JPH0587669A - Pipe-leakage inspecting method - Google Patents

Pipe-leakage inspecting method

Info

Publication number
JPH0587669A
JPH0587669A JP27326491A JP27326491A JPH0587669A JP H0587669 A JPH0587669 A JP H0587669A JP 27326491 A JP27326491 A JP 27326491A JP 27326491 A JP27326491 A JP 27326491A JP H0587669 A JPH0587669 A JP H0587669A
Authority
JP
Japan
Prior art keywords
sound
pipe
sound pressure
leakage
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27326491A
Other languages
Japanese (ja)
Inventor
Munehiro Hachiro
宗弘 鉢呂
Hiroshi Machida
博 町田
Riyuusuke Ishikawa
鉚輔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Fuji Subsurface Information Ltd
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Fuji Subsurface Information Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd, Fuji Subsurface Information Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27326491A priority Critical patent/JPH0587669A/en
Publication of JPH0587669A publication Critical patent/JPH0587669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To obtain a pipe-leakage inspecting method, which can remove disturbances such as flowing sound and mechanical sound generated in the pipe without especially stopping a plant and can perform accurate judgment without much skill. CONSTITUTION:The sound pressures at two appropriate points A and B of a pipe (a) are detected with sound-pressure sensors 1 and 3. The frequency bands lower than the specified value are removed from the sound signals in sound-pressure measuring devices 2 and 4. The sound-pressure components in the remaining high-frequency band is compared with a reference value, and the presence or absence of leakage is judged. The correlation coefficient is computed from the sound-pressure data at two points with a correlator 5. Thus, a leaking point C is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学プラント等におい
て水、油等を輸送する配管からの漏洩の有無を判定する
配管漏洩検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe leakage inspection method for determining whether or not there is a leak from a pipe for transporting water, oil or the like in a chemical plant or the like.

【0002】[0002]

【従来の技術】従来、配管からの漏洩の有無を判定する
には、漏洩検査を実施する区間の配管において水、油等
の流動を停止し、配管に発生する流動音、機械音等の外
乱の影響を極力少なくして漏洩検査を実施していた。
2. Description of the Related Art Conventionally, in order to determine whether or not there is a leak from a pipe, the flow of water, oil, etc. is stopped in the pipe in the section where the leak inspection is carried out, and disturbances such as flow noise and mechanical noise generated in the pipe The leak inspection was carried out with the influence of the above as small as possible.

【0003】[0003]

【発明が解決しようとする課題】このように、従来の漏
洩検査方法では、漏洩検査を実施する区間の配管におけ
る水、油等の流動を停止して検査を実施しなければなら
ず、実施には経費がかかるとともに容易ではなく、又、
プラントを停止するために生産性も大幅に低下すること
となり、頻繁に検査を実施することができなかった。
As described above, in the conventional leak inspection method, the flow of water, oil, etc. in the pipe in the section where the leak inspection is to be carried out must be stopped before the inspection. Is expensive and not easy, and
Since the plant was stopped, the productivity was also significantly reduced, and it was not possible to carry out frequent inspections.

【0004】又、従来の漏洩検査方法により水、油等の
流動を停止せずに検査を実施しても、配管に発生する流
動音、機械音等の外乱の影響が大きく、正確な検査をす
るのは到底不可能であった。
Further, even if the inspection is carried out by the conventional leakage inspection method without stopping the flow of water, oil, etc., the influence of disturbances such as flow noise and mechanical noise generated in the pipe is great, and accurate inspection is required. It was impossible to do.

【0005】さらには、漏洩検査を実施する区間の配管
における水、油等の流動を停止して検査を実施しても、
他の区間の配管からの流動音、機械音等の外乱を完全に
除去することはできず、漏洩音と外乱との識別は容易で
はなく、漏洩の有無を判定するには熟練を要し、それで
もなお、誤認もしくは正確な判定をなし得ない場合がま
まあった。
Furthermore, even if the inspection is carried out by stopping the flow of water, oil, etc. in the pipes in the section where the leakage inspection is carried out,
Disturbances such as flow noise and mechanical noise from pipes in other sections cannot be completely removed, it is not easy to distinguish between leakage noise and disturbance, and skill is required to determine the presence or absence of leakage. Nevertheless, there were still cases where misidentification or inaccurate judgment could not be made.

