示したように、ビーム電流の増加と共にスポツト径
が増大し、分解能が低下する。従つて、例えば従来のAE
SやXMA等では、分析試料表面の像観察においては電子ビ
ーム電流を低下して行い、また分析に際しては分解能を
犠牲にして電子ビーム電流を増加して行つており、像観
察と分析のたびに電子光学系の調整を必要としていた。
By the way, the field emission cathode has high brightness and a small spread of the energy width of radiated electrons, and has high resolution such as electron microscope, scanning electron microscope (SEM), Auger electron analyzer (AES), and X-ray micro analyzer (XMA). It is used as an electron beam source. In particular, in the case of analyzers such as AES and XMA, in addition to high-resolution image observation and analysis, electron beam current is used to improve analysis sensitivity and signal-to-noise ratio (S / N) of analysis signals. There is a demand to increase and use. To increase the electron beam current, the field emission voltage is increased, or the aperture diameter of the electron optical system is increased, that is, the incident angle to the beam spot is increased.
As shown in the figure, as the beam current increases, the spot diameter increases and the resolution decreases. Therefore, for example, conventional AE
With S and XMA, the electron beam current is reduced when observing the image of the sample surface, and the electron beam current is increased at the expense of resolution during analysis. Adjustment of the electron optical system was required.

また、従来電子管等において、同時に複数個、例えば3
個の電子線源を必要とする場合、第2図に示すように、
各々分離された3個のカソード1を配置して用いてい
る。今、電子管においてカラー表示する場合について説
明する。電子線源としては、赤(R),緑(G),青
(B)色に各々対応する3個の個別のカソード1を用い
る。カソード1から発生した電子は制御電極2の孔を通
過し、この電子ビーム3は、収束レンズ4によつて収束
されスクリーン5の上に投影される。スクリーン上に
は、各々R,G,Bに発光する蛍光体が塗布されている。R,
G,B3個の電子ビーム3の強度はカソード1の電子を制御
することによつて変えられ、これに対応してスクリーン
5上の蛍光体の発光量が変化して様々な色を発する。ま
た、電子ビーム3は偏向コイル6により、任意の場所に
移動できる。
In addition, in conventional electron tubes and the like, a plurality of electron tubes, such as 3
When individual electron beam sources are required, as shown in FIG.
Three cathodes 1 which are separated from each other are arranged and used. Now, the case of color display in the electron tube will be described. As the electron beam source, three individual cathodes 1 corresponding to red (R), green (G) and blue (B) colors are used. The electrons generated from the cathode 1 pass through the hole of the control electrode 2, and this electron beam 3 is converged by the converging lens 4 and projected on the screen 5. The screen is coated with phosphors that emit R, G, and B, respectively. R,
The intensities of the G, B3 electron beams 3 are changed by controlling the electrons of the cathode 1, and in response to this, the emission amount of the phosphor on the screen 5 is changed to emit various colors. Further, the electron beam 3 can be moved to an arbitrary place by the deflection coil 6.

さて、近年電子管等の高精細化に伴ない、低消費電力で
かつ従来の電子線源(主として酸化物陰極)に比べて5
倍以上も高い高輝度電子線源が求められている。しか
し、これら要求を満たす実用的な電子線源がこれまでな
かつた。
Now, with the increase in definition of electron tubes and the like in recent years, the power consumption is lower than that of conventional electron beam sources (mainly oxide cathodes).
There is a demand for a high-intensity electron beam source that is more than twice as high. However, there has been no practical electron beam source that satisfies these requirements.

〔発明の目的〕[Object of the Invention]

本発明の目的は、単一の電界放射チツプから、同時に複
数個の高輝度で高安定な電界放射ビームを得ることので
きる熱電界放射陰極及びその陰極を用いた電子線装置を
提供することにある。
An object of the present invention is to provide a thermal field emission cathode and an electron beam apparatus using the cathode capable of simultaneously obtaining a plurality of high-intensity and highly stable field emission beams from a single field emission chip. is there.

