JPS60791A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS60791A JPS60791A JP10883483A JP10883483A JPS60791A JP S60791 A JPS60791 A JP S60791A JP 10883483 A JP10883483 A JP 10883483A JP 10883483 A JP10883483 A JP 10883483A JP S60791 A JPS60791 A JP S60791A
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- wave guide
- laser
- fabry
- end surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/0632—Thin film lasers in which light propagates in the plane of the thin film
- H01S3/0635—Thin film lasers in which light propagates in the plane of the thin film provided with a periodic structure, e.g. using distributed feed-back, grating couplers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1071—Ring-lasers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は、分布帰還形レーザ(以下DFBレーザと称す
)及び分布反射形レーザ(以下DBRレーザと称す)の
増中度が大きい場合でも7アプリベロモ一ド発振を抑圧
出来る半導体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention provides a method for distributing the power of 7 even when the degree of increase in intensity of distributed feedback lasers (hereinafter referred to as DFB lasers) and distributed reflection lasers (hereinafter referred to as DBR lasers) is large. This invention relates to a semiconductor laser that can suppress appli-velomode oscillation.
(b)従来技術と問題点
高速度光信号伝送においてはモード分配雑音が支配的な
伝送距離制限要因となる。この制限を取シ除く手段とし
てDFBレーザ及びDBRレーザが開発されている。現
在開発されているDFBレーザ及びDBRレーザの問題
点は増中度が大きくなった時ファブリペローモードでの
発振が生じ、多縦モード発振をすることである。(b) Prior Art and Problems In high-speed optical signal transmission, mode distribution noise is a dominant factor limiting transmission distance. DFB lasers and DBR lasers have been developed as means to remove this limitation. The problem with currently developed DFB lasers and DBR lasers is that when the degree of enhancement becomes large, oscillation occurs in the Fabry-Perot mode, resulting in multi-longitudinal mode oscillation.
これは単−紋モード発振が請求される、DFB;DBR
レーザにとっては重要な問題である。この為両端面をテ
ーパ状にして反射を抑圧しているがこれでもさらに増中
度の大きい物では、ファブリペローモードでの発振が生
じ多縦モード発振が生ずる。This is called single-pattern mode oscillation, DFB; DBR
This is an important issue for lasers. For this reason, both end faces are tapered to suppress reflection, but even with this, if the degree of amplification is even greater, oscillation in the Fabry-Perot mode occurs, resulting in multi-longitudinal mode oscillation.
従来のDFB、DBRレーザには上記のような欠府があ
る。Conventional DFB and DBR lasers have the above-mentioned deficiencies.
(c) 発明の目的
本発明の目的は上記の欠点に6み、DFBレーfDBR
レーザの増巾度が非常に大きい場合でもファブリペロモ
ード発振を抑止出来る半導体レーザの提供にある。(c) Object of the Invention The object of the present invention is to solve the above-mentioned drawbacks and to improve the DFB rate fDBR.
An object of the present invention is to provide a semiconductor laser capable of suppressing Fabry-Perot mode oscillation even when the amplification degree of the laser is extremely large.
(d) 発明の構成
本発明は上記の目的を連成するだめに、DFBレーザ及
びDBRレーザにおいて、両端面を誘電体導波路又はレ
ーザ媒質を用いリング状に接続したことを特徴とする。(d) Structure of the Invention In order to achieve the above objects, the present invention is characterized in that both end faces of a DFB laser and a DBR laser are connected in a ring shape using a dielectric waveguide or a laser medium.
(e) 発明の実施例 以下本発明の実施例につき図に従って説明する。(e) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.
第1図は従来例のDFBレーザの断面図囚及び(5)の
丸印部分の拡大図CB)であり、第2図は本発明の実施
例のDFBレーザの断面図で(4)は平面し1、(B)
は下側面図、(C)は右側面図を示す。Figure 1 is a cross-sectional view of a conventional DFB laser and an enlarged view (CB) of the circled area in (5). Figure 2 is a cross-sectional view of a DFB laser according to an embodiment of the present invention, and (4) is a plane view. 1, (B)
(C) shows a bottom side view, and (C) shows a right side view.