【0006】本発明は、かかる問題点に鑑みてなされた
ものであり、その目的とするところは、特にプラントを
停止することもなく、配管に発生する流動音、機械音等
の外乱を除去し、又、それほどの熟練を要することもな
く、しかも正確な判定をなし得る配管漏洩検査方法を提
供するものである。
The present invention has been made in view of the above problems, and an object thereof is to remove disturbances such as flow noises and mechanical noises generated in piping without stopping the plant. Further, the present invention provides a pipe leakage inspection method which does not require so much skill and can make an accurate determination.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の配管漏洩検査方法は、漏洩検査を実施する
区間の配管の2点における音圧を検出し、所定値以下の
音圧の周波数成分を除去して得た音圧について、該音圧
の波形と強度を基準値と比較して漏洩の有無を判定する
とともに、前記2点における漏洩音の伝播時間差から漏
洩地点を算出するものである。
In order to achieve the above object, the pipe leakage inspection method of the present invention detects the sound pressures at two points of the pipe in the section where the leakage inspection is performed, and the sound pressures below a predetermined value are detected. For the sound pressure obtained by removing the frequency component of, the presence or absence of leakage is determined by comparing the waveform and intensity of the sound pressure with a reference value, and the leakage point is calculated from the propagation time difference of the leakage sound at the two points. It is a thing.

【0008】従来の配管漏洩検査方法において、配管内
の水、油等の流動を停止して検査を実施するのは、流動
音、機械音等の外乱を極力除去するためであり、従っ
て、流動音、機械音等の外乱を除去できれば、配管内に
水、油等を流動させた状態であっても漏洩検査をなし得
ることとなる。
In the conventional pipe leakage inspection method, the reason why the flow of water, oil, etc. in the pipe is stopped and the inspection is carried out is to remove disturbances such as flow noise and mechanical noise as much as possible. If disturbances such as sound and mechanical noise can be removed, even if water, oil, etc. are flowing in the pipe, a leak inspection can be performed.

【0009】そこで、流動音、機械音等の外乱及び漏洩
音について周波数分析を行なった。その結果を図1に示
す。
Therefore, frequency analysis was performed on disturbances such as flowing sounds and mechanical sounds and leakage sounds. The result is shown in FIG.

【0010】図1よりわかるように、流動音、機械音等
の外乱は5kHz以下の低周波数帯域に存在し、一方、漏
洩音は5kHz以上の高周波数帯域にも存在する。又、配
管内を伝播する音の減衰は周波数が高くなるほど大とな
るが、漏洩地点から20m程度離れた地点でも10kH
z程度までの成分は十分伝播する。従って、5kHz以下
の低周波数帯域を除去する高周波フィルタ−を使用すれ
ば、流動音、機械音等の外乱を除去し、ほぼ漏洩音のみ
検出でき、配管内に水、油等を流動させた状態であって
も漏洩検査をなし得ることとなる。
As can be seen from FIG. 1, disturbances such as flowing sounds and mechanical sounds exist in a low frequency band of 5 kHz or less, while leak sounds also exist in a high frequency band of 5 kHz or more. Also, the attenuation of the sound propagating in the pipe becomes greater as the frequency becomes higher, but it is 10 kHz even at a point about 20 m away from the leak point.
Components up to about z propagate sufficiently. Therefore, by using a high-frequency filter that removes the low-frequency band of 5 kHz or less, disturbances such as flowing noise and mechanical noise can be removed, and almost only leak noise can be detected, and water, oil, etc. are flowing in the pipe. Even then, a leak inspection can be performed.

【0011】上記考察から、漏洩検査を実施する区間の
配管の適宜2点において配管内の音圧を検出し、所定値
以下の音圧の周波数成分を除去して得た音圧について該
音圧の波形と強度を基準値と比較し、該音圧が基準値以
上である場合には漏洩有りと判定できる。
From the above consideration, the sound pressure obtained by detecting the sound pressure in the pipe at appropriate two points of the pipe in the section where the leakage inspection is performed and removing the frequency component of the sound pressure below a predetermined value When the sound pressure is equal to or higher than the reference value, it can be determined that there is a leak.