〔発明の概要〕[Outline of Invention]

本発明の電界放射陰極は、先端が鋭く尖つた尖針と、尖
針を加熱する発熱体と、尖針に吸着させる吸着体及びこ
れを貯える補給源から構成され、尖針の先端において、
吸着体と酸素の単原子吸着層を形成して、例えばW(10
0)面の仕事関数を下げて、放射角制限をした電子放射
を行うため少量の酸素を必要とする。従来、電子顕微鏡
などの理化学機器においては、単一の光源があれば充分
であるから、尖針として例えば軸方位<100>の直径0.1
〜0.15mmの単結晶タングステン(W)を用いる。また、
発熱体は、電気抵抗が大きく、高温強度が高く、かつ補
給源との反応性が低いことが望ましい。主として、タン
グステン(W),モリブデン(Mo),レニウム(Re),
タンタル(Ta)及びこれらの合金を用いる。補給源とし
ては、Zr,Ti,Hf,Nb,Th,Mg及びこれらの酸化物を用い
る。前記したように、従来の理化学機器用の電子線源と
しては、単一の電子線源で良いため軸方位<100>のW
単結晶の尖針で要求を満していた。
The field emission cathode of the present invention is composed of a sharp needle having a sharp tip, a heating element for heating the sharp needle, an adsorbent adsorbed to the sharp needle and a replenishment source for storing the same, and at the distal end of the sharp needle,
For example, W (10
A small amount of oxygen is required to lower the work function of the (0) plane and perform electron emission with a limited emission angle. Conventionally, in physics and chemistry equipment such as electron microscopes, a single light source is sufficient, so as a pointed needle, for example, a diameter of 0.1 in the axial direction <100> is used.
A single crystal tungsten (W) of 0.15 mm is used. Also,
It is desirable that the heating element has high electric resistance, high temperature strength, and low reactivity with the replenishment source. Mainly tungsten (W), molybdenum (Mo), rhenium (Re),
Tantalum (Ta) and alloys of these are used. As a supply source, Zr, Ti, Hf, Nb, Th, Mg and oxides thereof are used. As described above, since the conventional electron beam source for physics and chemistry equipment may be a single electron beam source, the W of axial direction <100>
The demand was met with a single crystal needle.

一方、本発明では同時に複数個、例えば3個の電子線源
を提供し、高電流密度を得るのに容易な電子線装置を提
供することを目的としている。さて、第3図のタングス
テンの格子模型を参照すれば、軸方位W<111>の結晶
を尖針として用いれば、各々近接して3つの(100)面
が三角状に配置される。今、軸方位W<111>の尖針12
を用いて、電界放射を行わしめると、第4図のごとく、
尖針12の各々の結晶面に対応した電界放射像10が陽極14
上に投影される。次に、例えば尖針12を約1100℃に加熱
して、Ti補給源13より尖針12の先端に補強し、尖針12の
先端部においてTiと酸素の単原子吸着層を形成させる
と、W(100),(010),(001)面の仕事関数が約2.6
eV(Wの仕事関数は約4.5eV)に低下し、W(100),
(010),(001)面から選択的に大きなエミツシヨン電
流が流れ、3個の高輝度の電子線源を得ることができ
る。
On the other hand, it is an object of the present invention to provide a plurality of electron beam sources, for example, three electron beam sources at the same time, and to provide an electron beam apparatus which is easy to obtain a high current density. Now, referring to the tungsten lattice model in FIG. 3, if a crystal with an axis direction W <111> is used as a pointed needle, three (100) planes are arranged in close proximity to each other in a triangular shape. Now, the needle 12 with the axis direction W <111>
When the field emission is performed using, as shown in Fig. 4,
The field emission image 10 corresponding to each crystal plane of the needle 12 is the anode 14
Projected on. Next, for example, by heating the needle 12 to about 1100 ℃, to reinforce the tip of the needle 12 from the Ti replenishment source 13, to form a monoatomic adsorption layer of Ti and oxygen at the tip of the needle 12, W (100), (010), (001) plane work function is about 2.6
eV (work function of W is about 4.5 eV) is reduced to W (100),
A large emission current selectively flows from the (010) and (001) planes, and three high-brightness electron beam sources can be obtained.

