JPS6079150A - Oxygen condenser - Google Patents
Oxygen condenserInfo
- Publication number
- JPS6079150A JPS6079150A JP58186112A JP18611283A JPS6079150A JP S6079150 A JPS6079150 A JP S6079150A JP 58186112 A JP58186112 A JP 58186112A JP 18611283 A JP18611283 A JP 18611283A JP S6079150 A JPS6079150 A JP S6079150A
- Authority
- JP
- Japan
- Prior art keywords
- adsorbers
- carbon dioxide
- nitrogen
- valve
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0454—Controlling adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0259—Physical processing only by adsorption on solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/402—Further details for adsorption processes and devices using two beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/414—Further details for adsorption processes and devices using different types of adsorbents
- B01D2259/4141—Further details for adsorption processes and devices using different types of adsorbents within a single bed
- B01D2259/4145—Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0046—Nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0051—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸素濃縮装置の改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in oxygen concentrators.
(従来技術)
従来、第1図に示すような自動車の内燃機関において、
エアポンプ1から加圧空気を供給して、脱湿器2の吸湿
剤3及び炭酸ガス吸着剤4により、水分(N20)及び
炭酸ガス(C02)を順次に吸着して取り除き、ついで
、窒素分離器5の窒素吸着剤6により窒素(N2)を吸
着して取り除いた後の濃縮された酸素(02)を、混合
器7に取り出して、エンジン8に供給する一方、この吸
着工程の終了後、脱湿器2の前段の加圧空気供給口9を
大気に開放し、若しくは真空ポンプ10でひき、濃縮酸
素等を逆流させることにより、吸着工程で各吸湿。(Prior Art) Conventionally, in an automobile internal combustion engine as shown in Fig. 1,
Pressurized air is supplied from the air pump 1, and moisture (N20) and carbon dioxide (C02) are sequentially adsorbed and removed by the moisture absorbent 3 and carbon dioxide adsorbent 4 of the dehumidifier 2, and then the nitrogen separator The concentrated oxygen (02) after nitrogen (N2) has been adsorbed and removed by the nitrogen adsorbent 6 of 5 is taken out to the mixer 7 and supplied to the engine 8. The pressurized air supply port 9 at the front stage of the humidifier 2 is opened to the atmosphere, or the vacuum pump 10 is used to cause concentrated oxygen, etc. to flow back, thereby absorbing moisture in the adsorption process.
吸着剤3,4.6に吸着された水分、炭酸ガス。Moisture and carbon dioxide adsorbed on adsorbents 3 and 4.6.
窒素等を吸湿、吸着剤3,4.6から分離させて外部に
放出する脱着工程を行なうようにした酸素濃縮装置が提
案されている(特公昭55−45737号公報参照)。An oxygen concentrator has been proposed that performs a desorption process in which nitrogen and the like are absorbed, separated from the adsorbents 3 and 4.6, and released to the outside (see Japanese Patent Publication No. 45737/1983).
ところで、上記従来技術での脱湿器2と窒素分離器5の
“運転時゛における器内の吸着成分の分布は、第2図(
a)及び第2図(b)に示す如く、容器2゜5内の範囲
にとどまるようになっているが、“停止時”における器
内の吸着成分の分布は、第3図(、)及び第3図(b)
に示す如くになる。By the way, the distribution of adsorbed components in the dehumidifier 2 and nitrogen separator 5 in the above-mentioned prior art during operation is shown in Figure 2 (
As shown in a) and Fig. 2(b), the adsorbed components remain within the range of 2°5 in the container, but the distribution of adsorbed components inside the container when “stopped” is as shown in Fig. 3(,) and Figure 3(b)
It will look like this.
即ち、“停止時゛においては、脱湿器2と窒素分離器5
を大気に開放して内圧を抜くので、これにより相当の脱
着工程が進行するものの完全ではな(1゜
そして、この脱着不完全のまま放置しておくと、脱湿器
2内の炭酸ガス(CO2)が窒素分離器5内の窒素(N
2)の吸着分布領域まで拡散するようになる。That is, during "stopping", the dehumidifier 2 and the nitrogen separator 5
The dehumidifier 2 is opened to the atmosphere to release the internal pressure, so although the desorption process progresses to a considerable extent, it is not complete (1°).And if this desorption is left incomplete, the carbon dioxide in the dehumidifier 2 ( CO2) in the nitrogen separator 5
2) It begins to diffuse into the adsorption distribution region.