【0012】そして、この2点における音圧デ−タから
漏洩音の伝播時間差(Δt)を算出し、これより以下の
式により漏洩地点を判定し得る(図2参照)。 L=(D±V・Δt)/2 (1) ここで、L;音圧検出地点から漏洩地点までの距離、
D;音圧検出地点間の距離、V;漏洩音の伝播速度であ
る。
Then, the propagation time difference (Δt) of the leak sound is calculated from the sound pressure data at these two points, and the leak point can be determined from the following equation (see FIG. 2). L = (D ± V · Δt) / 2 (1) where L; distance from sound pressure detection point to leakage point,
D: Distance between sound pressure detection points, V: Propagation velocity of leakage sound.

【0013】[0013]

【実施例】本発明の配管漏洩検査方法について、図面を
参照してより具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The pipe leakage inspection method of the present invention will be described more specifically with reference to the drawings.

【0014】本発明の配管漏洩検査方法は図3に示すよ
うな装置を使用して実施する。この装置は、漏洩検査を
実施する区間内の配管aの適宜2点(A,B)のうち、
A点に設置する音圧センサ1及び音圧測定器2と、B点
に設置する音圧センサ3及び音圧測定器4と、所定の地
点に設置する相関器5とよりなる。
The pipe leakage inspection method of the present invention is carried out using an apparatus as shown in FIG. This device has two points (A, B) of the pipe a in the section where the leakage inspection is carried out.
The sound pressure sensor 1 and the sound pressure measuring device 2 are installed at the point A, the sound pressure sensor 3 and the sound pressure measuring device 4 are installed at the point B, and the correlator 5 is installed at a predetermined point.

【0015】音圧センサ1及び3は同様の圧電型加速度
センサであり、本実施例においては、水の場合には40
0Hzにて圧力感度300〜400mV/G、油の場合
には圧力感度1000〜1200mV/Gのものを使用
した。ここで、圧力感度が相違するのは異なる取付形態
の音圧センサを使用したためであり、全く便宜上の理由
にすぎない。なお、外乱の大半を占める低周波数成分に
対する感度を下げるため、図4に示すように、音圧セン
サ1及び3の終端には10kΩ程度の抵抗6,7を接続
してある。
The sound pressure sensors 1 and 3 are similar piezoelectric acceleration sensors, and in the case of this embodiment, 40 in the case of water.
A pressure sensitivity of 300 to 400 mV / G at 0 Hz and a pressure sensitivity of 1000 to 1200 mV / G in the case of oil were used. Here, the difference in pressure sensitivity is due to the use of the sound pressure sensor having a different mounting form, and is merely for the sake of convenience. To reduce the sensitivity to low frequency components that account for most of the disturbance, resistors 6 and 7 of about 10 kΩ are connected to the ends of the sound pressure sensors 1 and 3 as shown in FIG.

【0016】音圧測定器2及び4も同様のものであり、
それぞれ、プリアンプ8,9、ログアンプ10,11、
デ−タロガ−12,13よりなる。
The sound pressure measuring instruments 2 and 4 are also the same,
Preamps 8 and 9, log amps 10 and 11,
It consists of data loggers-12 and 13.

【0017】音圧センサ1,3により検出された音圧信
号は、図4に示すように、プリアンプ8,9によって、
内蔵された高周波数フィルタ−14,15により5kH
z以下の低周波数帯域を除去された後、電圧増幅され
る。
The sound pressure signals detected by the sound pressure sensors 1 and 3 are supplied to the preamplifiers 8 and 9 as shown in FIG.
5kH by built-in high frequency filter-14,15
After the low frequency band below z is removed, the voltage is amplified.

【0018】そして、ログアンプ10,11により電圧
レベルを対数圧縮され、水の場合には、振動加速度1.
0×10-7〜4.0×10-5Gを1〜2Vの範囲で電圧
信号出力し、油の場合には、4.0×10-8〜1.0×
10-5Gを1〜2Vの範囲で電圧信号出力する。
Then, the voltage level is logarithmically compressed by the log amplifiers 10 and 11, and in the case of water, the vibration acceleration 1.
0 × 10 −7 to 4.0 × 10 −5 G is output as a voltage signal in the range of 1 to 2 V, and in the case of oil, 4.0 × 10 −8 to 1.0 ×
A voltage signal of 10 −5 G is output in the range of 1 to 2V.