また、尖針として軸方位W<110>のチツプを用いれ
ば、同様に2個の高輝度の電子線源を得ることができ
る。
Further, if a chip having an axis direction W <110> is used as a pointed needle, two high-intensity electron beam sources can be obtained in the same manner.

〔発明の実施例〕Example of Invention

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 本発明の多元の熱電界放射陰極を用いた電子線装置の一
実施例を第5図により説明する。まずV字形に形成され
た直径0.1〜0.15mmのタングステン(W)製発熱体11の
先端に直径0.1〜0.15mmの例えば軸方位<110>のタング
ステン線を点溶接し、その先端を水酸化カリウム(KO
H)水溶液等を用いた電界研摩で鋭く尖らせて尖針12を
作製する。次に発熱体11のV字形の先端部にチタン(T
i)を付着させ、真空中で発熱体11を通電加熱してTi補
給源13を形成し、尖針12と発熱体11及び補給源13より成
る熱電界放射陰極を作製する。この熱電界放射陰極を10
-9〜10-7Torrの真空中で発熱体11を通電加熱し、補給源
13と尖針12を1000〜1500℃に加熱すると、熱拡散により
尖針12の先端まで補給源13からTiが供給される。尖針12
の先端では雰囲気中の酸素を取り込み、Tiと酸素の吸着
層が形成される。この状態で対抗する陽極14に高電圧を
印加すると、軸方位<110>のタングステン尖針12の(1
00)結晶面の仕事関数が低下して、<100>方位に放射
角度制限された、高輝度の2つの電界放射電子ビーム15
a,15bを得ることができる。これら2つの電子ビーム15
a,15bは各々の収束レンズ16a,16bにより収束され、スリ
ツト17を通過して試料面18上の一点に投影される。電子
ビーム15a,15bは偏向コイル19を用いて試料18の表面を
走査できる。また、電子ビーム15bの通路には偏向板20
を設けて、必要に応じて偏向電圧をON−OFFして、電子
ビーム15bの試料20上への照射をON−OFFすることができ
る。本構成の電子線装置をAESへ応用した例によりその
動作を説明する。AESに応用する場合、試料表面の2次
電子像観察のために2次電子検出器21とオージエ電子を
検出し、エネルギ分析するためのエネルギアナライザ22
を設ける。まず、高分解能のSEM像観察とAES像観察にお
いては、偏向板20を作用させて電子ビーム15bを遮断し
て、細く収束された電子ビーム15aのみを作用させて行
う。また、AES分析においては、試料18に照射される電
子ビーム電流を増加することにより、検出されたオージ
エ電子信号のS/Nも向上することが知られており、S/Nの
良い高感度のAES分析に際しては、偏向板20の作用を停
止し、電子ビーム15bを電子ビーム15aのスポツトと同じ
位置に照射することによつて、試料18上の電子ビーム電
流を容易に増加させることができる。また、電子ビーム
15bの電流量は、スリツト17の直径を任意に選ぶことに
よつて増減できる。すなわち、本構成の電子線装置によ
れば、2つの電子ビームを効果的に利用することによ
り、高解像度の像観察と分析、及び良好なS/Nで高感度
の分析を容易に行うことができる。
Example 1 An example of an electron beam apparatus using the multi-element thermal field emission cathode of the present invention will be described with reference to FIG. First, a tungsten (W) heating element 11 having a diameter of 0.1 to 0.15 mm and having a diameter of 0.1 to 0.15 mm is spot-welded with a tungsten wire having a diameter of 0.1 to 0.15 mm and having an axial orientation <110>, and the tip thereof is potassium hydroxide. (KO
H) A sharp needle 12 is made by sharpening sharply by electric field polishing using an aqueous solution or the like. Next, the titanium (T
i) is attached and the heating element 11 is electrically heated in a vacuum to form a Ti replenishing source 13, and a thermoelectric field emission cathode composed of the pointed needle 12, the heating element 11 and the replenishing source 13 is produced. This thermal field emission cathode 10
The heating element 11 is electrically heated in a vacuum of -9 to 10 -7 Torr to generate a replenishment source.
When 13 and the needle 12 are heated to 1000 to 1500 ° C., Ti is supplied from the supply source 13 to the tip of the needle 12 by thermal diffusion. Pointed needle 12
At the tip of, the oxygen in the atmosphere is taken in and an adsorption layer of Ti and oxygen is formed. When a high voltage is applied to the opposing anode 14 in this state, (1
00) Two high-intensity field emission electron beams whose work function on the crystal plane is lowered and the emission angle is limited to the <100> direction.
You can get a, 15b. These two electron beams 15
The a and 15b are converged by the respective converging lenses 16a and 16b, pass through the slit 17, and are projected onto one point on the sample surface 18. The electron beams 15a and 15b can scan the surface of the sample 18 using the deflection coil 19. In addition, the deflection plate 20 is provided in the passage of the electron beam 15b.
Is provided, the deflection voltage can be turned on and off as necessary, and the irradiation of the electron beam 15b onto the sample 20 can be turned on and off. The operation of the electron beam apparatus of this configuration will be described by an example applied to AES. When applied to AES, a secondary electron detector 21 for observing a secondary electron image on the sample surface and an energy analyzer 22 for detecting and analyzing energy of Auger electrons.
To provide. First, in high-resolution SEM image observation and AES image observation, the deflection plate 20 is actuated to block the electron beam 15b, and only the finely converged electron beam 15a is acted. Further, in the AES analysis, it is known that the S / N of the detected Auger electron signal is improved by increasing the electron beam current with which the sample 18 is irradiated. In the AES analysis, the action of the deflection plate 20 is stopped and the electron beam 15b is irradiated to the same position as the spot of the electron beam 15a, whereby the electron beam current on the sample 18 can be easily increased. Also the electron beam
The current amount of 15b can be increased or decreased by arbitrarily selecting the diameter of the slit 17. That is, according to the electron beam apparatus of this configuration, it is possible to easily perform high-resolution image observation and analysis, and high-sensitivity analysis with a good S / N by effectively using the two electron beams. it can.