図中1,5は活性層、2,3は端面、4,6は回折格子
、7は誘電体導波路(父はレーザ媒質へ8は出力結合導
波路、9は光7アイノくを示す。In the figure, 1 and 5 are active layers, 2 and 3 are end faces, 4 and 6 are diffraction gratings, 7 is a dielectric waveguide (the latter is connected to a laser medium, 8 is an output coupling waveguide, and 9 is an optical 7 ink).
i1図のDF”Bレーザの発振波長は次式の発振器条件
で与えられる。The oscillation wavelength of the DF''B laser shown in Figure i1 is given by the oscillator condition of the following equation.
λ
−N = a
n
ここでNは自然数でありN=2の場合が多く製造されて
いる。aは回折格子の間隔てあシはぼ40゜nm位であ
る。λは真空中での波長、nはレーザ媒質の屈折率であ
る。λ −N = a n Here, N is a natural number, and the case where N=2 is often manufactured. The distance a between the diffraction gratings is about 40 nm. λ is the wavelength in vacuum, and n is the refractive index of the laser medium.
第1図の従来のDFBレーザでは、端面2,3をテーパ
状にして反射を4抑圧しても活性層1の増中度が非常に
大きくなるとファブリペロモードでの発振が生ずる。In the conventional DFB laser shown in FIG. 1, even if the end faces 2 and 3 are tapered to suppress reflection by 4, oscillation in the Fabry-Perot mode occurs when the degree of enhancement of the active layer 1 becomes very large.
そこで本発明では第2図に示す如く活性層5の両端面を
透電体済波路(又はレーザ媒質)7でリング状に接続し
てファブリペロモード発振を抑圧している。この時、誘
電体導波路7の長さは可干渉長よシも長くとる。このよ
うにすれば活性層5の両端面は誘電体導波路(又はレー
ザ媒質)7でリング状に構成されているため活性層5の
増中度カ大キくなってもファブリペロモードの発振はし
ない。Therefore, in the present invention, as shown in FIG. 2, both end faces of the active layer 5 are connected in a ring shape by a conductive wave path (or laser medium) 7 to suppress Fabry-Perot mode oscillation. At this time, the length of the dielectric waveguide 7 is set to be longer than the coherent length. In this way, both end faces of the active layer 5 are configured in a ring shape with the dielectric waveguide (or laser medium) 7, so even if the intensity increase of the active layer 5 becomes large, the Fabry-Perot mode oscillates. I don't.
又第2図に示す如く光ファイバ9で光を取出すのは、活
性層5より、誘電体導波路7、出力結合導波路8を介し
て取出すので、活性IN!5よりの距li′1tが長い
ので光ファイバ9との結合部における反射の影譬を軽減
することも出来る。又誘電体導波路7内に異った間隔の
回折格子を複数設けることにより、多縦モード発振をさ
せることも可能でありマルナモードファイバ用光源とし
て用いることも出来る。Furthermore, as shown in FIG. 2, light is extracted through the optical fiber 9 from the active layer 5 via the dielectric waveguide 7 and the output coupling waveguide 8, so that the active IN! Since the distance li'1t from the optical fiber 9 is long, it is possible to reduce the influence of reflection at the coupling portion with the optical fiber 9. Furthermore, by providing a plurality of diffraction gratings with different intervals in the dielectric waveguide 7, it is possible to cause multi-longitudinal mode oscillation, and it can also be used as a light source for a Maruna mode fiber.
第3図は本発明の実施例のDBRレーザの断面図で(4
)は平面図(B)は右側面図である。FIG. 3 is a cross-sectional view of a DBR laser according to an embodiment of the present invention (4
) is a plan view (B) is a right side view.
回申10は活性層、11.12は回折格子、13は誘電
体導波路(又はレーザff質)、14は出力結合導波路
、15は光ファイバを示す。Reference numeral 10 indicates an active layer, 11 and 12 a diffraction grating, 13 a dielectric waveguide (or laser ff quality), 14 an output coupling waveguide, and 15 an optical fiber.
第3図は、DBRレーザのW1合な小しており、回折格
子11.12のある誘電体導波路131−]:IJング
状になっている為、端面がなくDFB形の場合で説明し
たと同様に活性層10の増中度が非常に大きくなっても
ファブリペロモード発振を生ずることはない。In Figure 3, the W1 of the DBR laser is small, and the dielectric waveguide 131-] with the diffraction grating 11. Similarly, even if the degree of enhancement of the active layer 10 becomes extremely large, Fabry-Perot mode oscillation will not occur.