【0019】デ−タロガ−12,13は上記のように変
換された電圧信号を表示器16,17に表示し、又音圧
デ−タとしてメモリカ−ド等に記録するものである。
The data loggers 12 and 13 display the voltage signals converted as described above on the displays 16 and 17 and record them as sound pressure data in a memory card or the like.

【0020】なお、プリアンプ8,9からの電圧出力信
号はヘッドホ−ン18,19により確認できるととも
に、出力端子20,21から相関器5に送られる。
The voltage output signals from the preamplifiers 8 and 9 can be confirmed by the headphones 18 and 19, and are also sent from the output terminals 20 and 21 to the correlator 5.

【0021】相関器5は、図5に示すように、音圧測定
器2及び4の出力端子20,21から送られてきた2つ
の電圧信号を入力端子22,23より取り込み、サンプ
リング回路26,27によりディジタル信号に変換す
る。
As shown in FIG. 5, the correlator 5 takes in the two voltage signals sent from the output terminals 20 and 21 of the sound pressure measuring instruments 2 and 4 from the input terminals 22 and 23, and the sampling circuit 26, It converts into a digital signal by 27.

【0022】そして、マイクロコンピュ−タ28により
2つのディジタル信号からA,B2点における漏洩音の
相互相関係数、すなわち伝播時間差(Δt)を算出し、
上記式(1)の演算を行ない、漏洩地点Cを検出する。
演算結果は、ディスプレイ29に表示され、又プリンタ
30により記録される。
Then, the cross-correlation coefficient of the leak sound at the points A and B, that is, the propagation time difference (Δt) is calculated from the two digital signals by the microcomputer 28,
The leak point C is detected by performing the calculation of the equation (1).
The calculation result is displayed on the display 29 and recorded by the printer 30.

【0023】本発明の配管漏洩検査方法は、上記装置を
使用して以下のようになされる。
The pipe leakage inspection method of the present invention is performed as follows using the above apparatus.

【0024】先ず、漏洩検査を実施しようとする区間の
配管aの適宜2地点A,Bに音圧センサ1,3及び音圧
測定器2,4を設置する。
First, the sound pressure sensors 1 and 3 and the sound pressure measuring instruments 2 and 4 are installed at appropriate two points A and B of the pipe a in the section where the leakage inspection is to be performed.

【0025】所定時間音圧の検出を継続し、A,B2地
点における音圧デ−タを収集する。この時、高周波数フ
ィルタ−14,15により5kHz以下の低周波数帯域を
除去するから、流動音、機械音等の外乱はほとんど除去
され、高周波数帯域の音圧成分のみ残存する。
Sound pressure detection is continued for a predetermined time, and sound pressure data at points A and B2 are collected. At this time, since the low frequency band of 5 kHz or less is removed by the high frequency filters-14 and 15, disturbances such as flowing sound and mechanical sound are almost removed, and only the sound pressure component in the high frequency band remains.

【0026】そして、その高周波数帯域の音圧成分を予
め漏洩の無い時に求めておいた音圧の波形と強度に基づ
いて設定した基準音圧と比較して、漏洩の有無を判定す
る。
Then, the presence or absence of leakage is determined by comparing the sound pressure component in the high frequency band with the reference sound pressure set on the basis of the waveform and the strength of the sound pressure previously obtained when there is no leakage.

【0027】漏洩有りと判定した場合には、相関器5に
よってA,B2地点における音圧デ−タから漏洩音の伝
播時間差(Δt)を算出し、上記式(1)の演算を行な
い、漏洩地点Cを検出する。
When it is determined that there is a leak, the correlator 5 calculates the propagation time difference (Δt) of the leak sound from the sound pressure data at the points A and B2, calculates the above equation (1), and leaks. The point C is detected.

【0028】次に、本発明の配管漏洩検査方法の有効性
について、実験例により説明する。
Next, the effectiveness of the pipe leakage inspection method of the present invention will be described with reference to experimental examples.