本構成の熱電界放射陰極の尖針12としては、軸方位<11
0>のタングステンの他に軸方位<111>のタングステン
を用いても良い。また、本発明の熱電界放射陰極を用い
た電子線装置としては、AESの他にXMA及び類似した分析
装置に応用しても良い。
The point 12 of the thermal field emission cathode of this configuration has an axial orientation of <11.
In addition to tungsten of 0>, tungsten of axial direction <111> may be used. The electron beam apparatus using the thermal field emission cathode of the present invention may be applied to XMA and similar analyzers in addition to AES.

実施例2 本発明の熱電界放射陰極を電子管に応用した例を第6図
により説明する。尖針12としては、軸方位<111>のタ
ングステン線を用い、前記実施例11と同様な方法によ
り、尖針12の先端にTiと酸素の単原子吸着層を形成し、
尖針12と陽極31の間に高電圧を印加すると、尖針12の
(100)結晶面の仕事関数が低下して<100>方位に放射
角制限された3つの電界放射電子ビーム32を得ることが
できる。今、尖針12に対応する陽極として、上記3つの
電子ビーム32の放射位置に対応する場所に孔をもつた陽
極31を用いれば、カラー表示電子管等において、各々
赤,緑,青の3つの電子ビーム32に対応させることがで
きる。さらに、陽極31の後方に、収束レンズ4,偏向コイ
ル6、及び赤,緑,青に発光する蛍光体を塗布したスク
リーン5を配置することにより、スクリーン5の任意の
場所に、高輝度の色スポツトを投影することができた。
Example 2 An example in which the thermal field emission cathode of the present invention is applied to an electron tube will be described with reference to FIG. As the pointed needle 12, a tungsten wire having an axial orientation <111> is used, and a monoatomic adsorption layer of Ti and oxygen is formed at the tip of the pointed needle 12 by the same method as in Example 11 above.
When a high voltage is applied between the needle 12 and the anode 31, the work function of the (100) crystal plane of the needle 12 lowers and three field emission electron beams 32 with the emission angle limited to the <100> direction are obtained. be able to. Now, if an anode 31 having a hole at a position corresponding to the emission position of the above-mentioned three electron beams 32 is used as the anode corresponding to the pointed needle 12, in a color display electron tube or the like, red, green, and blue are respectively provided. It can correspond to the electron beam 32. Further, by arranging the converging lens 4, the deflection coil 6, and the screen 5 coated with phosphors that emit red, green, and blue light behind the anode 31, a high-intensity color can be placed anywhere on the screen 5. I was able to project spots.