そうすると、パ再始動時゛には、窒素の吸着分布領域に
脱着性の悪い炭酸ガスが拡散しているので、窒素の吸着
効率が悪化して、濃縮度の低い濃縮酸素しか取り出すこ
とができず、エンジン8等の始動性が悪化するようにな
る。Then, when the engine is restarted, carbon dioxide, which has poor desorption properties, has diffused into the nitrogen adsorption distribution area, so the nitrogen adsorption efficiency deteriorates and only concentrated oxygen with a low concentration can be taken out. , the startability of the engine 8 and the like deteriorates.
また、炭酸ガスは吸着剤への吸着性は良好であるが、上
述の如く肌着性は悪いので、窒素の吸着分布領域の吸着
剤まで劣化させるという問題があった。Further, although carbon dioxide gas has good adsorption properties to adsorbents, as mentioned above, it has poor skin adhesion, so there is a problem that even the adsorbents in the nitrogen adsorption distribution region are degraded.
(発明の目的)
本発明は、上記従来の問題を解消するため【こなされた
もので濃縮酸素装置の停止時において、炭酸ガス等の窒
素の吸着分布領域への拡散を未然に防止して、再始動時
の窒素の吸着効率の向」二を図ると共に、吸着剤の劣化
を防止することを基本的な目的とするものである。(Object of the Invention) The present invention has been made in order to solve the above-mentioned conventional problems [by preventing nitrogen such as carbon dioxide gas from diffusing into the adsorption distribution region when the concentrated oxygen device is stopped. The basic purpose is to improve the nitrogen adsorption efficiency during restart and to prevent deterioration of the adsorbent.
(発明の構成)
このため本発明は、炭酸ガス吸着分布領域と窒素吸着分
布領域との境界部で吸着器を2つに分離し、この分離し
た2つの吸着器を連通路で連通して、該連通路に加圧空
気の供給停止時、該連通路を閉じる制御弁を設けて構成
したものである。(Structure of the Invention) Therefore, the present invention separates the adsorber into two at the boundary between the carbon dioxide adsorption distribution region and the nitrogen adsorption distribution region, and communicates the two separated adsorption devices with a communication path. The communication passage is provided with a control valve that closes the communication passage when the supply of pressurized air is stopped.
(発明の効果)
本発明tこよれば、2つに分離した吸着器の連通路を、
加圧空気の供給停止時に制御弁で閉じるようにしたもの
であるから、上流側の吸着器内の炭酸ガスが、下流側の
吸着器内に拡散することがなくなるので、再始動時に下
流側の吸着器での窒素の吸着効率が向上するようになる
。(Effects of the Invention) According to the present invention, the communication path of the adsorber separated into two
Since the control valve closes when the supply of pressurized air is stopped, the carbon dioxide in the upstream adsorber will not diffuse into the downstream adsorber, so the downstream adsorption device will be closed when the pressurized air is restarted. Nitrogen adsorption efficiency in the adsorber improves.
また、炭酸ガスの下流側の吸着器への拡散がなくなるの
で、下流側の吸着器の吸着剤の劣化が防止されるよらに
なる。Furthermore, since the diffusion of carbon dioxide gas to the downstream absorber is eliminated, deterioration of the adsorbent in the downstream absorber is prevented.
3−
さらに、上流側の吸着器の吸着剤が肌着性の悪い炭酸ガ
スで劣化した場合でも、この上流側の吸着器だけを取替
えればよいから、取替えが簡単でコストも安くてすむよ
うになる。3- Furthermore, even if the adsorbent in the upstream adsorbent deteriorates due to carbon dioxide gas, which has poor adhesion to the skin, only the upstream adsorbent needs to be replaced, making replacement easy and inexpensive. .
(実施例)
第5図に示す酸素濃縮装置Aにおいて、13は加圧空気
を送給するポンプ、14はポンプ13h・ら送給された
加圧空気を整流するサージタンクである。(Example) In the oxygen concentrator A shown in FIG. 5, 13 is a pump for feeding pressurized air, and 14 is a surge tank for rectifying the pressurized air fed from pump 13h.
