JPS6078689A - Operation of reverse osmosis apparatus - Google Patents
Operation of reverse osmosis apparatusInfo
- Publication number
- JPS6078689A JPS6078689A JP18723783A JP18723783A JPS6078689A JP S6078689 A JPS6078689 A JP S6078689A JP 18723783 A JP18723783 A JP 18723783A JP 18723783 A JP18723783 A JP 18723783A JP S6078689 A JPS6078689 A JP S6078689A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- reverse osmosis
- module
- water
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は逆浸透装置の操作方法に関し、特に該装置の停
止時における微生物による逆浸透膜の劣化を防止する為
の操作方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a reverse osmosis device, and more particularly to a method of operating a reverse osmosis membrane to prevent deterioration of a reverse osmosis membrane caused by microorganisms when the device is stopped.
逆浸透装置は、溶液中の低分子物質を濃縮し或は溶媒を
高純度に分難する為の装置として次第にその適用分野を
拡大しており、特に海水の淡水化設備は設置数、規模共
に急増傾向をたどっている。The field of application of reverse osmosis equipment is gradually expanding as a device for concentrating low-molecular substances in solutions or separating solvents to high purity.In particular, seawater desalination equipment is increasing in number and scale. It is following a rapidly increasing trend.
ところで逆浸透による海水やかん水等の淡水化設備にお
いては、生産水の需要危や水温変化による生産水量の変
動等によって操業率は著しく変動し、それに伴って操業
停止時における逆浸透膜の劣化が大きな問題となる。即
ち雨量の多い季節では大急の天然氷を利用することがで
きるので、比較的高価な淡水化水の需要は減少するが、
この需要減委期に対応して淡水化装置を長期間停止する
と定常運転時に殺菌剤として添加される次亜塩素酸ソー
ダ等の有効塩素が消失し、海水中に含まれている微生物
が逆浸透膜モジュール内で繁殖して膜劣化やモジュール
内部の流路閉塞といった様な問題が発生する。又夏季に
は水温が上昇して単位モジュール当りの生産水量が増加
するので、生産水の回収率を一定に保つ為に運転圧力を
低下させているが、海水の淡水化においては運転圧力を
低下させると塩分除去率が低下する。その為淡水の水質
及び適切な運転圧力を維持する為逆浸透モジュール群の
一部を休止して稼動率を減少させる方法があるが、この
場合も休止中の逆浸透モジュール内では微生物の繁殖に
よる膜劣化や流路閉塞等の間題が発生する。こうした問
題に対処する為、休止中のモジュール内へホルマリン溶
液を封入したり、或は膜エレメントをホルマリン溶液中
に保存し、微生物の繁殖を阻止し或は死滅させるという
手段も講じられたことはあるが、使用後のホルマリン溶
液は環境保全の観点からそのまま放流することができず
排水処理の問題が生じ、しかもホルマリンは毒物である
為運転再開直後の透過水はそのまま利用することができ
ず、完全除去には相当の時間が必要となる。殊に淡水化
水を飲料用として使用する場合は、毒物の混入を避ける
為前述の様なホルマリン処理を禁止しているところも多
い。By the way, in desalination facilities that use reverse osmosis to desalinate seawater, brine, etc., the operating rate fluctuates significantly due to changes in the demand for produced water and the amount of produced water due to changes in water temperature. It becomes a big problem. In other words, in seasons with heavy rainfall, natural ice can be used in a hurry, reducing the demand for relatively expensive desalinated water.
If desalination equipment is stopped for a long period of time in response to this demand reduction period, effective chlorine such as sodium hypochlorite, which is added as a disinfectant during steady operation, will disappear, and microorganisms contained in seawater will osmose through reverse osmosis. They propagate within the membrane module, causing problems such as membrane deterioration and blockage of flow paths inside the module. In addition, in the summer, water temperature rises and the amount of water produced per unit module increases, so the operating pressure is lowered in order to maintain a constant recovery rate of produced water, but for seawater desalination, the operating pressure is lowered. If the salt removal rate is increased, the salt removal rate will decrease. Therefore, in order to maintain the fresh water quality and appropriate operating pressure, there is a method of suspending some of the reverse osmosis modules to reduce the operating rate, but in this case as well, microbial growth may occur in the reverse osmosis modules that are not in use. Problems such as membrane deterioration and flow channel blockage occur. To deal with these problems, measures have been taken to encapsulate formalin solution inside the module while it is inactive, or to preserve the membrane element in formalin solution to prevent or kill microorganisms. However, from the perspective of environmental conservation, the formalin solution after use cannot be discharged as it is, creating problems with wastewater treatment.Furthermore, since formalin is a poisonous substance, the permeated water cannot be used as it is after restarting operation. Complete removal requires a considerable amount of time. In particular, when desalinated water is used for drinking purposes, many places prohibit formalin treatment as described above to avoid contamination with poisonous substances.
