JPS6078343A - Detection for rubbing of rotary machine - Google Patents

Detection for rubbing of rotary machine

Info

Publication number
JPS6078343A
JPS6078343A JP18505183A JP18505183A JPS6078343A JP S6078343 A JPS6078343 A JP S6078343A JP 18505183 A JP18505183 A JP 18505183A JP 18505183 A JP18505183 A JP 18505183A JP S6078343 A JPS6078343 A JP S6078343A
Authority
JP
Japan
Prior art keywords
rubbing
acoustic sensor
detected
acoustic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18505183A
Other languages
Japanese (ja)
Inventor
Takao Yoneyama
米山 隆雄
Kazuya Sato
佐藤 弌也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18505183A priority Critical patent/JPS6078343A/en
Publication of JPS6078343A publication Critical patent/JPS6078343A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To detect rubbing with high sensitivity by providing an acoustic sensor in a bearing part of a rotary machine to detect high-frequency abnormal sounds which are generated when rubbing occurs. CONSTITUTION:Acoustic sensors 5a and 5b are provided on sliding bearings 2a and 2b of a rotor 1. High-frequency abnormal sounds due to rubbing which occurs in the position marked with a black star are propagated in the rotor 1 and are detected by acoustic sensors 5a and 5b. Their outputs pass amplifiers 6a and 6b, filters 7a and 7b, and detecting circuits 8a and 8b, and signals f(t) and g(t) are inputted to a cross-correlation function analyzer 9, and a cross-correlation function is calculated and is sent to a monitor 10. Thus, presence/absence of rubbing is detected with a high sensitivity.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蒸気タービンやタービン発電機等の回転機械の
回転部が回転中にラビング現象を起こした際に、その時
発生する高周波異常青金検知することによって、ラビン
グの発生を検出するのに好適な回転機械のラビング検出
方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention detects high-frequency abnormal gold generated when a rotating part of a rotating machine such as a steam turbine or a turbine generator causes a rubbing phenomenon during rotation. Accordingly, the present invention relates to a rubbing detection method for a rotating machine suitable for detecting the occurrence of rubbing.

〔発明の背景〕[Background of the invention]

回転機械においてラビングが発生した場合、機械の異常
振動の原因となり、運転に支障金きたすばかりでなく、
回転機械ロータ部の飛散事故にもつ力がるため、危険で
あることが知られている。
When rubbing occurs in rotating machinery, it not only causes abnormal vibrations of the machinery, but also causes problems in operation.
It is known to be dangerous due to the force generated in the event of a flying machine rotor.