15.16は吸着剤を充填した吸着器で、各吸着器15
.16は、水分、炭酸ガス吸着分布領域(N20.Co
2)と窒素吸着分布領域(N2)との境界部で、下吸着
器25.26と下吸着器35.36とに夫々分離されて
いる。15 and 16 are adsorbers filled with adsorbent, and each adsorber 15
.. 16 is the moisture and carbon dioxide adsorption distribution area (N20.Co
2) and the nitrogen adsorption distribution region (N2), the lower adsorbers 25.26 and 35.36 are separated, respectively.
17は濃縮酸素を溜めるバッファータンク、18は例え
ば自動車用エンジンの場合には、エンジンの混合器のよ
うな被供給装置、19は大連の答弁a−kを制御するコ
ンピュータである。17 is a buffer tank for storing concentrated oxygen; 18 is a supplied device such as an engine mixer in the case of an automobile engine; and 19 is a computer that controls Dalian's answering machine ak.
上記サージタンク14には大気開放弁aが設けられ、該
サージタンク14の吐出口は、左右の下4−
吸着器25.26の一端部25a、26aに開閉弁す、
cを介して夫々接続される。The surge tank 14 is provided with an atmosphere release valve a, and the discharge port of the surge tank 14 is opened and closed at one end 25a, 26a of the left and right lower adsorbers 25, 26.
They are connected to each other via c.
該左右の下吸着器25.26の一端部25a。One end portion 25a of the left and right lower suction devices 25, 26.
26aには、大気開放弁d、eが夫々設けられると共に
、左右の下吸着器25.26の他端部25b。26a is provided with atmospheric release valves d and e, respectively, and the other ends 25b of the left and right lower adsorbers 25 and 26.
26bと、左右の下吸着器35.36の一端部35a。26b, and one end portion 35a of the left and right lower suction devices 35, 36.
36aとの間は、開閉弁Lgを介して夫々接続される。36a are connected to each other via on-off valves Lg.
上記左右の下吸着器35.36の他端部35b。The other ends 35b of the left and right lower suction devices 35, 36.
36bは、バッフ7−タンク17に開閉弁り、;を介し
て夫々接続され、該各地端部3Sb、36bと開閉弁h
e iとの間は、開閉弁jを介して接続される。36b is connected to the buffer 7-tank 17 via an on-off valve h;
It is connected to e i via an on-off valve j.
上記バッフ7−タンク17と被供給装置18とは、開閉
弁kを介して接続される。The buffer 7-tank 17 and the supplied device 18 are connected via an on-off valve k.
上記答弁a−には、以下で説明するようにコンピュータ
19により表1のように制御される。The above answer a- is controlled by the computer 19 as shown in Table 1, as will be explained below.
[運転時]−第8図(、)参照−
(1)例えば、自動車のイグニッションスイッチをオン
すると、タイマーが0→t1秒にセットされると共に、
第61(a)に示すような工程M1に答弁a−には開閉
制御される。[During driving] - See Figure 8 (,) - (1) For example, when the ignition switch of a car is turned on, the timer is set from 0 to t1 seconds, and
In step M1 as shown in No. 61(a), opening and closing are controlled in response a-.
ポンプ13により、加圧空気は実線の矢印で示すように
、
ポンプ13→サージタンク14→弁b→左下吸着器25
→弁f→左上吸着器35→弁h→バッフ7−タンク17
→弁に→被供給装置18
の順に送給され、左下、左上吸着器25.35の吸着作
用(吸着工程)により、被供給装置18には濃縮酸素が
供給される。The pump 13 sends pressurized air to the pump 13 → surge tank 14 → valve b → lower left adsorber 25 as shown by the solid arrow.
→ Valve f → Upper left adsorption device 35 → Valve h → Buff 7 - Tank 17
Concentrated oxygen is fed in the order of →valve →supplied device 18, and concentrated oxygen is supplied to the supplied device 18 by the adsorption action (adsorption process) of the lower left and upper left absorbers 25,35.
このとき、右下吸着器26の一端部26aの弁eは“開
”で大気開放状態にあるから、右下、−ヒ吸着器26.
36の内圧が低下して、点線の矢印で示すように、炭酸
ガス、窒素等が徐々に外部に放出されて脱着工程が進行
する。At this time, since the valve e at one end 26a of the lower right adsorption device 26 is "open" and exposed to the atmosphere, the lower right adsorption device 26.
As the internal pressure of 36 decreases, carbon dioxide, nitrogen, etc. are gradually released to the outside as shown by the dotted arrow, and the desorption process progresses.