この様なところから現在設置されている逆浸透装置の殆
んどは連続運転を基本として設計されており、天然水の
豊富な雨期においても大量の淡水化水を過剰生産してい
るのが実情である。しかしながら逆浸透設備の運転には
電力や作業員の人件費等を含めて相当の経済的負担を負
うことになるので、天然水の豊富な時期には該装置の運
転を休止し或は生産量を減少して安価な天然水を有効利
用し得る様な採集計画の実現を図る必要があり、その為
には逆浸透装置の停止時における前述の様な膜劣化や流
路閉塞等を確実に防止し、必要な時期には支障なく運転
を再開し得る様な操作方法を確立しなければならない。For this reason, most of the reverse osmosis equipment currently installed is designed for continuous operation, and the reality is that they overproduce large amounts of desalinated water even during the rainy season when natural water is abundant. It is. However, operating reverse osmosis equipment incurs a considerable economic burden, including electricity and labor costs, so during periods when natural water is abundant, the equipment must be shut down or production volume reduced. It is necessary to realize a collection plan that can reduce the amount of water and make effective use of inexpensive natural water, and in order to do so, it is necessary to ensure that the membrane deterioration and flow channel blockage as described above are prevented when the reverse osmosis equipment is stopped. It is necessary to establish an operating method that will prevent this and allow operation to resume without any problems when necessary.
本発明は上記の様な状況のもとで、運転休止時における
逆浸透膜の劣化防止法を確立しようとして種々研究の結
果完成されたものであって、その構成は、逆浸透装置の
長期停止期間中には、塩素を含む海水またはかん水を高
圧ポンプの入側より間欠的に逆浸透装置内へ供給し、逆
浸透モジュール内に招ける微生物の繁殖を阻止するとこ
ろに要旨を有するものである。Under the above circumstances, the present invention was completed as a result of various studies in an attempt to establish a method for preventing deterioration of reverse osmosis membranes during suspension of operation. During this period, chlorine-containing seawater or brine is intermittently supplied into the reverse osmosis device from the inlet side of the high-pressure pump to prevent the growth of microorganisms that may be introduced into the reverse osmosis module. .
通常の逆浸透装置では運転中においても微生物の繁殖が
懸念されるので、これを防止する為海水中へ塩素を連続
的に注入しているが、海水やかん水中には還元性物質が
存在してありこれが塩素を還元消費するので、この塩素
が殺菌力を有効に発揮する時間は極めて短い。従って操
業を停止すると膜モジユール内における塩素の殺菌活性
が失なわれて微生物が急激に繁殖しはじめる。−万般菌
活性を示す塩素は強力な酸化剤としても作用し、濃度が
高すぎると汎用の逆浸透膜(酢酸セルロース系等)に悪
影響を及ぼすので大量に注入することができず、連続運
転時の塩素注入量は0.2〜2my/l程度が限界とさ
れている。そしてこの程度の濃度では運転停止後2〜3
日程度で塩素の殺菌作用は失なわれる。With normal reverse osmosis equipment, there is a concern that microorganisms will breed even during operation, so chlorine is continuously injected into the seawater to prevent this, but there are reducing substances present in the seawater kettle water. Since this process reduces and consumes chlorine, the time for this chlorine to effectively exert its disinfecting power is extremely short. Therefore, when the operation is stopped, the bactericidal activity of chlorine in the membrane module is lost, and microorganisms begin to multiply rapidly. - Chlorine, which exhibits antibacterial activity, also acts as a strong oxidizing agent, and if the concentration is too high, it will have a negative effect on general-purpose reverse osmosis membranes (cellulose acetate, etc.), so large amounts cannot be injected, and during continuous operation. The limit for the amount of chlorine injected is approximately 0.2 to 2 my/l. At this level of concentration, 2 to 3
The bactericidal effect of chlorine is lost within a few days.