【0029】(実験例1)図6のような装置を使用して
実験を行なった。この装置は配管31に2つの立設部3
2,33を設け、一端を流出口34としたものであり、
配管31の所定地点には漏洩孔35を穿設したものであ
る。立設部32の上端を流入口36とし、他の配管37
からホ−ス38を介して所定圧力で流入口36より配管
31内にA重油を流入させ、流出口34より流出させ
る。立設部33の上端にはテ−プレコ−ダ39、アンプ
40、バイブレ−タ41よりなる外乱発生装置42を設
置してある。そして、音圧センサ43,44を配管31
の適宜地点に設置し、音圧測定器45,46及び相関器
47により漏洩音の検出、漏洩地点の算出等を行うよう
にしてある。
(Experimental Example 1) An experiment was conducted using an apparatus as shown in FIG. This device has two standing parts 3 on the pipe 31.
2, 33 are provided, and one end is used as the outlet 34,
A leak hole 35 is formed at a predetermined point of the pipe 31. The upper end of the standing portion 32 is used as an inflow port 36, and another pipe 37
The heavy oil A is introduced into the pipe 31 from the inlet 36 at a predetermined pressure through the hose 38, and is discharged from the outlet 34. A disturbance generator 42 including a tape recorder 39, an amplifier 40, and a vibrator 41 is installed at the upper end of the standing portion 33. Then, the sound pressure sensors 43 and 44 are connected to the pipe 31.
The sound pressure measuring instruments 45 and 46 and the correlator 47 detect leak sound and calculate leak points.

【0030】油圧を5kg/cm2 、流速を6l/h
r、配管37径を6inch(150mm)、漏洩孔3
5径を1.0mm、音圧センサ43,44間距離を15
mとし、外乱発生装置42は作動させなかった。周波数
帯域フィルタ−は、5〜10kHz以外を除去するものを
使用した。
Oil pressure is 5 kg / cm 2 , flow rate is 6 l / h
r, pipe 37 diameter 6 inch (150 mm), leak hole 3
5 diameter 1.0mm, the distance between the sound pressure sensor 43,44 is 15
The disturbance generator 42 was not operated. The frequency band filter used is one that removes frequencies other than 5 to 10 kHz.

【0031】この時の音圧センサ43,44の出力周波
数スペクトルは図7、相関波形は図8に示すとおりであ
った。相関波形において実用上十分な漏洩音のピ−クを
生じているのがわかる。
The output frequency spectra of the sound pressure sensors 43 and 44 at this time are as shown in FIG. 7, and the correlation waveforms are as shown in FIG. It can be seen that in the correlation waveform, a leak sound peak that is practically sufficient is generated.

【0032】(比較例1)実験例1と同様の装置を使用
し、同様の条件にて実験を行なった。但し、周波数帯域
フィルタ−は、1〜10kHz以外を除去するものを使用
した。
(Comparative Example 1) An experiment was conducted under the same conditions by using the same apparatus as in Experimental Example 1. However, the frequency band filter used is one that removes frequencies other than 1 to 10 kHz.

【0033】この時の音圧センサ43,44の出力周波
数スペクトルは図7、相関波形は図9に示すとおりであ
った。相関波形において配管の共振によるとみられる不
要なピ−クを生じているのがわかる。
The output frequency spectra of the sound pressure sensors 43 and 44 at this time were as shown in FIG. 7, and the correlation waveforms were as shown in FIG. It can be seen that an undesired peak, which is considered to be due to the resonance of the pipe, is generated in the correlation waveform.

【0034】(実験例2)実験例1と同様の装置を使用
し、外乱発生装置42を作動させた以外は同様の条件に
て実験を行なった。ここで、発生させた外乱の周波数ス
ペクトルは図10に示すとおりである。周波数帯域フィ
ルタ−は、5〜10kHz以外を除去するものを使用し
た。
(Experimental Example 2) An experiment was conducted under the same conditions as the experimental example 1 except that the disturbance generator 42 was operated. Here, the frequency spectrum of the generated disturbance is as shown in FIG. The frequency band filter used is one that removes frequencies other than 5 to 10 kHz.