(2)上記工程M1の時間t1が経過後、タイマーがリ
セットされて、直ちに0→t2秒にセットされ7−
ると共に、第6図(b)に示すような工程M2に答弁a
−には開閉制御される。(2) After the time t1 of the above step M1 has elapsed, the timer is reset and immediately set from 0 to t2 seconds, and the answer a to step M2 as shown in FIG. 6(b) is set.
- is controlled to open and close.
そうすると、ポンプ13の加圧空気は、実線および点線
の矢印で示すように、
ポンプ13→サージタンク14→弁1)→左下吸着器2
5→弁f→左上吸着器35→弁j→右上吸着器36→弁
g→右下吸着器26→弁e→大気の順に送給され、右下
、上吸着器26.36の内圧は工程M1ですでに抜かれ
ているので、濃縮酸素の逆流がスムーズになり、右下、
上吸着器26゜36の炭酸ガス、窒素等が迅速に外部に
放出されて脱着工程が進行する。Then, the pressurized air of the pump 13 flows as shown by the solid line and dotted arrows: pump 13 → surge tank 14 → valve 1) → lower left adsorber 2
5 → Valve f → Upper left adsorption device 35 → Valve j → Upper right adsorption device 36 → Valve g → Lower right adsorption device 26 → Valve e → Atmospheric air is supplied in this order, and the internal pressure of the lower right and upper adsorption devices 26.36 is Since it has already been removed at M1, the backflow of concentrated oxygen is smoother, and the lower right
Carbon dioxide, nitrogen, etc. in the upper adsorber 26 and 36 are quickly discharged to the outside, and the desorption process progresses.
このとき、バッファータンク17の弁には“開゛である
か呟濃縮酸素が途切れることなく被供給装置18に供給
されつづける。At this time, the valve of the buffer tank 17 is "open" and concentrated oxygen continues to be supplied to the supplied device 18 without interruption.
(3)上記工程M2の時間t2が経過後、タイマーがリ
セットされて、直ちにO−+t3秒にセットされると共
に、第6図(c)に示すような工程M3に答弁a−には
開閉制御される。(3) After the time t2 of the above step M2 has elapsed, the timer is reset and immediately set to O-+t3 seconds, and the opening/closing control is performed in step M3 as shown in FIG. 6(c). be done.
ポンプ13により、加圧空気は実線の矢印で示8−
すように、
ポンプ13→サージタンク14→弁C→右下吸着器26
→弁g→右上吸着器36→弁i→バッフ7−タンク17
→弁に→被供給装置18
の順に送給され、右下吸着器26により炭酸ガスなどが
効率的に吸着され、左上吸着器36により窒素が効率的
に吸着されて、被供給装置18には濃縮酸素が供給され
る。The pump 13 sends pressurized air to the pump 13 → surge tank 14 → valve C → lower right adsorber 26 as shown by the solid arrow.
→ Valve g → Upper right adsorption device 36 → Valve i → Buffer 7 - Tank 17
→ to the valve → to the supplied device 18 . Carbon dioxide gas etc. is efficiently adsorbed by the lower right absorber 26 , and nitrogen is efficiently adsorbed by the upper left absorber 36 . Concentrated oxygen is supplied.
このとき、左下吸着器25の一端部25aの弁dは“開
”で大気開放状態にあるか呟左下、上吸着器25.35
の内圧が低下して、点線の矢印で示すように、炭酸ガス
、窒素等が徐々に外部に放出されて脱着工程が進行する
。At this time, the valve d at one end 25a of the lower left adsorbent 25 is "open" and exposed to the atmosphere.
As the internal pressure decreases, carbon dioxide, nitrogen, etc. are gradually released to the outside as shown by the dotted arrows, and the desorption process progresses.
(4)上記工程M3の時間t3が経過後、タイマーがリ
セットされて、直ちに0 +1.秒にセットされると共
に、第6図(d)に示すような工程M4に答弁a−には
開閉制御される。(4) After the time t3 of the above step M3 has elapsed, the timer is reset and the timer is immediately changed to 0 +1. The opening/closing control is set to seconds, and the opening/closing control is performed in response a- to step M4 as shown in FIG. 6(d).