本発明では上記の様な運転停止時における塩素の殺菌活
性低下を何らかの方法で補い、逆浸透膜モジュール内を
常時高段菌活性雰囲気に維持しようとするもので、具体
的には運転停止中も塩素を含む海水またはかん水を高圧
ポンプの入側より間欠的に逆浸透装置内へ供給するもの
である。The present invention attempts to compensate for the decrease in the bactericidal activity of chlorine during operation stoppage by using some method to maintain a high-stage bacteria-activating atmosphere inside the reverse osmosis membrane module at all times, and specifically, even during operation stoppage. Seawater or brine containing chlorine is intermittently supplied into the reverse osmosis device from the inlet side of the high-pressure pump.
以下実施例図面を参照しながら本発明の構成及び作用効
果を具体的に説明する。第1図は本発明の実施例を示す
フロー図で、海水取水ポンプP1により吸引採取された
海水は受水槽lに一旦貯留された後、濾過ポンプP2に
より一過器2へ送られる。濾過器2で不溶夾雑物の除去
された海水は一過水槽8へ貯留された後、ブースターポ
ンプP3からカートリッジフィルター4を経由し、高圧
ポンプP4から逆浸透モジュール5へ送り込まれ、淡水
化水Wと濃縮水Bに分離される。■は操作圧力を調整す
る為の圧力調整バルブを示す。この様な逆浸透分能装置
の運転中における微生物の繁殖を防止する。為、例えば
取水ポンプP0 と受水槽1を結ぶラインの適所に塩素
供給管を接続し、ここから適量の塩素を連続的に供給す
るものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and effects of the present invention will be specifically explained below with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of the present invention, in which seawater sucked and sampled by a seawater intake pump P1 is temporarily stored in a water receiving tank l, and then sent to a filter 2 by a filtration pump P2. The seawater from which insoluble impurities have been removed by the filter 2 is stored in the temporary water tank 8, and then sent from the booster pump P3 to the cartridge filter 4, and from the high pressure pump P4 to the reverse osmosis module 5, where it is desalinated water W. and concentrated water B. ■ indicates a pressure adjustment valve for adjusting the operating pressure. This prevents the proliferation of microorganisms during operation of such a reverse osmosis device. For this purpose, for example, a chlorine supply pipe is connected to a suitable place on the line connecting the water intake pump P0 and the water receiving tank 1, and an appropriate amount of chlorine is continuously supplied from there.
従って運転中は逆浸透モジュールの原水側には常時適温
の塩素が混入されており、微生物の繁殖は殆んど起こら
ないが、運転を停止すると前述の如く塩素が原水中の還
元性物質により消費されて殺菌作用を失ない、2〜8日
後にはモジュール5内で微生物が繁殖しはじめる。そこ
で本発明では、図示した様に例えば高圧ポンプP4の原
水吸込側ラインの適所に塩素(主として次亜塩素酸ソー
ダが使用される)供給管7を接続し、停止期間中間欠的
に高圧ポンプP4を作動させて塩素含有海水を逆浸透モ
ジュールb内へ供給する。間欠送給の時期は、モジュー
ル5内の塩素が殺菌活性を喪失する時期に応じて決めれ
ばよく、通常は2〜5日に一回程度の頻度で十分である
。また1回の間欠運転時の作動時間は、モジュール5内
へ塩素含有海水を十分に供給し得る8〜10分程度で十
分である。即ち本発明であれば、例えば2〜5日毎に8
〜10分程度装置を作動させるだけで、モジュールb内
を當時高殺菌活性状態に保つことができ、微生物の繁殖
による逆浸透膜の劣化を防止することができる。尚間欠
送給される海水の塩素濃度も殺菌作用と股に与える悪影
響(酸化による膜の劣化)との兼ね合いを考慮して決め
るのがよく、好ましい塩素濃度は0.5〜2mグ/lで
ある。また微生物は逆浸透膜に阻止されてモジュール5
の原水側に止まっているので、塩素含有海水はモジュー
ル5の原水側へ供給するだけでその目的は十分に達成す
ることができ、そうした意味では間欠運転時の操作圧力
は極力低く抑えた方が動力費を低減することができるの
で有利である。Therefore, during operation, chlorine at an appropriate temperature is always mixed into the raw water side of the reverse osmosis module, and there is almost no breeding of microorganisms, but when the operation is stopped, the chlorine is consumed by reducing substances in the raw water as mentioned above. Microorganisms begin to proliferate within the module 5 after 2 to 8 days without losing its bactericidal action. Therefore, in the present invention, as shown in the figure, for example, a chlorine (mainly sodium hypochlorite is used) supply pipe 7 is connected to an appropriate place on the raw water suction side line of the high-pressure