【0035】この時の音圧センサ43,44の出力周波
数スペクトルは図11、相関波形は図12に示すとおり
であった。相関波形において漏洩音と外乱との双方でピ
−クを生じているが、漏洩音と外乱とのピ−クレベルに
大差があるため容易に両者を識別でき、最大ピ−ク値を
示す点をもって漏洩地点を算出することができる。
The output frequency spectra of the sound pressure sensors 43 and 44 at this time are as shown in FIG. 11, and the correlation waveforms are as shown in FIG. Peaks are generated in both the leaked sound and the disturbance in the correlation waveform, but there is a large difference in the peak level between the leaked sound and the disturbance, so that they can be easily distinguished from each other, and there is a point showing the maximum peak value. The leak point can be calculated.

【0036】(比較例2)実験例2と同様の装置を使用
し、同様の条件にて実験を行なった。但し、周波数帯域
フィルタ−は、1〜10kHz以外を除去するものを使用
した。
(Comparative Example 2) An experiment was conducted using the same apparatus as in Experimental Example 2 under the same conditions. However, the frequency band filter used is one that removes frequencies other than 1 to 10 kHz.

【0037】この時の音圧センサ43,44の出力周波
数スペクトルは図11、相関波形は図13に示すとおり
であった。相関波形において漏洩音と外乱に対応する複
数のピ−クを生じており、漏洩音と外乱のピ−クレベル
が略同程度であるため容易に両者を識別することができ
ず、漏洩地点を確実に算出することは不可能である。
The output frequency spectra of the sound pressure sensors 43 and 44 at this time were as shown in FIG. 11, and the correlation waveforms were as shown in FIG. Multiple peaks corresponding to the leaked sound and the disturbance are generated in the correlation waveform, and the peak levels of the leaked sound and the disturbance are approximately the same, so it is not possible to easily distinguish the two and the leak point It is impossible to calculate.

【0038】以上の実験結果から、5〜10kHzの高周
波数帯域フィルタ−を使用することによって大幅に外乱
を除去することができ、音圧センサ間距離15mとして
も実用上十分な漏洩音圧及び漏洩地点の検出が可能であ
ることがわかった。
From the above experimental results, by using a high frequency band filter of 5 to 10 kHz, it is possible to significantly remove the disturbance, and even if the distance between the sound pressure sensors is 15 m, the sound pressure and the leakage sound are practically sufficient. It was found that the location could be detected.

【0039】[0039]

【発明の効果】本発明の配管漏洩検査方法によれば、5
kHz以下の低周波数帯域の音圧成分を除去することによ
り流動音、機械音等の外乱を大幅に除去できるから、配
管内に水、油等を流動させた状態であっても漏洩検査を
なし得る。
According to the pipe leakage inspection method of the present invention, 5
Disturbances such as flow noise and mechanical noise can be significantly removed by removing the sound pressure component in the low frequency band below kHz, so no leakage inspection is required even when water or oil is flowing in the piping. obtain.

【0040】又、本発明の配管漏洩検査方法によれば、
漏洩音と外乱との識別が容易となり、漏洩の有無を判定
するのにそれ程熟練は要さず、誤認も少なくなる。
According to the pipe leakage inspection method of the present invention,
Distinguishing between the leak sound and the disturbance becomes easy, less skill is required to determine the presence or absence of the leak, and false recognition is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】漏洩音及び外乱の周波数特性を示す図である。FIG. 1 is a diagram showing frequency characteristics of leakage sound and disturbance.

【図2】漏洩地点を算出するための説明図である。FIG. 2 is an explanatory diagram for calculating a leak point.

【図3】本発明の配管漏洩検査方法を実施する装置の説
明図である。
FIG. 3 is an explanatory view of an apparatus for carrying out the pipe leakage inspection method of the present invention.

【図4】音圧センサ及び音圧測定器の構成図である。FIG. 4 is a configuration diagram of a sound pressure sensor and a sound pressure measuring device.

【図5】相関器の構成図である。FIG. 5 is a block diagram of a correlator.

【図6】本発明の配管漏洩検査方法を実験する装置の説
明図である。
FIG. 6 is an explanatory diagram of an apparatus for testing the pipe leakage inspection method of the present invention.