そうすると、ポンプ13の加圧空気は、実線および点線
の矢印で示すように、
ポンプ13→サージタンク14→弁C→右下吸着器26
→弁g→右上吸着器36→弁j→左上吸着器35→弁「
→左下吸着器25→弁d→大気の順に送給され、左下、
上吸着器25.35の内圧は工程M3ですでに抜かれて
いるので、濃縮酸素の逆流がスムーズになり、左下、上
吸着器25゜35の炭酸ガス、窒素等が迅速に外部に放
出されて脱着工程が進行する。Then, the pressurized air from the pump 13 flows as shown by solid and dotted arrows: pump 13 → surge tank 14 → valve C → lower right adsorption device 26
→ Valve g → Upper right adsorption device 36 → Valve j → Upper left adsorption device 35 → Valve
→ Lower left adsorption device 25 → Valve d → Atmosphere is supplied in this order, and the lower left,
Since the internal pressure of the upper adsorber 25.35 has already been released in step M3, the backflow of concentrated oxygen becomes smooth, and carbon dioxide, nitrogen, etc. in the upper adsorption device 25.35 at the lower left are quickly released to the outside. The desorption process progresses.
このとき、バッファータンク17の弁には“開゛である
か呟濃縮酸素が途切れることなく被供給装置18に供給
されつづける。At this time, the valve of the buffer tank 17 is "open" and concentrated oxygen continues to be supplied to the supplied device 18 without interruption.
該工程M4の時間t4が経過後、タイマーがリセットさ
れて、再び上記(1)に戻り、タイマーセ・ント。After the time t4 of step M4 has elapsed, the timer is reset and the process returns to (1) above to set the timer.
各工程M1〜M4が繰返される。Each process M1 to M4 is repeated.
[停止時]−第8図(b)参照−
(5)例えば、自動車のイグニッションスイ・ンチをオ
フすると、割込みルーチンにより、いずれかの工程M1
〜M4にあるタイマーがリセットされて、直ちにO→t
5秒にセットされると共に、第7図(a)に示すよらな
工程M5に答弁a−には開閉制御される。[When stopped] - See Figure 8 (b) - (5) For example, when the ignition switch of a car is turned off, an interrupt routine causes one of the processes M1
~The timer in M4 is reset and O → t immediately
It is set to 5 seconds and is controlled to open and close in response to step M5 shown in FIG. 7(a).
そうすると、バッファータンク17の濃縮酸素は、点線
の矢印で示す上もに、
バッファータンク17→弁り、i→左右上吸着器35.
36→弁Lg→左右下吸着器25,26→弁す、c→サ
ージタンク14→弁a→大気の順に送給され、バッフ7
−タンク17.左右下。Then, the concentrated oxygen in the buffer tank 17 flows as shown by the dotted arrows: buffer tank 17→valve, i→left and right upper adsorber 35.
36 → Valve Lg → Lower left and right adsorber 25, 26 → Valve S, c → Surge tank 14 → Valve a → Atmospheric air is supplied in this order, and the buffer 7
- Tank 17. Bottom left and right.
上吸着器25,35,26,36.サージタンク14の
内圧が抜かれると共に、濃縮酸素の逆流で左右下、上吸
着器25.26,35.36の炭酸ガス、窒素等が外部
に放出されて脱着工程が行なわれる。Upper adsorber 25, 35, 26, 36. As the internal pressure of the surge tank 14 is released, the carbon dioxide, nitrogen, etc. in the left and right lower and upper adsorbers 25, 26, 35, 36 are discharged to the outside by the reverse flow of concentrated oxygen, and a desorption process is performed.
(6)工程M5の時間t5が経過後、第7図(b)に示
すような工程M6に答弁a=には全閉制御される。(6) After time t5 in step M5 has elapsed, fully closed control is performed in step M6 as shown in FIG. 7(b).
このように、停止時に左右吸着器15.16(25,3
5,26,36)等の内圧を抜き、脱着工程を行なって
お(のは、停止時が工程M1〜M4のいずれの段階であ
っても、次の運転時には脱着ずみの吸着器15.16
(25,35,26゜36)を使用できるので、スター
ト時から吸着効率を高められるためである。In this way, when the left and right adsorbers 15, 16 (25, 3
5, 26, 36), etc., and performs the desorption process (no matter which stage of steps M1 to M4 is stopped, the desorbed adsorber 15, 16) is removed during the next operation.
(25, 35, 26°36) can be used, so the adsorption efficiency can be increased from the start.
11−
また、工程M6で答弁a−kを全閉制御するのは、停止
時に大気開放弁a+ 48から外部空気が左右下吸着器
25.26に入り、各吸着剤等に水分。11- Also, in step M6, the answering valves a-k are fully closed because, when stopped, external air enters the left and right lower adsorbers 25 and 26 from the atmosphere release valve a+ 48, and moisture is absorbed into each adsorbent.