従来よりラビングを検出する方法として、軸受部の振動
変化量よりラビングを検出する方法が用いられているが
感度が悪いため、その検出は難しかった。また、回転機
械の静止部に音響センサ(主にアコースティック・エミ
ッションセンサ)を設置し、ラビング発生時に生じる高
周波異常音信号の振幅変化量よシラビッツ発生を検出す
る手法が用いられているが、本手法では低速回転におけ
るラビングの検出は可能であるが、回転数が上昇し、バ
ックグランドノイズが増大した時やラビングが軽微であ
る場合には、その検出が不可能になる欠点があった。
Conventionally, a method of detecting rubbing based on the amount of vibration change in the bearing has been used, but it has been difficult to detect because of poor sensitivity. In addition, a method is used in which an acoustic sensor (mainly an acoustic emission sensor) is installed in a stationary part of a rotating machine, and the occurrence of silabitz is detected by the amplitude change of the high-frequency abnormal sound signal that occurs when rubbing occurs. Although it is possible to detect rubbing at low speed rotation, it has the disadvantage that it becomes impossible to detect when the rotation speed increases and background noise increases or when the rubbing is slight.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、バックグランドノイズが大きい中でも
ラビング発生有無の識別が可能であるばかりでなく、ラ
ビングが軽微である場合も同様に識別が可能なラビング
検出方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rubbing detection method that is not only capable of identifying the presence or absence of rubbing even when background noise is large, but is also capable of identifying the presence or absence of rubbing even when the rubbing is slight.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、回転機械の軸受部に音響センサを設置
し、前記音響センサによりラビン夛発生時に生じる高周
波異常音を検知し、この信号を処理することにエリラビ
ングを感度良く検出できるようにした点にある。
A feature of the present invention is that an acoustic sensor is installed in the bearing of a rotating machine, the acoustic sensor detects the high-frequency abnormal sound that occurs when rubbing occurs, and this signal is processed so that error rubbing can be detected with high sensitivity. At the point.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例であるラビング検出方法を第1図
により説明する。回転機械においてロータ1はすベシ軸
受2a、2bにて保持されており、また、ケーシング3
により覆われている。仮シに、同図に示すラビング発生
箇所4でラビングが発生した場合、ラビングによる高周
波異常音信号(以下音響信号と呼ぶ)は、ロータ1内を
伝搬し、すべり軸受2a、2bとロータ1の間に形成さ
れる潤滑油膜全弁し、すべり軸受2a、2.bに伝搬さ
れる。前記音響信号を検出するため、同図に示すように
すべ多軸受部(軸受・・ウジング部でも可)2a、2b
にそれぞれ音響センサ5a、5bf、設置する。次に音
響センサ5a、5bの出力は増幅器6a、6bによって
、それぞれ増幅された後、フィルタ7a、7bに通され
、必要以外の周波数成分の信号は除去される。さらにフ
ィルタにより処理された信号は検波回路f3a、8bに
て検波された後、それぞれの信号は相互相関関数解析器
9に入力される。検波回路8aより出力される信号′!
i−f (t)、検波回路8bより出力される信号をg
(t)とした場合、相互相関関数解析器9では次式を演
算処理する。
A rubbing detection method according to an embodiment of the present invention will be explained below with reference to FIG. In a rotating machine, a rotor 1 is held by beveled bearings 2a and 2b, and a casing 3
covered by. Hypothetically, if rubbing occurs at the rubbing occurrence location 4 shown in the same figure, a high-frequency abnormal sound signal (hereinafter referred to as an acoustic signal) due to the rubbing will propagate within the rotor 1 and cause damage to the sliding bearings 2a, 2b and the rotor 1. The lubricating oil film formed between the sliding bearings 2a, 2. b. In order to detect the acoustic signal, as shown in the same figure, multiple bearing parts (bearings, or housing parts are also possible) 2a, 2b are used.
Acoustic sensors 5a and 5bf are installed at the respective locations. Next, the outputs of the acoustic sensors 5a and 5b are amplified by amplifiers 6a and 6b, respectively, and then passed through filters 7a and 7b to remove signals with unnecessary frequency components. Further, the signals processed by the filters are detected by detection circuits f3a and 8b, and then each signal is input to a cross-correlation function analyzer 9. The signal '! output from the detection circuit 8a!
i-f (t), the signal output from the detection circuit 8b is g
(t), the cross-correlation function analyzer 9 calculates the following equation.

C,(τ)=J(t)・g(を十τ) ・・・・・・(
1)C,(t):相互相関関数 τ:タイムラグ (1)式における−は時間平均を意味する。
C, (τ) = J(t)・g (10τ) ・・・・・・(
1) C, (t): Cross-correlation function τ: Time lag - in equation (1) means time average.

つまり、相互相関関数解析器9では検波回路8aより出
力される、ある時間tにおけるデータ値f (t)とt
よりτだけ遅れた時間における検波回路8bよシ出力さ
れるデータ値g(を十τ)との時間的関連性を調べる。
That is, in the cross-correlation function analyzer 9, the data value f (t) at a certain time t and t
The temporal relationship with the data value g (10τ) output from the detection circuit 8b at a time delayed by τ is examined.

次に相互相関関数解析器9の演算結果はモニタ10に入
力され、その結果が表示される。
Next, the calculation results of the cross-correlation function analyzer 9 are input to the monitor 10, and the results are displayed.

前述した処理手法を第2図を用いて具体的に説明する。The above-mentioned processing method will be specifically explained using FIG. 2.

同図は蒸気タービンにおいて、ラビングが無い場合、軽
微である場合、ラビング強度が中程度、さらにラビング
が大きい場合の第1図に示した各回路の出力例である。
This figure shows an example of the output of each circuit shown in FIG. 1 in a steam turbine when there is no rubbing, when the rubbing is slight, when the rubbing intensity is medium, and when the rubbing is large.

