JPS6079283A - Remote measuring apparatus - Google Patents

Remote measuring apparatus

Info

Publication number
JPS6079283A
JPS6079283A JP18726183A JP18726183A JPS6079283A JP S6079283 A JPS6079283 A JP S6079283A JP 18726183 A JP18726183 A JP 18726183A JP 18726183 A JP18726183 A JP 18726183A JP S6079283 A JPS6079283 A JP S6079283A
Authority
JP
Japan
Prior art keywords
target
microprocessor
distance
data
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18726183A
Other languages
Japanese (ja)
Inventor
Hiroshi Higuchi
博 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18726183A priority Critical patent/JPS6079283A/en
Publication of JPS6079283A publication Critical patent/JPS6079283A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To achieve a higher guiding accuracy to the target for a moving object without impairing secrecy by measuring distance to the target in a fully passive manner through an image measurement. CONSTITUTION:A quasi-stationary target is picked up with a camera 1 and a video signal is digitized with an A/D converter 2. The digitized video signal is binary coded with a binary coding circuit 3 using threshold outputted from a threshold circuit 4. An apparent angle calculation circuit 5 receives the binary- coded image to measure a horizontal apparent angle, for instance, at the whole or a part of the target and outputs a resulting apparent angle data 6 to a microprocessor 11. On the other hand, an acceleration detector 7 always measures the acceleration (a) of a moving body itself and outputs a resulting acceleration data 8 to the microprocessor 11. In addition, a timer 9 always outputs a time data 10 to the microprocessor 11.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、移動体上にあって、電波、光ビーム、等の
送出によらないで、受動的に、準静止目標までの距離が
計測可能な、測遠器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is a method for passively measuring the distance to a quasi-stationary target on a moving object without transmitting radio waves, optical beams, etc. Regarding distance measuring instruments.

〔従来技術〕[Prior art]

従来、目標までの距離をめるには、飼えば特公昭57−
21674号に示されるレーダ装置を用い、電波、光ビ
ーム等を目標にむけて放射し1反射波の伝ばん遅延時間
より、該目標までの距離がめられていたが、この方法に
よれば、電波、光ビーム等の送信、受信のためり)レー
ダ設備が必要であシ。
Conventionally, in order to measure the distance to a target, if you keep a special public
Using the radar device shown in No. 21674, radio waves, optical beams, etc. are emitted toward a target, and the distance to the target is determined from the propagation delay time of one reflected wave. , transmission and reception of light beams, etc.) Radar equipment is required.

装置が、大がかりとなり高価となる欠点があるだけでな
く、相手に測距してhることが察知されやすて欠点があ
った。
The device not only has the disadvantage of being large-scale and expensive, but also has the disadvantage of being easily detected by the other party.

〔発明の概要〕[Summary of the invention]

この発明は1画像計測により、完全に受動的に目標まで
の測距することにょル、これら欠点を除去する手段を提
供するものであって、以下1図を用いて、詳細にこの発
明を説明する。
This invention provides a means to eliminate these drawbacks by completely passively measuring the distance to a target by one-image measurement.This invention will be explained in detail below using Figure 1. do.

〔発明の実施例〕[Embodiments of the invention]

第1図は、この発明における構成の一実施例を示す図で
あって、(11は撮像装置、(21はb変換器。
FIG. 1 is a diagram showing an embodiment of the configuration according to the present invention, in which (11 is an imaging device, and (21 is a b converter).

(31は2値化回路、 (4ru岡価回路、 +51)
ま見込み角算出回路、(6)は見込み角データ、(71
は加速度検出装置、(8)は加速度データ、(9)はタ
イマ、αIは時間データ、 (illはマイクロプロセ
ッサ、Qカは距離データである。
(31 is a binarization circuit, (4ru Okada circuit, +51)
The prospect angle calculation circuit, (6) is the prospect angle data, (71
is an acceleration detection device, (8) is acceleration data, (9) is a timer, αI is time data, (ill is a microprocessor, and Q is distance data.

第1図において、撮像装置(1)により、準静止目標が
撮像され、映像信号は、′/D変換器+21によシデジ
タル化される。
In FIG. 1, a quasi-stationary target is imaged by an imaging device (1), and the video signal is digitized by a '/D converter +21.

デジタル化された映像信号は、閾値回路(4)が出力す
る闇値を用いて、z値化回路+31で2値化される。
The digitized video signal is binarized by the z-value conversion circuit +31 using the dark value output from the threshold circuit (4).

見込み可算出回路(51は、この2値化画像を入力し。The probability calculation circuit (51 inputs this binarized image.