pump P4, and the high-pressure pump P4 is is operated to supply chlorine-containing seawater into reverse osmosis module b. The timing of intermittent feeding may be determined depending on the timing when the chlorine in the module 5 loses its bactericidal activity, and normally once every 2 to 5 days is sufficient. Further, the operating time during one intermittent operation is approximately 8 to 10 minutes, which is sufficient to supply chlorine-containing seawater into the module 5. That is, according to the present invention, for example, 8
By simply operating the device for about 10 minutes, the inside of module b can be kept in a highly sterilizing active state, and deterioration of the reverse osmosis membrane due to the proliferation of microorganisms can be prevented. The chlorine concentration of the seawater that is intermittently supplied should be determined by taking into account the balance between the bactericidal effect and the negative effect on the crotch (deterioration of the membrane due to oxidation), and the preferred chlorine concentration is 0.5 to 2 mg/l. be. In addition, microorganisms are blocked by the reverse osmosis membrane and module 5
Since the chlorine-containing seawater remains on the raw water side of module 5, the purpose can be fully achieved by simply supplying the chlorine-containing seawater to the raw water side of module 5. In this sense, it is better to keep the operating pressure as low as possible during intermittent operation. This is advantageous because power costs can be reduced.
第2図は本発明の他の実施例を示すフロー図で、複数の
逆浸透モジュールM0〜M5を並列に配置し、バルブv
0〜v1oの開閉によって淡水生産危を自由にコントロ
ールできる様にしている。即ち淡水需要量の多いときは
バルブv0〜v1oのすべてを開いてモジュール5a〜
50全部を稼動させ、一方雨季尋の天然氷が豊富な時期
には、例えばバルブV1〜■3、■6〜v8尊を閉じて
モジ:x−−ル5 a 、 5 b −。FIG. 2 is a flow diagram showing another embodiment of the present invention, in which a plurality of reverse osmosis modules M0 to M5 are arranged in parallel, and the valve v
The freshwater production crisis can be freely controlled by opening and closing 0 to v1o. That is, when the demand for fresh water is large, all valves v0 to v1o are opened and modules 5a to
On the other hand, during the rainy season when natural ice is plentiful, for example, valves V1 to ■3 and ■6 to V8 are closed.
5C等を休止することによって生産量を低減する。Production volume will be reduced by suspending 5C, etc.
この場合、休止中のモジュール内では前述の様に微生物
繁殖の恐れがあるので、本発明では2〜5日に1回収度
の頻度で2〜lO分程度バルブv1〜■及びv6〜v8
を開いて休止中のモジュールM工、M2、M3内へ塩素
含有海水を供給し、該モジュール内を高殺菌活性状態に
維持する。この様に複数のモジュールを並列に配置した
設備の場合は、休止モジュールへ間欠供給する塩素含有
海水として、塩素の添加された被処理原水をそのまま利
用することもできる。またこの様な配列の逆浸透設備に
おいては、各休止モジュール内の殺菌活性が低下する2
〜5日毎にバルブの切換えを行ない、2〜5日程度の周
期で休止・運転を繰り返すことによって生産水量を減少
し或は製粒することも可能である。In this case, as mentioned above, there is a risk of microbial growth in the idle module, so in the present invention, the valves v1 to ■ and v6 to v8
The module is opened to supply chlorine-containing seawater into the idle modules M, M2, and M3, maintaining the inside of the modules in a highly sterilizing active state. In the case of equipment in which a plurality of modules are arranged in parallel in this manner, the raw water to be treated to which chlorine has been added can be used as is as the chlorine-containing seawater that is intermittently supplied to the idle modules. In addition, in reverse osmosis equipment with this arrangement, the bactericidal activity in each idle module decreases2.