増幅器6a、6bの出力波形では、ラビング無い場合か
らラビングが大きい場合に至るまでほとんど区別がつか
ない。
The output waveforms of the amplifiers 6a and 6b are almost indistinguishable from those with no rubbing to those with large rubbing.

これは蒸気タービンの回転によるノイズや蒸気ノイズが
大きいため、ラビングによる音響信号が埋もれてしまう
ためである。前述した信号をフィルタ7a、7bに通し
た後、検波することにより同図に示すような出力波形が
得られる。
This is because the noise caused by the rotation of the steam turbine and the steam noise are large, so that the acoustic signal caused by rubbing is buried. By passing the aforementioned signals through filters 7a and 7b and then detecting them, an output waveform as shown in the figure is obtained.

ラビングが大きい場合は、検波波形の上部にわずかなが
ら周期性のある正弦波が見られる。これは、ラビングの
発生によってラビングによる音響信号がバックグランド
ノイズに変調されるため、検波することによシ、その信
号がわずかながら表われるためである。しかし、ラビン
グが中程度以下の場合は、ラビングによる音響信号の強
度が小さい、つまり変調率が小さいため、同図に示すよ
うに、検波波形には何ら変化は見られない。そこで、前
述した検波波形を相互相関関数解析器9にて演算処理し
た後、モニタ10にて表示すると同図のようになる。
If the rubbing is large, a slightly periodic sine wave can be seen at the top of the detected waveform. This is because when the rubbing occurs, the acoustic signal due to the rubbing is modulated into background noise, and this signal appears in a small amount when detected. However, when the rubbing is moderate or less, the intensity of the acoustic signal due to the rubbing is small, that is, the modulation rate is small, so as shown in the figure, no change is observed in the detected waveform. Therefore, after the above-mentioned detected waveform is processed by the cross-correlation function analyzer 9, it is displayed on the monitor 10 as shown in the figure.

ラビング現象は回転機械のロータ1回転あたり1回周期
的に発生するのが特徴であシ、同図の2ピングが大きい
場合に示されるように、周期的相関が強い場合(たとえ
ば正弦波どうしの相関)の相互相関関数の演算結果と同
様とガる。つまシ、前述した検波波形に含まれる周期性
(時間的関連性)のある正弦波信号が検出されており、
モニタ10の表示例よりラビングの有無が判定できるわ
けである。また、検波波形には何ら変化が認められなか
ったラビングが軽微及び中程度の場合でも同様に相関処
理を行なうことにより、同図に示す表示結果が得られる
ため、ラビングの有無が判定ができる。このことは、ラ
ビングが軽微、中程度であっても、ラビングによる音響
信号は、わずかながらバックグランドノイズに変調され
ているため、相関処理を行なうことにより、周期性のあ
る音響信号が検出できるためである。
The rubbing phenomenon is characterized by occurring periodically once per rotation of the rotor of a rotating machine, and when there is a strong periodic correlation (for example, when the 2 pings in the same figure are large) (for example, when the sine waves It is similar to the calculation result of the cross-correlation function (correlation). Finally, a periodic (temporally related) sine wave signal included in the detected waveform mentioned above has been detected.
The presence or absence of rubbing can be determined from the display example on the monitor 10. Further, even when there is slight or moderate rubbing in which no change is observed in the detected waveform, correlation processing is similarly performed to obtain the display results shown in the figure, so it is possible to determine the presence or absence of rubbing. This means that even if the rubbing is light or moderate, the acoustic signal caused by the rubbing is slightly modulated by background noise, so by performing correlation processing, periodic acoustic signals can be detected. It is.