(f) 発明の効果
以上詳細に説明せる如く、本発明によれば、DFBレー
ザ及びDBRレーザの増巾度が非常に大きい場合でもフ
ァブリペロモード発止を抑圧出来る効果がある。(f) Effects of the Invention As explained in detail above, the present invention has the effect of suppressing Fabry-Perot mode onset even when the degree of amplification of the DFB laser and the DBR laser is very large.
第1図は従来例の分布帰還形レーザの16+面図、第2
図は本発明の実施例の分布帰戚形レーザの断面図、第3
図は本発明の実施例の分布反射形レーザの断面図である
。
図中1.5.10は活性層、2,3は端面、4,6゜1
1.12は回折格子、7.13は誘電体導波路(又はレ
ーザ媒質)、8.14は出力結合導波路、9゜15は光
ファイバを示す〇
第 ll2I
□と□−
第 2 図
部3図Figure 1 is a 16+ side view of a conventional distributed feedback laser;
The figure is a cross-sectional view of a distributed distribution type laser according to an embodiment of the present invention.
The figure is a sectional view of a distributed reflection laser according to an embodiment of the present invention. In the figure, 1, 5 and 10 are active layers, 2 and 3 are end faces, 4 and 6°1
1.12 is a diffraction grating, 7.13 is a dielectric waveguide (or laser medium), 8.14 is an output coupling waveguide, and 9.15 is an optical fiber. figure
Claims (1)
面を誘電体導波路又はレーザ媒質を用いリング状に接続
したことを特徴とする半導体レーザ0A semiconductor laser 0 characterized in that, in a distributed feedback laser and a distributed reflection laser, both end faces are connected in a ring shape using a dielectric waveguide or a laser medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10883483A JPS60791A (en) | 1983-06-17 | 1983-06-17 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10883483A JPS60791A (en) | 1983-06-17 | 1983-06-17 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60791A true JPS60791A (en) | 1985-01-05 |
Family
ID=14494730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10883483A Pending JPS60791A (en) | 1983-06-17 | 1983-06-17 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60791A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6446720A (en) * | 1987-07-15 | 1989-02-21 | American Telephone & Telegraph | Fabry-perot cavity |
JP2015002335A (en) * | 2013-06-18 | 2015-01-05 | 日本電信電話株式会社 | Integrated semiconductor light source |
-
1983
- 1983-06-17 JP JP10883483A patent/JPS60791A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6446720A (en) * | 1987-07-15 | 1989-02-21 | American Telephone & Telegraph | Fabry-perot cavity |
JP2015002335A (en) * | 2013-06-18 | 2015-01-05 | 日本電信電話株式会社 | Integrated semiconductor light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lang et al. | Theory of grating-confined broad-area lasers | |
US5143864A (en) | Method of producing a semiconductor laser | |
KR100519922B1 (en) | self-mode locked multisection semiconductor laser diode | |
JP2845403B2 (en) | Optical coupling device for optical communication equipment | |
US4633474A (en) | Distributed feedback semiconductor laser | |
JP2001133647A (en) | Waveguide type higher order mode filter and semiconductor laser | |
JPS60791A (en) | Semiconductor laser | |
US6259718B1 (en) | Distributed feedback laser device high in coupling efficiency with optical fiber | |
JPH08334796A (en) | Optical wavelength conversion integrating element | |
JPS6362917B2 (en) | ||
JP2819557B2 (en) | Semiconductor light emitting device | |
JPH0319292A (en) | Semiconductor laser | |
JP3595677B2 (en) | Optical isolator, distributed feedback laser and optical integrated device | |
JP3527061B2 (en) | Distributed feedback semiconductor laser | |
JPH0147031B2 (en) | ||
JP4523131B2 (en) | Semiconductor laser device | |
JPS6295886A (en) | Distribution feedback construction semiconductor laser | |
JPS61125187A (en) | Semiconductor light-emitting device | |
JPS61171190A (en) | Distributed reflection type laser | |
JP3151755B2 (en) | Distributed feedback semiconductor laser | |
JP2000183443A (en) | Semiconductor laser device with spot size converter and its manufacture | |
JP3797735B2 (en) | Optical integrated circuit and manufacturing method thereof | |
JPS58199586A (en) | Semiconductor laser | |
JPH04226094A (en) | Semiconductor laser element | |
JPS6392076A (en) | Semiconductor laser |