〔発明の効果〕〔The invention's effect〕

以上、本発明によれば、低真空動作の可能な電界放射陰
極を用いて、単一の尖針から同時に複数個の高輝度電子
ビームを得ることができ、また、複数個の電子ビームを
同時に一点に集束して動作することにより、単一電子ビ
ームの場合に比べて2倍以上の高電流密度を達成でき
る。
As described above, according to the present invention, a plurality of high-intensity electron beams can be simultaneously obtained from a single needle using a field emission cathode capable of low vacuum operation, and a plurality of electron beams can be simultaneously emitted. By focusing and operating at one point, it is possible to achieve a current density more than twice as high as that of a single electron beam.

【図面の簡単な説明】[Brief description of drawings]

第1図は、電子ビーム電流とスポツト径の関係の説明
図、第2図は、従来のカラー表示電子管の説明図、第3
図は、タングステンの格子模型図、第4図は、本発明の
熱電界放射陰極からの放射電子像を示す説明図、第5図
は、本発明の実施例1の説明図、第6図は、本発明の実
施例2の説明図である。 1……カソード、2……制御電極、3,15a,15b,32……電
子ビーム、4,16a,16b……収束レンズ、5……スクリー
ン、6,19……偏向コイル、10……電界放射像、11……発
熱体、12……尖針、13……補強源、14,31……陽極、17
……スリツト、18……試料、20……偏向板、21……2次
電子検出器、22……エネルギアナライザ。
FIG. 1 is an illustration of the relationship between electron beam current and spot diameter, FIG. 2 is an illustration of a conventional color display electron tube, and FIG.
FIG. 4 is a diagram of a tungsten lattice model, FIG. 4 is an explanatory diagram showing an electron emission image from a thermal field emission cathode of the present invention, FIG. 5 is an explanatory diagram of Example 1 of the present invention, and FIG. FIG. 5 is an explanatory diagram of Example 2 of the present invention. 1 ... Cathode, 2 ... Control electrode, 3,15a, 15b, 32 ... Electron beam, 4, 16a, 16b ... Converging lens, 5 ... Screen, 6,19 ... Deflection coil, 10 ... Electric field Radiation image, 11 ... Heating element, 12 ... Needle, 13 ... Reinforcing source, 14, 31 ... Anode, 17
…… Slit, 18 …… Sample, 20 …… Deflector, 21 …… Secondary electron detector, 22 …… Energy analyzer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−59422(JP,A) 特開 昭56−61733(JP,A) 特開 昭57−185647(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-56-59422 (JP, A) JP-A-56-61733 (JP, A) JP-A-57-185647 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】先端が針状のタングステンから成る尖針
と、該尖針を加熱する発熱体と、チタン,ジルコニウ
ム,ハフニウム,ニオブ,トリウム,マグネシウムの少
なくとも一つからなる吸着体とから構成され、該尖針の
先端に前記吸着体と酸素を吸着せしめて用いる電界放射
陰極において、該尖針の軸方位が〈111〉または〈110〉
のWチップであり、該尖針の複数個のW(100)面から
複数個の電界放射ビームを取り出すことを特徴とする熱
電界放射陰極。
1. A tip comprising a needle-shaped tungsten needle, a heating element for heating the needle, and an adsorbent made of at least one of titanium, zirconium, hafnium, niobium, thorium and magnesium. In the field emission cathode used by adsorbing the adsorbent and oxygen at the tip of the needle, the axis direction of the needle is <111> or <110>.
The W field of the present invention, wherein a plurality of field emission beams are extracted from a plurality of W (100) planes of the apex needle.
【請求項2】先端が針状のタングステンから成る尖針
と、該尖針を加熱する発熱体と、チタン,ジルコニウ
ム,ハフニウム,ニオブ,トリウム,マグネシウムの少
なくとも一つからなる吸着体とから構成され、該尖針の
先端に前記吸着体と酸素を吸着せしめ、軸方位が〈11
1〉または〈110〉のWチップである尖針の複数個のW
(100)面から複数個の電界放射ビームを取り出す電界
放射陰極と、該電界放射陰極から放出される複数の電子
ビームをそれぞれ所定の位置に収束せしめるための手段
とを有することを特徴とする熱電界放射陰極応用装置。
2. A tip is made of a needle-shaped tungsten needle, a heating element for heating the needle, and an adsorbent made of at least one of titanium, zirconium, hafnium, niobium, thorium, and magnesium. , The adsorbent and oxygen are adsorbed at the tip of the needle, and the axis direction is <11.
Multiple W of a pointed needle that is a W tip of 1> or <110>
Heat having a field emission cathode for extracting a plurality of field emission beams from the (100) plane, and means for converging a plurality of electron beams emitted from the field emission cathode at predetermined positions. Field emission cathode application device.
JP18672883A 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment Expired - Lifetime JPH0782803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18672883A JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18672883A JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Publications (2)