一方、ラビングが無い場合は、単なるランダムノイズだ
けであるため、同図に示すようにラビング発生時特有の
処理結果は得られない。また、第2図のモニタ表示例に
示した周期T(正弦波信号の周期)は、ロータの回転周
期にも対応するため、Tを測定することにより、他の周
期的外乱ノイズ、たとえば軸受損傷などによって発生す
る音響信号とも区別することができる。
On the other hand, if there is no rubbing, it is just random noise, and as shown in the figure, no processing results specific to the occurrence of rubbing can be obtained. In addition, the period T (period of the sine wave signal) shown in the monitor display example in Fig. 2 also corresponds to the rotation period of the rotor, so by measuring T, it is possible to detect other periodic disturbance noises, such as bearing damage. It can also be distinguished from acoustic signals generated by

以上説明したように、本手法を用いれば、バックグラン
ドノイズが大きい場合でもラビングの検出ができるはか
シでなく、ラビングが軽微である場合も検出でき、また
、外乱による周期的ノイズとも区別ができるため、回転
機械の事故を未然に防止できるという、工業上きわめて
顕著な効果がある。
As explained above, by using this method, it is not only possible to detect rubbing even when the background noise is large, but also it is possible to detect when the rubbing is slight, and it is also indistinguishable from periodic noise caused by external disturbances. As a result, accidents in rotating machinery can be prevented, which is an extremely significant industrial effect.

次に本発明の他の実施例であるラビング検出方法全第3
図よυ説明する。回転機械のロータ20をささえるすべ
り軸受部(軸受・・ウジングでも可)21に音響センサ
22を設置する。次に音響センサ22の出力全増幅器2
3にて増幅した後、フィルタ24に通し、必要以外の周
波数成分の信号を除去する。さらに、フィルタ24にて
処理された信号を検波回路25に入力し、検波回路25
より出力される検波信号を自己相関関数解析器26に入
力する。
Next, the third embodiment of the rubbing detection method according to the present invention will be described.
Let me explain to you. An acoustic sensor 22 is installed on a sliding bearing (or a bearing or housing) 21 that supports a rotor 20 of a rotating machine. Next, the output total amplifier 2 of the acoustic sensor 22
After being amplified in step 3, the signal is passed through a filter 24 to remove signals with unneeded frequency components. Furthermore, the signal processed by the filter 24 is input to the detection circuit 25, and the detection circuit 25
The detected signal output from the autocorrelation function analyzer 26 is inputted to the autocorrelation function analyzer 26.

検波回路25より出力される検波信号ヲf(t)とした
場合、自己相関関数解析器26では次式を演算処理する
When the detection signal output from the detection circuit 25 is f(t), the autocorrelation function analyzer 26 calculates the following equation.

C,(す=f(t)・fct+τ) ・・・・・・(2
)C,(τ):自己相関関数 τ:タイムラグ (2)式におけるーは時間平均を意味する。
C, (s=f(t)・fct+τ) ・・・・・・(2
)C, (τ): autocorrelation function τ: time lag - in equation (2) means time average.

つまり、自己相関関数解析器26では、検波回路25よ
多出力される、おる時間tにおけるデータ値f (t)
とtよ97時間だけ遅れた時間におけるデータ値f(を
十τ)との間の時間的関連性を調べる。次に自己相関関
数解析器26の演算結果はモニタ27に入力され、その
結果が表示される。
In other words, in the autocorrelation function analyzer 26, the data value f (t) at the time t, which is output multiple times from the detection circuit 25, is
The temporal relationship between the data value f (10τ) at a time delayed by 97 hours from t is examined. Next, the calculation result of the autocorrelation function analyzer 26 is input to the monitor 27, and the result is displayed.

前述した処理手法を第4図を用いて具体的に説明する。The above-mentioned processing method will be specifically explained using FIG. 4.

同図は蒸気タービンにおいてラビングが無い場合、軽微
である場合、ラビング強度が中程度、さらにラビングが
大きい場合の第3図に示した各回路の出力例である。増
幅器23、検波回路25の出力波形についての詳細な説
明は第2図にて説明した内容と同等なのでここでは省略
する。
This figure shows an example of the output of each circuit shown in FIG. 3 when there is no rubbing in the steam turbine, when the rubbing is slight, when the rubbing intensity is medium, and when the rubbing is large. A detailed explanation of the output waveforms of the amplifier 23 and the detection circuit 25 is the same as that explained with reference to FIG. 2, so a detailed explanation will be omitted here.