目標全体、あるいは部分の、たとえば水平方向見込み角
を計測し、結果の見込み角データ(6)ヲマイクロプロ
セッサ111に出力する。
For example, the horizontal viewing angle of the entire target or a portion of the target is measured, and the resulting viewing angle data (6) is output to the microprocessor 111.

一方、加速度検出口装置(71は、乱に、移動体自身の
カロ速度aを計測し、結果の加速度データ(8)をマイ
クロプロセッサ(11)に出力する。
On the other hand, the acceleration detection port device (71) randomly measures the Karo velocity a of the moving body itself and outputs the resulting acceleration data (8) to the microprocessor (11).

さらに、タイマ(9)は2時間データ(to!’z常l
]も、マイクロプロセッサ(111に出力する。
In addition, the timer (9) receives 2 hour data (to!'z always
] also outputs to the microprocessor (111).

第2図は、この発明における測距の原理を示す図であっ
て、αJは目標中、 (141は時刻tlにおける移動
体位置、u5)は時刻tにおける移動体位@m(16)
は時刻t2における移動体位置、(1”ハは移動軌跡中
心線で凌)る。
FIG. 2 is a diagram showing the principle of distance measurement in this invention, where αJ is the target, (141 is the moving body position at time tl, and u5) is the moving body position @m (16) at time t.
is the position of the moving body at time t2 (1" is exceeded by the center line of the moving trajectory).

い壕1時刻t1.およびそれから微小時間△を後の時刻
t2において、見込み可算出回路(51で算出された見
込み角を各々、θ1.θ2.また。tいとt2の間の時
刻tにおける見込み角をθとする。目標中をWとすると
、第2図から1次式が成立する。
trench 1 time t1. Then, at time t2 after a minute time Δ, the angle of view calculated by the potential calculation circuit (51) is respectively θ1 and θ2.Also, the angle of view at time t between t and t2 is assumed to be θ.Target Assuming that the inside is W, a linear equation is established from FIG.

2R1ja+: (θl/2)=W(112R2tan
(θ2/2 ) = W f212R1a11(θ/z
 ) = W t31RI R2== a(△t)2会
D(4)ここでDは、△tの間に移動体が移動した距跡
を表わす。
2R1ja+: (θl/2)=W(112R2tan
(θ2/2) = W f212R1a11(θ/z
) = W t31RI R2 == a(△t) 2 D (4) Here, D represents the distance traveled by the mobile object during △t.

これらの式から、測定できないR1、n、、、 W’l
i”消去すると1次式が得られる。
From these formulas, we can see that R1, n, , W'l, which cannot be measured
By eliminating i'', a linear equation is obtained.

トコローt’、一般VC、W/R、w/R1、W/R2
(1であるので tan (f’A ) Zθ/2. 
bud(θt/2 ) ”: U 1/2 。
Tokoro t', general VC, W/R, w/R1, W/R2
(1, so tan (f'A) Zθ/2.
bud(θt/2)”: U 1/2.

tan(θ2/2)二02/2 と近似することができ
、(51式は。
It can be approximated as tan(θ2/2)202/2 (Equation 51 is.

次のように近似することができる。It can be approximated as follows.

R″0(蚕−、) = D [61 (61式より2時刻tにおける目標距離Rは5次のよう
にめることができる。
R″0(silkworm-,) = D [61 (From equation 61, the target distance R at time 2 t can be calculated as quintic.

θl θ2 R=□・D(7) θ(θ2−01) 第1図においては、マイクロプロセッサα1)に。θl θ2 R=□・D(7) θ(θ2-01) In FIG. 1, the microprocessor α1).

θ θ θ、a、Δtが各々入力され、 +41. +
71式に1 # 21 示す演算が実行されて1時刻tにおける目標距離R全示
す距ル11データ(121が出力される。
θ θ θ, a, and Δt are each input, +41. +
The calculation shown in Equation 71 as 1 #21 is executed, and distance 11 data (121) indicating the entire target distance R at time t is output.