It is also possible to reduce the amount of water produced or perform granulation by switching the valve every ~5 days and repeating suspension and operation every 2 to 5 days.
本発明は概略以上の様に構成されているが、要は運転休
止期間中のモジュールに一定の周期で塩素含有海水又は
かん水を供給することによって内部を常時高段菌活性状
態に維持できる様にしたから、その間の微生物の繁殖が
確実に防止されて膜劣化や流路閉塞等の問題をすべて解
消することができる。しかも塩素含有海水の間欠供給は
前述の如く2〜5日に1回、2〜10分程度の短時間行
なうだけでよいから、この処理に要する動力費は極めて
軽微で済む。従って天然氷の豊富な雨季等に詔いては逆
浸透装置を実質上停止し或は生産水屋を少なくして安価
な天然水を有効に利用することができ、この間の逆浸透
装置の運転経費を低減することが可能になった。また本
発明では定常運転時のものと同じ塩素を殺菌剤として利
用するものであるから、従来のホルマリン殺菌の様な水
質劣化を生ずる恐れもない。しかもホルマリン殺菌法で
は運転再開後数時間はホルマリン洗浄を必要とする為淡
水を得ることができないが、本発明づあれば運転再lv
1直後から浄化水として回収し得る等、極めて実用に即
した利益を享受することができる。The present invention is generally constructed as described above, but the point is that by supplying chlorine-containing seawater or brine at regular intervals to the module during the suspension period, it is possible to maintain the interior of the module in a high-stage bacterial activation state at all times. Therefore, the proliferation of microorganisms during this time is reliably prevented, and all problems such as membrane deterioration and channel blockage can be solved. Moreover, as mentioned above, the intermittent supply of chlorine-containing seawater only needs to be carried out once every 2 to 5 days for a short period of about 2 to 10 minutes, so the power cost required for this treatment is extremely small. Therefore, during the rainy season when natural ice is abundant, it is possible to virtually stop the reverse osmosis equipment or reduce the number of water producers, making effective use of inexpensive natural water, and reducing the operating costs of the reverse osmosis equipment during this time. It became possible to reduce the Furthermore, in the present invention, since the same chlorine as used during steady operation is used as a sterilizing agent, there is no risk of deterioration of water quality as in conventional formalin sterilization. Moreover, with the formalin sterilization method, fresh water cannot be obtained because formalin washing is required for several hours after restarting operation, but with this invention, it is possible to restart operation.
It is possible to enjoy extremely practical benefits, such as being able to recover purified water immediately after the water is removed.
次に実施例及び比較例を拳げて本発明の効果を明確にす
る。Next, Examples and Comparative Examples will be presented to clarify the effects of the present invention.
比較例1
第1図に示した様な海水淡水化装置(酢酸セルロース系
逆浸透膜使用)を使用し、塩素換算で1my/lの次亜
塩素酸ソーダを供給しつつ約10か月間連続運転した後
運転を停止し、約80日間そのままで放置した後運転を
再開し、停止前及び再開後の処理能力を比較した。Comparative Example 1 A seawater desalination equipment (using a cellulose acetate reverse osmosis membrane) as shown in Figure 1 was used and operated continuously for about 10 months while supplying sodium hypochlorite at a concentration of 1 my/l in terms of chlorine. After that, the operation was stopped, and after being left as it was for about 80 days, the operation was restarted, and the processing capacity before and after the restart was compared.
結果は第1表に示す通りであり、停止前の処理能力は良
好であるが、約80日間の停止によって装置内に微生物
が繁殖して浸透膜が劣化し、再開後の生産水の塩分濃度
は大幅に高くなると共に、塩分除法率は10%も低下し
ている。The results are shown in Table 1. Although the treatment capacity before the shutdown was good, the approximately 80-day shutdown caused microorganisms to grow inside the equipment and deteriorated the permeation membrane, resulting in a drop in the salinity of the produced water after restarting. has increased significantly, and the salt removal rate has decreased by 10%.
第1表
実施例1
第1図に示した装置の塩素供給管7に電磁弁を設けてタ
イマーを設置し、これを第1図のブースターポンプP3
及び高圧ポンプP4に接続する。Table 1 Example 1 A solenoid valve and a timer are installed in the chlorine supply pipe 7 of the device shown in FIG.
and connected to high pressure pump P4.