第4図にて示される検波波形を自己相関関数解析器26
にて処理した後、モニタ27にて表示すると同図のよう
になる。前述したようにラビング現象はロータ1回転あ
たり1回周期的に発生するのが特徴であり、同図のラビ
ング大の場合の検波波形に示されるように、回転数に対
応した周期的信号成分がバックグランドノイズに変調さ
れ含まれるため、たとえば正弦波の自己相関関数の演算
結果と同様となる。つま)前述した検波波形に含ばれる
周期性(時間的関連性)のある信号成分が検出されてお
り、モニタ27の表示例よりラビング有無の判定ができ
るわけである。また、検波波形には何ら変化が認められ
なかったラビングが軽微及び中程度の場合でも、ラビン
グによる音響信号はバックグランドノイズに変調され、
その音響信号には周期性があるため、同様に自己相関処
理全行なうことによシ、同図に示す処理結果が得られる
ことがらラビングの有無が判定できる。
The detected waveform shown in FIG.
After processing, the image is displayed on the monitor 27 as shown in the same figure. As mentioned above, the rubbing phenomenon is characterized by occurring periodically once per rotor rotation, and as shown in the detected waveform in the case of large rubbing in the same figure, periodic signal components corresponding to the rotation speed are generated. Since it is modulated and included in the background noise, the result is similar to the calculation result of, for example, a sine wave autocorrelation function. Finally, a signal component with periodicity (temporally related) included in the above-mentioned detected waveform is detected, and the presence or absence of rubbing can be determined from the display example on the monitor 27. In addition, even in the case of slight or moderate rubbing where no change was observed in the detected waveform, the acoustic signal due to rubbing is modulated by background noise.
Since the acoustic signal has periodicity, by similarly performing autocorrelation processing, the processing results shown in the figure can be obtained, so that it is possible to determine the presence or absence of rubbing.

−万、ラビングが無い場合は、単なるランダムノイズだ
けであるため、同図に示すようにラビング発生時特有の
処理結果は得られない。ti、第4図にて示したモニタ
表示例における正弦波信号の周期Tはロータの回転周期
にも対応するため、Tを測定することにより、他の周期
的外乱ノイズたとえば軸受損傷などによって発生する音
響信号とも区別することができる。
- If there is no rubbing, it is just random noise, so as shown in the figure, a processing result specific to the occurrence of rubbing cannot be obtained. ti, the period T of the sine wave signal in the monitor display example shown in Fig. 4 also corresponds to the rotation period of the rotor, so by measuring T, it is possible to detect other periodic disturbance noise caused by damage to bearings, etc. It can also be distinguished from acoustic signals.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本手法を用いれば、ノくツクグラ
ンドノイズが大きい場合でもラビングを検出できるばか
りでなく、ラビングが軽微である場合も検出でき、また
、外乱による周期的ノイズとも区別できるため、回転機
械の事故を未然に防止でさるという、工業上極めて顕著
な効果がある。
As explained above, by using this method, it is possible not only to detect rubbing even when the ground noise is large, but also when the rubbing is slight, and it can also be distinguished from periodic noise caused by disturbances. This has an extremely significant industrial effect in preventing accidents in rotating machinery.

【図面の簡単な説明】[Brief explanation of the drawing]

紀1図は本発明による回転機械のラビング検出方法の一
実施例を示す構成図、第2図は第1図の実施例を説明す
るための波形図、第3図は本発明の他の実施例を示す構
成図、第4図は第3図の実施例を説明するための波形図
である。 1・・・ロータ、2ai 2b・・・すべ夛軸受、3・
・・ケーゾング、4・・・ラビング発生箇所、ja、5
b・・・音響センサ、6a、6b・・・増幅器、7a、
7b・・・フィルタ、8a、8b・・・検波回路、9・
・・相互相関関数解析器、10・・・モニタ、26・・
・自己相関関数解析器。 ¥10
Fig. 1 is a configuration diagram showing an embodiment of the rubbing detection method for a rotating machine according to the present invention, Fig. 2 is a waveform diagram for explaining the embodiment of Fig. 1, and Fig. 3 is a diagram showing another embodiment of the present invention. A configuration diagram showing an example, and FIG. 4 is a waveform diagram for explaining the embodiment of FIG. 3. 1...Rotor, 2ai 2b...Slide bearing, 3.
...Kezong, 4...Rubbing occurrence point, ja, 5
b...Acoustic sensor, 6a, 6b...Amplifier, 7a,
7b... Filter, 8a, 8b... Detection circuit, 9.
... Cross-correlation function analyzer, 10... Monitor, 26...
・Autocorrelation function analyzer. ¥10