〔発明の効果〕〔Effect of the invention〕

このように、この発明によれば、簡便な画像計測装置を
用いて、移動体から、準静止目標までの距離が、完全に
受動的に計測できるので、秘匿性全損うことなく、移動
体の目標までの誘導精度の向上に、著しく′舒与するこ
とができる。
As described above, according to the present invention, the distance from a moving object to a quasi-stationary target can be measured completely passively using a simple image measuring device, so the distance from a moving object to a quasi-stationary target can be measured completely passively. This can significantly improve the accuracy of guidance to the target.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は、この発明の構成の一実施例を示す図。 第2図は、この発明における測距原理金示す図であって
、(1)は撮像手段、(51は見込み可算出回路。 (61は見込み角データ、(71は加速度検出装置、(
8jは加速度データ、(9)はタイマ、uolは時間デ
ータ、 (12+は距離データ、である。 代理人 大 岩 増 雄
The first factor is a diagram showing an example of the configuration of the present invention. FIG. 2 is a diagram illustrating the distance measuring principle in this invention, in which (1) is an imaging means, (51 is a prospect calculation circuit, (61 is a prospect angle data, (71 is an acceleration detection device, (
8j is acceleration data, (9) is timer, uol is time data, (12+ is distance data. Agent Masuo Oiwa)

Claims (1)

【特許請求の範囲】 撮像手段と9画像計測によシ目標巾2等を計測する手段
とを備えた。移動体搭載の測遠器において+ h<t<
tz々る異なる時刻t1+Lt2で、目標の定められた
個所の見込み角θ!、θ、02ヲ各々。 画像計測する手段と9時刻t1からt2までに、移動体
自身が移動した距離りを計測する手段と、上記見込み角
θ11”21θ、および距〜LDを用いて、目標までの
距離を演算する手段とを備えたことを特徴とする測遠器
[Claims] The present invention includes an imaging means and a means for measuring the target width 2, etc. by measuring nine images. + h<t< in a distance measuring instrument mounted on a mobile object
At different times t1+Lt2, the angle of view θ of the target location! , θ, 02wo respectively. 9. A means for measuring an image, a means for measuring the distance traveled by the moving object itself from time t1 to t2, and a means for calculating the distance to the target using the angle of view θ11''21θ and the distance ~LD. A distance measuring instrument characterized by comprising:
JP18726183A 1983-10-06 1983-10-06 Remote measuring apparatus Pending JPS6079283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18726183A JPS6079283A (en) 1983-10-06 1983-10-06 Remote measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18726183A JPS6079283A (en) 1983-10-06 1983-10-06 Remote measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6079283A true JPS6079283A (en) 1985-05-07

Family

ID=16202877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18726183A Pending JPS6079283A (en) 1983-10-06 1983-10-06 Remote measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6079283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628077A (en) * 1985-07-05 1987-01-16 Shipbuild Res Assoc Japan Light wave radar equipment
CN105334509A (en) * 2015-11-27 2016-02-17 盐城工学院 Laser height and distance measuring device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628077A (en) * 1985-07-05 1987-01-16 Shipbuild Res Assoc Japan Light wave radar equipment
JPH0752221B2 (en) * 1985-07-05 1995-06-05 社団法人日本造船研究協会 Lightwave radar device
CN105334509A (en) * 2015-11-27 2016-02-17 盐城工学院 Laser height and distance measuring device and method
CN105334509B (en) * 2015-11-27 2017-07-25 盐城工学院 Laser-measured height range unit and measuring method

Similar Documents

Publication Publication Date Title
KR100556612B1 (en) Apparatus and method of localization using laser
JP5533921B2 (en) Target detection apparatus and system
JP5197023B2 (en) Laser radar equipment
JPS5999308A (en) Distance measuring sensor
JPS55158574A (en) Measuring system for present position and azimuth of moving object
JPS6079283A (en) Remote measuring apparatus
JPH0429080A (en) Bistatic radar equipment
CN203606023U (en) Sound detection device employing two lasers
RU2001109620A (en) METHOD FOR DETERMINING COORDINATES OF A RADIO EMISSION SOURCE AND A RADAR STATION FOR ITS IMPLEMENTATION
CN113009432B (en) Method, device and equipment for improving measurement accuracy and target detection accuracy
CN103557927A (en) Sound detection device for conducting detection by means of sounds sent by sound source
JPS6082985A (en) Target locating method
JPH05288726A (en) Bubble imaging apparatus by means of ultrasonic wave
KR101142616B1 (en) Imaging sonar with high update rate using orthogonal transmitting signals
JP3056851B2 (en) Approach warning device
JPS6261883B2 (en)
GB2102952A (en) Distance measuring devices
JPH075250A (en) Sound wave type distance measuring instrument
JPH06160527A (en) Distance/speed predicting device
JPS5981573A (en) Speed sensor
JPH051166Y2 (en)
JPH04213024A (en) Microwave measuring apparatus
JP4738006B2 (en) Velocity measurement method using Doppler effect and Doppler velocimeter
Holejko et al. Optoelectronic system for the measurements of ship models trajectory
JPH11304898A (en) Ranging method and device