この装置を需要生産水量の変動に応じて雨季には作動を
停止しながら18か月間運転した。この間80日以上の
停止期間が8回あったので、このときは停止時から3日
を経過する毎に5分間前記電磁弁が開となり高圧ポンプ
P4及びブースターポンプP3が作動する様にタイマー
を設定し、圧力調整弁Vを全開にして低圧でモジュール
5内の海水交換を行ない、以後8日に1回の周期で同様
の海水交換を繰り返し、1か月運転後の処理能力と18
か月経退役の処理能力を調べた。This equipment was operated for 18 months, with operation stopped during the rainy season in response to fluctuations in water demand and produced water. During this period, there were 8 stoppages of 80 days or more, so a timer was set so that the solenoid valve would open for 5 minutes every 3 days after the stoppage and the high pressure pump P4 and booster pump P3 would operate. Then, the pressure regulating valve V was fully opened and the seawater inside the module 5 was exchanged at low pressure, and the same seawater exchange was repeated once every 8 days.
We investigated the processing ability of menstrual retirement.
結果は第2表に示す通りであり、8か元以上の停止期間
を含む18か月経退役も処理能力の低下は殆んどみられ
ない。The results are shown in Table 2, and there is almost no decline in processing ability even after 18 months of retirement, including a period of suspension of 8 or more yuan.
第2表
実施例2
第2図に示した様な並列型の逆浸透分離装置において、
夏季の水温が高い時期(7〜10月の4か月間)にはバ
ルブV□及びv6を閉じてモジュールM工を休止し、生
産水量をmiした。この間1週間に2回ずつバルブv1
と■6を5分間間いて塩素を含む原水をモジュール5
内へ供給した。Table 2 Example 2 In a parallel type reverse osmosis separator as shown in Figure 2,
During the summer period when the water temperature is high (four months from July to October), valves V□ and V6 were closed to suspend module M and reduce the amount of water produced. Valve v1 twice a week during this period
and ■6 for 5 minutes, and then add raw water containing chlorine to module 5.
supplied inside.
そして夏季が過ぎて水温が降下した後はバルブv1、■
6 を開いてモジュールM1による淡水化を再開し、水
温降下による生産水量の低下を補足した。Then, after the summer passes and the water temperature drops, valve v1,■
6 and restarted desalination using module M1 to compensate for the decrease in water production due to the drop in water temperature.
その結果、モジュールM工の長期停止による性能劣化は
認められなかった。As a result, no performance deterioration was observed due to the long-term suspension of Module M engineering.
第1.2図は本発明の実施例を示すフロー図である。
1・・・受水槽、 2・・・濾過器、
8・・・濾過水槽、4・・・カートリッジフィルター、
5、M1〜M5・・・逆浸透膜モジュール、W・・・透
過水、B・・・ブライン(濃縮液)。
出願人株式会社神戸製鋼所FIG. 1.2 is a flow diagram illustrating an embodiment of the invention. 1...Water tank, 2...Filter, 8...Filtering water tank, 4...Cartridge filter,
5, M1 to M5... Reverse osmosis membrane module, W... Permeated water, B... Brine (concentrated liquid). Applicant Kobe Steel, Ltd.