【図7】外乱の無い場合の音圧センサの出力周波数スペ
クトルを示す図であり、(a)はA地点、(b)はB地
点におけるものである。
7A and 7B are diagrams showing an output frequency spectrum of a sound pressure sensor when there is no disturbance, where FIG. 7A is at point A and FIG. 7B is at point B. FIG.

【図8】外乱の無い場合であって、5〜10kHzの周波
数フィルタ−を使用した時の相関波形を示す図である。
FIG. 8 is a diagram showing a correlation waveform when a frequency filter of 5 to 10 kHz is used when there is no disturbance.

【図9】外乱の無い場合であって、1〜10kHzの周波
数フィルタ−を使用した時の相関波形を示す図である。
FIG. 9 is a diagram showing a correlation waveform when there is no disturbance and a frequency filter of 1 to 10 kHz is used.

【図10】外乱の周波数スペクトルを示す図である。FIG. 10 is a diagram showing a frequency spectrum of disturbance.

【図11】外乱の有る場合の音圧センサの出力周波数ス
ペクトルを示す図であり、(a)はA地点、(b)はB
地点におけるものである。
11A and 11B are diagrams showing an output frequency spectrum of the sound pressure sensor in the case where there is a disturbance, where FIG. 11A is a point A and FIG.
It is at the point.

【図12】外乱の有る場合であって、5〜10kHzの周
波数フィルタ−を使用した時の相関波形を示す図であ
る。
FIG. 12 is a diagram showing a correlation waveform when there is a disturbance and a frequency filter of 5 to 10 kHz is used.

【図13】外乱の有る場合であって、1〜10kHzの周
波数フィルタ−を使用した時の相関波形を示す図であ
る。
FIG. 13 is a diagram showing a correlation waveform when there is a disturbance and a frequency filter of 1 to 10 kHz is used.

【符号の説明】[Explanation of symbols]

1 音圧センサ 2 音圧測定器 3 音圧センサ 4 音圧測定器 5 相関器 a 配管 1 Sound pressure sensor 2 Sound pressure measuring device 3 Sound pressure sensor 4 Sound pressure measuring device 5 Correlator a Piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 鉚輔 東京都千代田区神田和泉町1番地11号 フ ジ地中情報株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Housuke Ishikawa 1-11, Kanda Izumicho, Chiyoda-ku, Tokyo Fuji Underground Information Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配管の2点における音圧を検出し、所定
値以下の音圧の周波数成分を除去して得た音圧につい
て、該音圧の波形と強度を基準値と比較して漏洩の有無
を判定するとともに、前記2点における漏洩音の伝播時
間差から漏洩地点を算出することを特徴とする配管漏洩
検査方法
1. A sound pressure obtained by detecting sound pressure at two points in a pipe and removing a frequency component of the sound pressure below a predetermined value, and comparing the waveform and the strength of the sound pressure with a reference value to cause leakage. It is determined whether or not there is a leak, and the leak point is calculated from the propagation time difference of the leak sound at the two points.
【請求項2】 前記所定値が5kHzである請求項1記
載の配管漏洩検査方法。
2. The pipe leakage inspection method according to claim 1, wherein the predetermined value is 5 kHz.
【請求項3】 前記基準値が予め漏洩の無い時に求めて
おいた音圧の波形と強度に基づく基準値である請求項1
又は請求項2記載の配管漏洩検査方法。
3. The reference value is a reference value based on a waveform and intensity of sound pressure which is obtained in advance when there is no leakage.
Alternatively, the pipe leakage inspection method according to claim 2.
JP27326491A 1991-09-25 1991-09-25 Pipe-leakage inspecting method Pending JPH0587669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27326491A JPH0587669A (en) 1991-09-25 1991-09-25 Pipe-leakage inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27326491A JPH0587669A (en) 1991-09-25 1991-09-25 Pipe-leakage inspecting method

Publications (1)

Publication Number Publication Date
JPH0587669A true JPH0587669A (en) 1993-04-06

Family

ID=17525413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27326491A Pending JPH0587669A (en) 1991-09-25 1991-09-25 Pipe-leakage inspecting method

Country Status (1)