炭酸ガス、窒素等が吸着してスタート時の吸着効率が低
下するのを防ぐためである。This is to prevent carbon dioxide, nitrogen, etc. from being adsorbed and the adsorption efficiency at the start being reduced.
さらに、工程M6で制御弁Lgを閉じると、第4図(a
)及び第4図(b)に示すように、炭酸ガス(C02)
の吸着分布領域に相当する左右下吸着器25゜26の炭
酸ガスが、窒素(N2)の吸着分布領域に相当する左右
上吸着器35.36内の吸着剤に拡散しなくなるので、
再始動時に弁f1gを開いたとき、左右上吸着器35.
36での窒素の吸着効率が向上し、また、左右上吸着器
35.36の吸着剤の劣化も防止されるのである。なお
、第6図(、)−(d)および第7図(a)の吸着器1
5.16(25゜26.35,36)内に示した矢印中
、実線はその吸着器が吸着工程にあり、また点線はその
吸着器が脱着工程にあることを示すものである。Furthermore, when the control valve Lg is closed in step M6, FIG.
) and as shown in Figure 4(b), carbon dioxide gas (C02)
Carbon dioxide gas in the left and right lower adsorbers 25 and 26, which correspond to the adsorption distribution area of , no longer diffuses into the adsorbent in the left and right upper adsorbers 35 and 36, which correspond to the nitrogen (N2) adsorption distribution area.
When valve f1g is opened during restart, the left and right upper adsorber 35.
36 is improved, and deterioration of the adsorbents in the left and right upper adsorbers 35 and 36 is also prevented. In addition, the adsorber 1 in FIGS. 6(,)-(d) and FIG. 7(a)
Among the arrows shown within 5.16 (25°26.35, 36), the solid line indicates that the adsorber is in the adsorption process, and the dotted line indicates that the adsorber is in the desorption process.
第1図は従来の酸素濃縮装置のシステム図、第12−
2図(a)及び第2図(1))は第1図の装置の運転時
の吸着成分分布及び濃度を示す説明図、第3図(a)及
び第3図(b)は第1図の装置の停止時の吸着成分分布
及び濃度を示す説明図、第4図(a)及び第4図(b)
は本発明に係る第5図の装置の停止時の吸着成分分布及
び濃度を示す説明図、第5図は本発明に係る酸素濃縮装
置のシステム図、第6図(、)〜(d)は第5図の装置
の運転時の作動説明図、第7図(、)及び第7図(b)
は第5図の装置の停止時の作動説明図、第8図(a)は
第5図の装置の運転時の70−チャート、第8図(b)
は第5図の装置の停止時の70−チャートである。
A・・・酸素濃縮装置、
13・・・ポンプ、 14・・・サージタンク、15.
16・・・吸着器(25・・・左下吸着器、35・・・
左上吸着器、26・・・右下吸着器、36・・・右上吸
着器)、 17・・・バッフ7−タンク、18・・・被
供給装置、19・・・コンピュータ、a−e、 h−k
・・・弁、 f+g・・・開閉弁(制御弁)。
史11口口
1J開昭GO−79150(6)
(a)
第8図
(b)Figure 1 is a system diagram of a conventional oxygen concentrator, Figures 12-2 (a) and 2 (1)) are explanatory diagrams showing the distribution and concentration of adsorbed components during operation of the equipment in Figure Figures 3(a) and 3(b) are explanatory diagrams showing the distribution and concentration of adsorbed components when the apparatus in Figure 1 is stopped, and Figures 4(a) and 4(b)
is an explanatory diagram showing the distribution and concentration of adsorbed components when the device of FIG. 5 according to the present invention is stopped, FIG. 5 is a system diagram of the oxygen concentrator according to the present invention, and FIGS. 6 (,) to (d) are An explanatory diagram of the operation of the device in Figure 5, Figure 7 (,) and Figure 7 (b)
is an explanatory diagram of the operation of the device in FIG. 5 when it is stopped, FIG. 8(a) is a 70-chart when the device in FIG. 5 is in operation, and FIG. 8(b) is
is a 70-chart when the apparatus of FIG. 5 is stopped. A...Oxygen concentrator, 13...Pump, 14...Surge tank, 15.