Publication Number Publication Date
JPS6079636A JPS6079636A (en) 1985-05-07
JPH0782803B2 true JPH0782803B2 (en) 1995-09-06

Family

ID=16193593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18672883A Expired - Lifetime JPH0782803B2 (en) 1983-10-07 1983-10-07 Thermal field emission cathode and its application equipment

Country Status (1)

Country Link
JP (1) JPH0782803B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616926A (en) * 1994-08-03 1997-04-01 Hitachi, Ltd. Schottky emission cathode and a method of stabilizing the same
JP2003086127A (en) * 2001-09-10 2003-03-20 Toshiba Corp Electron beam device and device manufacturing method using it
JP4032057B2 (en) * 2004-02-03 2008-01-16 電気化学工業株式会社 Manufacturing method of electron source
EP1760762B1 (en) * 2005-09-06 2012-02-01 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Device and method for selecting an emission area of an emission pattern
JP4942530B2 (en) * 2007-03-26 2012-05-30 株式会社島津製作所 Manufacturing method of single-crystal chip with pointed tip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054735B2 (en) * 1979-10-19 1985-12-02 株式会社日立製作所 field emission cathode
JPS5661733A (en) * 1979-10-24 1981-05-27 Hitachi Ltd Field emission cathode and its manufacture
JPS6056666B2 (en) * 1980-07-09 1985-12-11 南海電気鉄道株式会社 Single track train operation control device

Also Published As

Publication number Publication date
JPS6079636A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
US6259765B1 (en) X-ray tube comprising an electron source with microtips and magnetic guiding means
JP4685115B2 (en) Electron beam exposure method
US20030021377A1 (en) Mobile miniature X-ray source
JP4982161B2 (en) Gas field ion source and scanning charged particle microscope
JPH08250054A (en) Diffusion supplementary electron beam source and electron beam device using this diffusion supplement electron beam source
JP5290238B2 (en) electronic microscope
JP6694515B2 (en) Electron beam equipment
US11201032B2 (en) Electron emitter and method of fabricating same
JP3439590B2 (en) X-ray source
JPH0782803B2 (en) Thermal field emission cathode and its application equipment
JP3547531B2 (en) Electron beam equipment
JP2003115398A (en) X-ray equipment
JP3405506B2 (en) Scanning proton microscope
JP2000208089A (en) Electron microscope device
JPH11224629A (en) Diffusion supply type electron source, its manufacture and electron beam device
JP2004158392A (en) Electron microscope, method for operating electron microscope, operating program of electron microscope and computer readable recording medium
JP3400697B2 (en) electronic microscope
JP4169578B2 (en) Electron microscope, operation method of electron microscope, operation program of electron microscope, and computer-readable recording medium
Frank Advances in scanning electron microscopy
JPH0794134A (en) Method and device for stabilizing electron source
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method
JP2001255290A (en) Analysis method of solid substance surface
Purcell et al. Realization of an axially aligned Au-ion source of atomic size
JPS6269424A (en) Lanthanum hexabromide hot cathode
KR20030071839A (en) Electron gun, cathode ray tube, and image display apparatus