Claims (1)

【特許請求の範囲】[Claims] 1、回転機械における回転部と静止体との摺動、すなわ
ちラビング現象を音響センサを用いて検出する方法にお
いて、前記回転機械の軸受部に第1の音響センナと前記
第1の音響セ/すとは異なった軸受部に第2の音響セン
サを設置し、前記第1の音響センサにて受信した信号を
増幅後検波し、検波波形を得る第1の手段と、前記第2
の音響センサにて受信した信号を増幅後検波し、検波波
形を得る第2の手段と、前記第1、第2の手段にて得ら
れた第1の検波波形と第2の検波波形との相互相関関数
の演算結果からラビングを検出することを特徴とする回
転機械のラビング検出方法。
1. In a method of detecting sliding between a rotating part and a stationary body in a rotating machine, that is, a rubbing phenomenon using an acoustic sensor, a first acoustic sensor and a first acoustic sensor are provided in a bearing part of the rotating machine. a first means for installing a second acoustic sensor in a bearing portion different from the first acoustic sensor, and amplifying and detecting the signal received by the first acoustic sensor to obtain a detected waveform;
a second means for amplifying and detecting the signal received by the acoustic sensor to obtain a detected waveform; and a second means for obtaining a detected waveform by amplifying and detecting the signal received by the acoustic sensor; A rubbing detection method for a rotating machine characterized by detecting rubbing from a calculation result of a cross-correlation function.
JP18505183A 1983-10-05 1983-10-05 Detection for rubbing of rotary machine Pending JPS6078343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18505183A JPS6078343A (en) 1983-10-05 1983-10-05 Detection for rubbing of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18505183A JPS6078343A (en) 1983-10-05 1983-10-05 Detection for rubbing of rotary machine

Publications (1)

Publication Number Publication Date
JPS6078343A true JPS6078343A (en) 1985-05-04

Family

ID=16163936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18505183A Pending JPS6078343A (en) 1983-10-05 1983-10-05 Detection for rubbing of rotary machine

Country Status (1)

Country Link
JP (1) JPS6078343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323210A (en) * 2020-03-17 2020-06-23 北京控制工程研究所 Device and method for testing optical axis thermal stability of optical lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323210A (en) * 2020-03-17 2020-06-23 北京控制工程研究所 Device and method for testing optical axis thermal stability of optical lens

Similar Documents

Publication Publication Date Title
JPH044535B2 (en)
Randall Detection and diagnosis of incipient bearing failure in helicopter gearboxes
JPS58150859A (en) Method and apparatus for diagnosing crack of rotor
EP0028081A2 (en) Method and apparatus for detecting frictional wear in plain metal bearings
JPS6341012B2 (en)
JPS6078343A (en) Detection for rubbing of rotary machine
JP3639160B2 (en) Abnormal point detection device
JPH0587669A (en) Pipe-leakage inspecting method
US5031459A (en) Turbine generator shaft torsion monitor
JP3133423B2 (en) Abnormal detection device for rotating parts
JP2021113726A (en) Diagnosis method and device of rotary bearing
Wang et al. Condition monitoring of rolling-element bearings by using cone-kernel time-frequency distribution
JPS5868626A (en) Device for detecting abnormality of rotary machine
JP3264480B2 (en) Abnormality diagnosis method for wheels with built-in bearings and low-speed rotating bearings
Acuña et al. Damage assessment of rolling element bearing using cyclostationary processing of AE signals with electromagnetic interference
JP3639145B2 (en) Abnormal point detection device
JPH0249384Y2 (en)
JPS6120837A (en) Rubbing detection
JP2009036624A (en) Ae detecting method and its detector
Gao et al. Estimation of Envelope Spectra Using Maximum Entopry Spectral Analysis and Spectrum Interpolation
JP3170006B2 (en) Bearing abnormality detection device
JPS6131325B2 (en)
JPS605893B2 (en) Bearing abnormality monitoring device
JPH0460545B2 (en)
JPH01234083A (en) Abnormality inspecting device for rotary machine