16... Adsorption device (25... Lower left adsorption device, 35...
upper left adsorption device, 26... lower right adsorption device, 36... upper right adsorption device), 17... buff 7-tank, 18... supplied device, 19... computer, a-e, h -k
...Valve, f+g...Opening/closing valve (control valve). History 11 Kuguchi 1J Kaisho GO-79150 (6) (a) Figure 8 (b)
Claims (1)
く吸着する吸着剤を充填した吸着器に加圧空気を供給し
、該吸着剤により濃縮された酸素を吸着器から取出すよ
)にした酸素濃縮装置において、 炭酸ガス吸着分布領域と窒素吸着分布領域との境界部で
上記吸着器を2つに分離し、この分離した2つの吸着器
を連通路で連通して、該連通路に、加圧空気の供給停止
時、該連通路を閉じる制御弁を設けたことを特徴とする
酸素濃縮装置。(1) Pressurized air is supplied to an adsorbent filled with an adsorbent that adsorbs more nitrogen, carbon dioxide, etc. than oxygen in the air, and the oxygen concentrated by the adsorbent is extracted from the adsorber.) In the oxygen concentrator, the adsorber is separated into two at the boundary between the carbon dioxide adsorption distribution region and the nitrogen adsorption distribution region, and the two separated adsorption devices are connected through a communication passage. An oxygen concentrator comprising a control valve that closes the communication passage when the supply of pressurized air is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58186112A JPS6079150A (en) | 1983-10-04 | 1983-10-04 | Oxygen condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58186112A JPS6079150A (en) | 1983-10-04 | 1983-10-04 | Oxygen condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6079150A true JPS6079150A (en) | 1985-05-04 |
Family
ID=16182566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58186112A Pending JPS6079150A (en) | 1983-10-04 | 1983-10-04 | Oxygen condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6079150A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650221A (en) * | 1992-07-31 | 1994-02-22 | Seiichi Watanabe | Internal combustion engine |
US20110232482A1 (en) * | 2010-03-29 | 2011-09-29 | Wearair Oxygen, Inc. | Moisture Mitigation in PSA Air Fractionation |
-
1983
- 1983-10-04 JP JP58186112A patent/JPS6079150A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650221A (en) * | 1992-07-31 | 1994-02-22 | Seiichi Watanabe | Internal combustion engine |
US20110232482A1 (en) * | 2010-03-29 | 2011-09-29 | Wearair Oxygen, Inc. | Moisture Mitigation in PSA Air Fractionation |
US8343259B2 (en) * | 2010-03-29 | 2013-01-01 | Wearair Oxygen, Inc. | Moisture mitigation in PSA air fractionation |
EP2563496A4 (en) * | 2010-03-29 | 2014-04-30 | Wearair Oxygen Inc | Contaminant mitigation in psa air fractionation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880002615B1 (en) | Control system for air fractionation by selective absorption | |
JPS598605A (en) | Concentration of nitrogen | |
CA2112959A1 (en) | Gas separation | |
CN112295360A (en) | Pressure swing adsorption nitrogen preparation system | |
JP2006289212A (en) | Oxygen concentrator | |
JPS6079150A (en) | Oxygen condenser | |
JP2009119069A (en) | Oxygen concentrator | |
JPS6077109A (en) | Oxygen concentration apparatus | |
JP2009006256A (en) | Oxygen enricher | |
JPH01184016A (en) | Apparatus for gas separation | |
CN209771750U (en) | Oil gas emission processing device of filling station | |
JPS5842599Y2 (en) | Canista | |
KR200342601Y1 (en) | oxygen generator | |
JP2004050042A (en) | Gasoline separating membrane module and vaporized fuel treating apparatus | |
JPH0494715A (en) | Method for stopping pressure swing adsorbing apparatus | |
JP2546618Y2 (en) | Canister | |
JPH07174051A (en) | Evaporated fuel processing device for engine | |
CN213983604U (en) | Catalytic combustion clarification plant | |
KR200217395Y1 (en) | Generator of high content oxygen | |
KR101115573B1 (en) | Oxygen Concentration Apparatus | |
JPH02233119A (en) | Pressure swing two-tower type gas separation apparatus | |
JPH0433942Y2 (en) | ||
JPS6075754A (en) | Oxygen enriching device | |
JPH01125553A (en) | Canister | |
JPH04322713A (en) | Method and equipment for separating gaseous nitrogen |