Claims (1)
逆浸透装置において、該装置の停止期間中における逆浸
透膜の劣化を防止する操作方法であって、逆浸透装置の
停止期間中には、塩素を含む被処理水を高圧ポンプの入
側より間欠的に逆浸透装置へ供給することを特徴とする
逆浸透膜【の操作方法。[Scope of Claim] An operation method for preventing deterioration of the reverse osmosis membrane during a period when the device is stopped in a reverse osmosis device for obtaining fresh water by passing seawater, brine, etc. through the reverse osmosis membrane under high pressure, the method comprising: 1. A method for operating a reverse osmosis membrane, which comprises intermittently supplying treated water containing chlorine to the reverse osmosis device from the inlet side of a high-pressure pump during a period when the osmosis device is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18723783A JPS6078689A (en) | 1983-10-06 | 1983-10-06 | Operation of reverse osmosis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18723783A JPS6078689A (en) | 1983-10-06 | 1983-10-06 | Operation of reverse osmosis apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6078689A true JPS6078689A (en) | 1985-05-04 |
Family
ID=16202451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18723783A Pending JPS6078689A (en) | 1983-10-06 | 1983-10-06 | Operation of reverse osmosis apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6078689A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141694A (en) * | 1986-12-02 | 1988-06-14 | Japan Organo Co Ltd | Production of ultra-pure water |
JPS6443398A (en) * | 1987-08-11 | 1989-02-15 | S I Ii Kk | Waste water regenerating apparatus |
JPS6475092A (en) * | 1987-09-16 | 1989-03-20 | Organo Kk | Preparation of ultra-pure water |
US4988444A (en) * | 1989-05-12 | 1991-01-29 | E. I. Du Pont De Nemours And Company | Prevention of biofouling of reverse osmosis membranes |
JP2016155071A (en) * | 2015-02-24 | 2016-09-01 | オルガノ株式会社 | Sterilization method for separation membrane |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55127105A (en) * | 1979-03-23 | 1980-10-01 | Nitto Electric Ind Co Ltd | Sterilizing method of membrane type separation module |
JPS57147405A (en) * | 1981-03-10 | 1982-09-11 | Nikkiso Co Ltd | Method for treating water by reverse osmotic membrane |
-
1983
- 1983-10-06 JP JP18723783A patent/JPS6078689A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55127105A (en) * | 1979-03-23 | 1980-10-01 | Nitto Electric Ind Co Ltd | Sterilizing method of membrane type separation module |
JPS57147405A (en) * | 1981-03-10 | 1982-09-11 | Nikkiso Co Ltd | Method for treating water by reverse osmotic membrane |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141694A (en) * | 1986-12-02 | 1988-06-14 | Japan Organo Co Ltd | Production of ultra-pure water |
JPS6443398A (en) * | 1987-08-11 | 1989-02-15 | S I Ii Kk | Waste water regenerating apparatus |
JPS6475092A (en) * | 1987-09-16 | 1989-03-20 | Organo Kk | Preparation of ultra-pure water |
US4988444A (en) * | 1989-05-12 | 1991-01-29 | E. I. Du Pont De Nemours And Company | Prevention of biofouling of reverse osmosis membranes |
JP2016155071A (en) * | 2015-02-24 | 2016-09-01 | オルガノ株式会社 | Sterilization method for separation membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6468430B1 (en) | Method for inhibiting growth of bacteria or sterilizing around separating membrane | |
KR100658941B1 (en) | Fresh water generator and fresh water generating method | |
JPS6078689A (en) | Operation of reverse osmosis apparatus | |
CN102076434B (en) | Process for disinfecting a filtration works for pretreatment of saltwater, and installation for the implementation thereof | |
KR100500895B1 (en) | Bactericide for use in water treatment, method for water treatment and apparatus for water treatment | |
JP3087750B2 (en) | Sterilization method of membrane | |
JP2000300966A (en) | Membrane sterilization method and membrane separation device | |
JP3269496B2 (en) | Sterilization method and fresh water method of membrane | |
JPH10230260A (en) | Water purifier | |
JP6287876B2 (en) | Waste water treatment method and waste water treatment equipment | |
JPH04126020A (en) | Sterilization of culture liquid, etc., for hydroponic culture and hydroponic culture apparatus | |
CN105016545A (en) | Brackish water fishpond culture water purification system | |
JP3514828B2 (en) | Operation method of water purification system and water purification device | |
JPH08267061A (en) | Swimming pool water purifier and method thereof | |
CN103979697B (en) | Small-sized type drinking water system capable of direct drinking | |
JP2002320968A (en) | Membrane separation method | |
JP2004121896A (en) | Method of producing treated water and salt water treatment equipment | |
JPH05192672A (en) | Method for operating water treating equipment and the same | |
CN204958624U (en) | Water purification system is bred in brackish water pond | |
JP3893762B2 (en) | Microbial liquid treatment method | |
JP2002204933A (en) | Culture solution cleaning apparatus and method for washing its filter membrane | |
CN117547959A (en) | Biological washing system and method for waste gas treatment | |
JP2000237546A (en) | Production of fresh water | |
JP2020104038A (en) | Water treatment system operation method and water treatment system | |
JP2000301148A (en) | Fresh water producing method |