Country Link
JP (1) JPH0587669A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256726A (en) * 1992-01-16 1993-10-05 Toshiba Corp Method and apparatus for detecting abnormal position of buried tubular body
JPH10160615A (en) * 1996-11-27 1998-06-19 Tokyo Gas Co Ltd Acoustic device for specifying leakage position
JP2000292302A (en) * 1999-02-01 2000-10-20 Mitsubishi Electric Corp Abnormal position detecting device
JP2002236073A (en) * 2000-12-07 2002-08-23 Nissan Motor Co Ltd Airtightness inspecting device
JP2002340723A (en) * 2001-05-18 2002-11-27 High Pressure Gas Safety Institute Of Japan Method for sensing gas leakage
WO2003048713A1 (en) * 2001-11-30 2003-06-12 The Victoria University Of Manchester Remote pipeline acoustic inspection
JP2006266767A (en) * 2005-03-23 2006-10-05 Meidensha Corp Fluid leakage monitoring device of piping network
KR101324323B1 (en) * 2013-03-11 2013-11-01 주식회사 썬닉스 System and method for assessment of residual life for a pipe connector
GB2575669A (en) * 2018-07-19 2020-01-22 Hwm Water Ltd Leak detection apparatus and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256726A (en) * 1992-01-16 1993-10-05 Toshiba Corp Method and apparatus for detecting abnormal position of buried tubular body
JPH10160615A (en) * 1996-11-27 1998-06-19 Tokyo Gas Co Ltd Acoustic device for specifying leakage position
JP2000292302A (en) * 1999-02-01 2000-10-20 Mitsubishi Electric Corp Abnormal position detecting device
JP2002236073A (en) * 2000-12-07 2002-08-23 Nissan Motor Co Ltd Airtightness inspecting device
JP2002340723A (en) * 2001-05-18 2002-11-27 High Pressure Gas Safety Institute Of Japan Method for sensing gas leakage
WO2003048713A1 (en) * 2001-11-30 2003-06-12 The Victoria University Of Manchester Remote pipeline acoustic inspection
JP2006266767A (en) * 2005-03-23 2006-10-05 Meidensha Corp Fluid leakage monitoring device of piping network
KR101324323B1 (en) * 2013-03-11 2013-11-01 주식회사 썬닉스 System and method for assessment of residual life for a pipe connector
GB2575669A (en) * 2018-07-19 2020-01-22 Hwm Water Ltd Leak detection apparatus and method

Similar Documents

Publication Publication Date Title
US6453247B1 (en) PC multimedia-based leak detection system for water transmission and distribution pipes
US8717183B2 (en) Leak detector
US5117676A (en) Leak detector for natural gas pipelines
US6725705B1 (en) Enhanced acoustic detection of gas leaks in underground gas pipelines
US6668619B2 (en) Pattern matching for real time leak detection and location in pipelines
Pal et al. Detecting & locating leaks in water distribution polyethylene pipes
WO2004025231A3 (en) Acoustic sensing device, system and method for monitoring emissions from machinery
JPS5832108A (en) Method and device for measuring position of damage of pipe
US3462240A (en) Acoustic apparatus for examining a pipeline for leaks
JPH08508808A (en) Apparatus and method for identifying leak points in a conduit network
JPH0587669A (en) Pipe-leakage inspecting method
JP3032185B2 (en) Piping leak detection system
JPH1062292A (en) Signal processing method in pipe leakage-position locating method
JPH0894481A (en) Gas leak detection method for embedded pipe
CA2927083A1 (en) Signal processing systems and methods
JPH1164152A (en) Method for spotting leakage position in gas piping and device therefor
JPS63208756A (en) Quick acoustic radiation inspection method of pressure vessel
JP3639160B2 (en) Abnormal point detection device
JPS59176643A (en) Measuring device for fine leakage of valve
US4372151A (en) Automatic fault locating apparatus for a pressurized pipeline
JP3630393B2 (en) Abnormal point detection device
JPH10185744A (en) Judgment method for external noise in specification method for leak position in pipe
JP3639145B2 (en) Abnormal point detection device
JP2815625B2 (en) How to detect leaks inside the valve
JPH03100430A (en) Leakage inspecting device for tank